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Abstract—In the current Noisy Intermediate Scale Quantum
(NISQ) era of quantum computing, qubit technologies are prone
to imperfections, giving rise to various errors such as gate
errors, decoherence/dephasing, measurement errors, leakage, and
crosstalk. These errors present challenges in achieving error-
free computation within NISQ devices. A proposed solution to
this issue is Quantum Error Correction (QEC), which aims to
rectify the corrupted qubit state through a three-step process:
(i) detection: identifying the presence of an error, (ii) decoding:
pinpointing the location(s) of the affected qubit(s), and (iii)
correction: restoring the faulty qubits to their original states.
QEC is an expanding field of research that encompasses intricate
concepts. In this paper, we aim to provide a comprehensive review
of the historical context, current state, and future prospects
of Quantum Error Correction, tailored to cater to computer
scientists with limited familiarity with quantum physics and its
associated mathematical concepts. In this work, we, (a) explain
the foundational principles of QEC and explore existing Quantum
Error Correction Codes (QECC) designed to correct errors in
qubits, (b) explore the practicality of these QECCs concerning
implementation and error correction quality, and (c) highlight the
challenges associated with implementing QEC within the context
of the current landscape of NISQ computers.

Index Terms—Quantum error correction, Quantum comput-
ing, Error correction codes

I. INTRODUCTION

In recent years, quantum computing has garnered substantial
interest owing to its potential to revolutionize diverse industry
sectors, including cybersecurity, pharmaceuticals, finance, and
manufacturing [1]. Quantum computers employ qubits for the
representation and computation of information. Qubits harness
quantum-mechanical properties, such as superposition, entan-
glement, and interference, which theoretically endow quantum
computers with a speed advantage over classical algorithms
and computing systems. Quantum computing algorithms have
been employed in various fields, including quantum machine
learning [2], optimization [3] and quantum chemistry [4], [5].
Quantum computers are realized through a diverse range of
qubit technologies, such as trapped ion qubits [6], [7], photonic
qubits [8], [9], superconducting qubits [10], [11], quantum
dots qubits [12] and many more. However, for all these
technologies, it is a challenging task to entirely isolate qubits
from external noise, making errors in quantum computers
inevitable. Consequently, quantum computers necessitate some
form of error correction.

The established classical error correction theories have
resulted in a high error tolerance for classical computers [22].

However, the adaptation of existing classical error correction
techniques for quantum computing is challenging due to the
no-cloning theorem, which prohibits the duplication of qubits
similar to classical bits [23]. In addition, the measurement
of qubits is subject to limitations as the act of measuring a
qubit leads to the collapse of its wavefunction [24], resulting
in the loss of its quantum state. The year 1995 saw the
proposal of the first Quantum Error Correction (QEC) scheme
by Peter Shor [13]. Fig.1 illustrates the chronology of signif-
icant advancements in the field of quantum error correction
codes. For a comprehensive comparison of these significant
developments, please refer to the Table IV.

Multiple review articles exist on QEC [25]–[27] and as-
sociated topics [28]–[30]. Nonetheless, these articles can be
difficult to grasp, as they often involve complex mathematical
concepts and implicitly assume that readers possess pre-
existing knowledge about the domain. The aim of this work
is to provide a comprehensive yet accessible introduction to
the fundamental concepts of quantum error correction for
researchers who may not have an extensive background in
quantum physics or related mathematical fields. It is not
necessary for readers to have prior knowledge of Quantum
Error Correction (QEC) for this review. However, it is assumed
that the readers are familiar with quantum circuit notations
as described in [31], including basic measurement operations,
controlled-NOT gate (CNOT ), and Hadamard gate (H). 1

We commence by introducing the foundational concepts of
quantum computing in Section II, including qubits, quantum
gates, quantum circuits, types of errors, and the distinctions
between classical and quantum error correction. Section III
elucidates the essential principles of QEC, beginning with
repetition codes and progressing to stabilizer formalism and
topological codes. Sections IV and V address the practical
applications of Quantum Error Correction Codes (QECC)
and the challenges associated with their future development,
respectively.

II. PRELIMINARIES

A. An Overview of Quantum Computing

a) Qubits: Qubits are fundamental units of a quantum
computer that are analogous to classical bits. In general, a

1As a notational shorthand, we often remove the tensor product sign, ⊗
when we denote the tensor product of multiple operators. For example, X ⊗
Y ⊗ Z may be interchangeably written as XY Z.
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3D Color Code:
This is almost like a
3D generalization of
surface codes with
improved error
correction properties. 

Shor Code: Peter Shor
proposed the first quantum
error correction code that
can correct errors in
quantum states. The code
uses nine qubits to correct
a single qubit error and
some two-qubit errors.

1995

1996

Steane Code: Andrew
Steane proposed a
seven-qubit quantum
error correction code
that can correct a
single qubit error.

Bacon-Shor Code:
Bacon and Shor proposed
a subsystem code with
good error-correction
properties by separating
error correction into
subsystems 

1997

2002

Surface Code: Daniel
Gottesman proposed the
surface code, which is a
two-dimensional lattice
of qubits that can correct
any single qubit error and
some two-qubit errors.

Topological Codes:
Alexei Kitaev proposed
a family of topological
quantum error correction
codes based on
topological quantum
field theory.

2006

2006

Hypergraph-product
codes: These codes
are constructed by
combining classical
codes that achieve
good properties. 

2009

2013

Homological-product
graph: Different quantum
codes are combined into
this product code and this
allows the usage of
transversal gates.. 

Flag-qubit Code:
A a class of QECC
that utilize additional
flag qubits, to enhance 
the detection and correction
of errors. This code is
constructed on low-degree
graphs. 

2020

Fig. 1. Advancement and Evolution of Quantum Error Correction. 1©: [13], 2©: [14], 3©: [15], 4©: [16], 5©: [17], 6©: [18], 7©: [19], 8©: [20], 9©: [21].

qubit is represented by a quantum state |ψ〉 =
[ α
β

]
, where α

and β are complex amplitudes such that |α|2 represents the
probability of qubit being measured to classical 0 and |β|2
represents the probability of qubit being measured to classical
1 i.e. |α|2 + |β|2 = 1. Every qubit has two fundamental basis
states, |0〉 (α = 1, β = 0) and |1〉 (α = 0, β = 1). Qubit
undergoes unitary gate operations that change its state and
finally, a measurement operation is performed to collapse the
qubit onto either 0 or 1 values.

b) Quantum gates: Quantum gates are unitary matrix
operations that operate on single or many qubits to change
their states. They are realized using different methods based
on the qubit technology such as using microwave pulses
in superconducting qubits, laser pulses in trapped ion and
quantum dots, and radio frequency pulses in Nuclear Magnetic
Resonance (NMR) qubits. The gate operation speeds also vary
with technologies, ranging from picoseconds (photonic qubits)
to a few seconds (NMR qubits) [32]. Single-qubit gates, for
example, include the X (NOT) gate, H (Hadamard) gate, and
rotation gates such as RX , RY , RZ , and U gate. Two-qubit
gates include the CNOT (controlled-NOT) gate, Toffoli gate,
controlled rotation gates, and Peres gate [33].

c) Quantum circuit: A quantum circuit is an ordered
sequence of gate operations performed over time. A quantum
circuit comprises of state initialization/preparation to prepare
the initial state of the qubits, which are then transformed to
the desired state using gate operations in the circuit and finally
measured using a measurement gate. All quantum operations
are performed in quantum Hilbert space [24] and the high-
level gates in the circuit e.g., Tofolli are broken down into a
native gate set of the quantum hardware prior to execution.
This process is referred to as transpilation.

B. Types of Errors in Quantum Computing

Noise in quantum computing refers to any unwanted influ-
ence on qubits that leads to errors in the basis state. Primarily,
there are two types of errors: bit-flip errors and phase-flip
errors [31]. Bit flip error, also known as X error, occurs when

the state of the qubit is flipped i.e. |0〉 changes to |1〉 and
vice-versa. On the other hand phase flip error, also known as
Z error, involves the sign of the qubit’s phase i.e. |1〉 changes
to − |1〉 but |0〉 remains |0〉. To sum up if we have a basis
state, |ψ〉 = α |0〉 + β |1〉, then X |ψ〉 = α |1〉 + β |0〉 and
Z |ψ〉 = α |0〉−β |1〉. Both these errors can interact with each
other and give rise to more complex errors in the system. A
brief explanation of errors that can arise in the system is as
follows:

a) Gate error: Gate error occurs when a quantum gate
changes state of qubit(s) incorrectly. They are represented by
fidelity, which denotes the probability of error in computation.

b) Decoherence error: Decoherence error occurs when
a qubit interacts with the environment thereby losing its
coherence and becoming an entangled state.

c) Measurement error: Measurement error occurs when
the classically measured output from a measurement operation
is incorrect.

d) Crosstalk error: Crosstalk error occurs when a qubit
interacts with a physically adjacent qubit, leading to an un-
wanted alteration to the qubit state.

C. Classical and Quantum Error Correction

a) Classical Error Correction: In classical computing,
error correction is employed to maintain the integrity and
precision of digital data by identifying and rectifying errors
that may have arisen during transmission. This process utilizes
Error Correction Codes (ECC) [22], [34]. The most commonly
used ECC include Hamming codes [22], Bose-Chaudhuri-
Hocquenghem (BCH) codes [35] and Reed-Solomon codes
[36]. All of these codes detect and correct errors by adding
redundant information to the original data. This allows the
reconstruction of the original message even if some parts of
the data are corrupted or lost.

The 3 − bit repetition code is the simplest example of a
classical ECC, where the encoder expands the original binary
information from a single bit to three bits i.e. 0 → 000 and
1→ 111. A 3− bit encoder can be formalized as a mapping



from the original binary, Θb to the logical binary codewords,
Cl. So, when a single-bit information ′0′ is communicated the
receiver will receive ′000′.

Θb = {0, 1} 3-bit encoder−−−−−−−→ Cl = {000, 111}

Error detection in a repetition code works by checking the
bits at the receiving end. If they are not identical, the receiver
knows that an error has occurred and resets the bits to the
majority value. Therefore, in the case of a corrupted message,
we can have three scenarios: 1© Single-bit flip error: the
receiver receives ’010’ instead of ’000’ considering that the
second bit was flipped. In this case, the original codeword
is generated using majority vote i.e. the corrupted message
has ’0’ in two out of three bits, thus using majority vote
the original message must be ’000’. 2© Two-bit flip error:
the receiver receives ’011’ instead of ’000’ considering that
the last two bits were flipped. The majority distance in this
case will lead to the wrong result. 3© Three-bit flip error: the
receiver receives ’111’ instead of ’000’ considering all the bits
were flipped. In this case, the receiver will not even be able
to detect the error.

The distance of a code is the smallest number of bits needed
to transform one codeword to another. Formally, hamming
distance [22] (or distance) between two codewords Ci and
Cj is defined as δ(Ci, Cj) = 2t + 1, where Ci, Cj ∈ Cl
and t is the maximum number of errors the code can correct.
The maximum number of errors that can be detected by a
repetition code is δ − 1 and the maximum number of errors
that can be corrected is b(δ − 1)/2c, since the majority vote
reset scheme will not work beyond this point. Therefore, for
a 3 − bit repetition code, δ = 3. Traditionally, an ECC is
described using the notation: [n, k, δ] where n is the number
of bits in a codeword, k is the number of encoded bits or
the original bitstring length, and δ is the code distance. For a
3− bit repetition code, the number of bits in the codeword is
n = 3, the number of encoded bits is k = 1, and the distance
is δ = 3 as it requires a maximum of 3-bit flips to transform
′000′ to ′111′ and vice-versa. Therefore, the 3− bit repetition
code is labeled as the [3, 1, 3]. In general, a classical n − bit
repetition code is labeled as [n, 1, n].

b) Footsteps to Quantum Error Correction: There exist
several reasons why the direct translation of classical Error
Correction Codes (ECC) into the quantum domain is non-
trivial. Firstly, quantum states cannot be duplicated similarly
to classical information due to the no-cloning theorem [23].
Secondly, qubits are vulnerable to bit-flip errors as well as
phase-flip errors as mentioned in subsection II-B, unlike the
classical domain where bit-flip errors are the only kind of
errors. Therefore, a QEC code (QECC) should be able to both
detect and correct phase-flip errors along with bit-flip errors.
Finally, every time a qubit is measured, the wavefunction
collapses [24] and the qubit loses its original state. Therefore,
measuring a qubit directly is also not an option. An optimal
QECC should possess the capability to identify and rectify
both bit-flip and phase-flip errors while circumventing the

|ψ⟩
|0⟩
|0⟩

|ψ⟩l = |ψ⟩ ⊗ |0⟩ ⊗ |0⟩

Fig. 2. Illustration of the quantum circuit utilized to create |ψ〉l from the
original state |ψ〉 in a 3− qubit repetition code.

direct duplication of the initial quantum state or the direct
measurement of the qubits.

Classical 3 − bit repetition code works by encoding a
single bit into three bits i.e. 0 → 000 and 1 → 111. To
explain QEC, we discuss the 3−qubit quantum repetition code
first, which serves as the quantum counterpart to the classical
3 − bit repetition code. The general idea of an n − qubit
repetition code is that the original state |ψ〉 is encoded with
n qubits to form a logical state, |ψ〉l [37]. This distributes the
quantum information, |ψ〉, across the entangled logical state,
|ψ〉l. Formally a 3− qubit quantum code is represented as,

|ψ〉 = α |0〉+ β |1〉 3-qubit encoder−−−−−−−−→ |ψ〉l
|ψ〉l = α |0〉l + β |1〉l

= α |0〉 ⊗ |0〉 ⊗ |0〉+ β |1〉 ⊗ |1〉 ⊗ |1〉
= α |000〉+ β |111〉

where: |0〉l = |000〉 ; |1〉l = |111〉

Due to the prohibition imposed by the no-cloning theorem
[23], the encoding of the state |ψ〉 is done by applying CNOT
gates to prepare the logical state, |ψ〉l. Fig. 2 shows the
quantum circuit that is used to expand the original state |ψ〉
into its logical state, |ψ〉l.

Similar to classical ECC, QEC codes are implemented in
a three-step process: error detection, error deduction, and
error correction. Therefore, every QEC circuit must contain
all of these three components. After preparing the logical
state |ψ〉l, we can move on to error detection, which in most
QEC schemes, is done using the stabilizer codes. In simple
terms, stabilizer codes check the parity of two or more qubits
using CNOT gates. The output of the stabilizers is called the
syndrome bits which is +1 (−1) for an error-free (erroneous)
case. Error detection is done based on the syndrome bits as
it provides the location of the error. Once we know the error
location we can simply correct the error. Since the Pauli gates
are self-inverse [38] applying a Pauli-gate twice returns the
original state. Therefore, error correction, once we know where
the error has occurred is easy - we simply have to re-apply
the gate on the affected qubit. Let’s visualize this with an
example: let there be a single bit-flip error, e on the encoded
state, |ψ〉l, such that e = X ⊗ I ⊗ I , and let there be a
correction operator, c, such that ce |ψ〉l = |ψ〉l. Given that
the Pauli-gates are self-inverse, this is satisfied when c = e.
The following equations demonstrate the manner in which the
correction operator transforms the erroneous state back to its
accurate state.



|ψ⟩
|0⟩
|0⟩

|ψ⟩l

|0⟩A0 S0
S1

e c

|0⟩A1

Fig. 3. Demonstrating the quantum circuit that implements a 3 − qubit
repetition code. The circuit comprises the following components: 1©: The
state preparation circuit represented in Fig. 2. 2©: A single bit-flip error that
may occur on any of the 3 qubits. 3©: Two ancilla qubits that are initialized
to the state, |0〉 are employed for parity checking purposes. 4©: The first
stabilizer circuit is responsible for measuring the parity between the first two
qubits. 5©: The second stabilizer circuit measures the parity between the last
two qubits. 6©: The ancilla qubits are utilized to obtain the syndrome bits,
S0, S1, which enable the detection and deduction of errors. 7©: To rectify
the errors, a correction operator, c, comprising of a sequence of self-inverse
Pauli-gates, is applied to the qubit that requires correction.

TABLE I
EIGENVALUES OF VARIOUS ERRORS ON A 3-QUBIT SYSTEM WITH

RESPECT TO PARITY MEASUREMENT OPERATORS [39].

Error Z ⊗ Z ⊗ I Z ⊗ I ⊗ Z I ⊗ Z ⊗ Z
I ⊗ I ⊗ I +1 +1 +1
X ⊗ I ⊗ I −1 −1 +1
I ⊗X ⊗ I −1 +1 −1
I ⊗ I ⊗X +1 −1 −1

|ψ〉l
error−−→ e |ψ〉l = (X ⊗ I ⊗ I) |ψ〉l = α |100〉+ β |011〉

e |ψ〉l
correction−−−−−→ ec |ψ〉l = (X ⊗ I ⊗ I)(X ⊗ I ⊗ I) |ψ〉l

= α |000〉+ β |111〉 = |ψ〉l
Say, we want to make parity measurements on the encoded

state, |ψ〉l = α |000〉+β |111〉, there are three possible parities
: (Z ⊗ Z ⊗ I), (Z ⊗ I ⊗ Z) and (I ⊗ Z ⊗ Z). All three
of these will result in +1. Now suppose, we have a bit flip
error on the second qubit, so e |ψ〉l = α |010〉 + β |101〉,
two out of three parity checkers measurement will return −1.
Different errors on qubits respond to different combinations of
pairwise parity measurement. Table I [39] shows the response
of various errors on a 3-qubit system with all possible parity
measurement operators. Two operators oi, oj are said to be
commuting if [oi, oj ] = 0, i.e. (oi ⊗ oj) = (oj ⊗ oi) and they
are anti-commuting if [oi, oj ] 6= 0, i.e. (oi⊗oj) = −(oj⊗oi).
Therefore, if the outcome of Table I is +1, the error commutes
with the parity operator and if the outcome is −1, the error
anti-commutes with the parity operator. We will later use this
concept in stabilizer formalism.

Fig. 3 shows the entire circuit of a 3−qubit repetition code
which is divided into seven parts. 1©: First, state preparation
is done which produces the logical state |ψ〉l = |000〉 from
the original state, |ψ〉 = |0〉. 2©: A single qubit bit-flip error e
occurs on one of the three qubits in the logical state, |ψ〉l and
produces an erroneous state, e |ψ〉l. 3©: Two ancilla qubits
A0, A1 are initialized to state |0〉. 4©: The first stabilizer
measures Z⊗Z⊗I , which is equivalent to the parity between
the first two qubits by using CNOT gates among the qubits

TABLE II
DETECTION, DEDUCTION, AND CORRECTION OF ERRORS WITH RESPECT

TO THE SYNDROME MEASUREMENTS.

Detection Deduction Correction
S0 S1 Error Location Erroneous State Correction Operator

+1 +1 No error |000〉 III
−1 +1 Qubit 1 |100〉 XII
−1 −1 Qubit 2 |010〉 IXI
+1 −1 Qubit 3 |001〉 IIX

and the first ancilla qubit. 5©: The second stabilizer measures
I⊗Z⊗Z, which is equivalent to the parity between the last two
qubits by using CNOT gates among the qubits and the second
ancilla qubit. 6©: The syndrome bits S0, S1 measure the pauli-
z expectation values of the ancilla qubits A0, A1 respectively.
The value of Si is either +1 or −1 depending on whether or
not any error has occurred. Table II shows the value of the
syndrome bits with respect to the erroneous state, e |ψ〉l. 7©:
Once we know where and which error has occurred, we simply
apply the same gate on the affected qubit as the Pauli-gates
are self-inverse. Table II also shows how the Pauli-gates can
be applied to correct the errors in the state e |ψ〉l, for example,
if the erroneous state is |100〉, then the correction operator is
XII . Since the stabilizers are used to measure parity and the
actual measurements are done on the ancilla qubits, the logical
state |ψ〉l remains unharmed. Consequently, we have obtained
a code capable of detecting and rectifying X-flip errors without
adversely affecting the state of the system.

In a manner analogous to single-qubit operators, such as
X , Z, and others, which act on the state |ψ〉, there exist
logical operators that act on the logically encoded state |ψ〉l.
These operators, known as the logical − X operator (X̄)
and logical − Z operator (Z̄), execute bit-flip or phase-flip
operations on the entire encoded state, rather than solely
on individual physical qubits. By doing so, they preserve
the error-correcting properties of the encoded system while
facilitating the execution of logical operations as needed.
The distance of a quantum code is the size of the logical
Pauli operator that can transform one codeword into another.
Therefore, by intuition the logical Pauli-X operator should be
X̄ = X ⊗ X ⊗ X i.e. X̄ |000〉 = |111〉 ; X̄ |111〉 = |000〉.
If the quantum circuits is only been susceptible to Pauli-X
errors, the distance of the 3-qubit repetition code would be 3.
However, we also have to consider the logical Pauli-Z operator.
Following the footsteps of the logical Pauli-X operator, we
can write the logical Pauli-Z operator as Z̄ = Z ⊗ Z ⊗ Z
i.e. Z̄ |000〉 = |000〉 ; Z̄ |111〉 = − |111〉. However, the same
can be achieved only by using one Z-operator i.e. by using
Z̄ = Z ⊗ I ⊗ I . The proof below shows that the distance of a
3-qubit repletion code is 1, owing to the fact that the minimum
number of operators required to transform one codeword to
another is 1. Note that the two codewords of a 3 − qubit
QECC are: α |000〉 ± β |111〉.



Z̄ |ψ〉l = (Z ⊗ I ⊗ I)(α |000〉+ β |111〉)
= α(|0〉 |0〉 |0〉) + β(− |1〉 |1〉 |1〉)
= α |000〉 − β |111〉

A QECC is labeled as [[n, k, δ]], where n is the total number
of qubits, k is the original number of qubits and δ is the
quantum code distance. Therefore, a 3− qubit repetition code
is labelled as [[3, 1, 1]]. The 3-qubit repetition code does not
constitute a comprehensive QEC solution, as it neither detects
phase flip errors nor bit-flip errors occurring on multiple
qubits. This code primarily serves as a means to emphasize
the essential components necessary for constructing robust and
comprehensive error correction codes.

III. FUNDAMENTALS OF QEC
Most QEC circuits work in 5 steps: a state preparation, a

stabilizer circuit, error detection, an error decoder, and finally
error correction. So far we have seen the basics of all of these
five steps using the 3 − qubit bit-flip error correcting code
shown in Fig. 3. 1© in the figure shows the state preparation
where a given basis state is entangled with two arbitrary qubits.
4© and 5© show the sets of stabilizers that can be used in a
3−qubit ECC. Based on the output of the stabilizer circuits we
perform: error detection, error deduction, and error correction.
Error is detected if either of the syndromes measures −1.
Based on the values of the syndrome, the error is deducted i.e.
where the error has occurred and based on this deduction the
correction operator, c is applied. This completes a full ECC.
In this section, we concentrate on the fundamental building
blocks required for the development of a foolproof QECC.

A. Stabilizer Formalism

Most QECC use stabilizers [37] to perform error detection.
Therefore, a generalized idea of forming stabilizers irrespec-
tive of the code should be useful. A stabilizer is defined to
be a set of operators that leave a quantum state unchanged
i.e. o |ψ〉 = ψ where o is a set of stabilizer operators and
|ψ〉 is a quantum state. Stabilizers are an important part of
ECC primarily because it detects the error without harming or
changing the original basis state.

Stabilizer formalism is an efficient way to manipulate and
describe quantum states when it comes to the context of
QECCs and fault-tolerant quantum computing. It is a math-
ematical framework that is generated by tensor products of
the Pauli matrices (shown below):

I =
[
1 0
0 1

]
; X =

[
0 1
1 0

]
; Y =

[
0 −i
i 0

]
; Z =

[
1 0
0 −1

]
The Pauli group is a group of Pauli matrices that act on n

qubits and is generated by the tensor products of the above-
mentioned matrices. It has 2 ∗ 4n elements, which include
a global phase factor of ±1 or ±i. For example, the Pauli
group, P that acts on a single qubit will contain the following
elements: P = {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}.

A stabilizer generator (or stabilizer) that acts on n qubits is
a product of a maximal set of n commuting elements of the

|ψ⟩K
|0⟩⊗n

|0⟩A1
|0⟩A2

|0⟩Am

.

.

.

|ψ⟩l . .  .

S1
S2

Sm

e|ψ⟩le

.

.

.

g1 g2 gm

.

.

.

.

.

.

.

.

.

Fig. 4. Illustration of a generalized stabilizer circuit that encodes k physical
qubits with n logical qubits and employs m stabilizers to detect potential
errors in the logical codeword, |ψ〉)l, where m = n−k. The circuit comprises
the following components: 1©: The encoder circuit that encodes k physical
qubits with n logical qubits. 2©: A bit-flip or phase-flip or both errors that
may occur on one or more qubits within the logical codeword, |ψ〉l. 3©:
m ancilla qubits that are initialized to |0〉 to facilitate the projection of
the measurements of the stabilizer generators. 4©: m stabilizer generators,
designated as as g1, g2, . . . , gm, are employed. 5©: Each stabilizer gi
projects its measurements onto the ancilla qubit |0〉Ai. The ancilla qubits
are subsequently measured as syndrome measurements, Si. Based on these
syndrome values, error deduction and correction mechanisms are executed.
It is essential to highlight that the provided diagram primarily illustrates a
generalized stabilizer circuit designed for detecting errors. This representation
does not encompass the execution of correction operators; consequently, the
final basis state persists as the erroneous state, e |ψ〉l.

Pauli group, P with an eigenvalue of +1. These n operators
are denoted as g1, g2, . . . , gn. Therefore, an element, g, in an
abelian group of self-inverse Pauli operators should satisfy the
following relation: g = Πgi |ψ〉 = |ψ〉 ; i = 1, 2, . . . , n.

Stabilizer generators must obey following relations:
• Each generator is an element of the Pauli group.
• They commute with each other i.e. gi⊗gj = gj⊗gi;∀i, j
• All generators are independent of each other meaning,

no product of a subset of the generators can be equal to
another generator. In simpler terms, we cannot create one
by multiplying others.

With a basic mathematical background on Pauli operators
and stabilizer generators, we can define a stabilizer code which
is a quantum error-detecting code that is formed by a set of
stabilizer generators. This code encodes k qubits into n phys-
ical qubits. For each stabilizer code, there are encoded logical
operators that depict operations on the encoded qubits. These
logical operators are denoted as X̄i and Z̄i for i = 1, 2, . . . , k.
It is important to note that these logical operators do not
change the stabilizer generators, they only have an effect on
the encoded qubits and they follow the same rules as that of
the standard X and Z operators.

Theoretically, every stabilizer is dividing the Hilbert space
based on the eigenvalue (±1). The size of the Hilbert space
at the beginning is 2n as we are using n physical qubits. If
we apply m stabilizer generators, the Hilbert space is getting
divided and finally, it boils down to the size of 2n

2m . We already
know that we are encoding n physical qubits with k logical
qubits, therefore: 2n

2m = 2k ⇒ m = n− k.
From the above equation it is important to note that if one

increases the number of stabilizer generators, the number of
logical qubits may decrease. Let us now see what a generalized
stabilizer circuit looks like: there is basis state, |ψ〉K with k
qubits i.e. |ψ〉K = |ψ1ψ2 . . . ψk〉 that will be encoded with



|ψ⟩0
|ψ⟩1
|ψ⟩2
|0⟩Az Sz

|ψ⟩0
|ψ⟩1
|ψ⟩2
|0⟩Az SzH H

|ψ⟩0
|ψ⟩1
|ψ⟩2
|0⟩Ax Sx

|ψ⟩0
|ψ⟩1
|ψ⟩2
|0⟩Ax SxH H

a b
c d

Fig. 5. Different approaches to generate a Z−stabilizer and X−stabilizer
operating on 3 qubits, namely |ψ〉0, |ψ〉1 and |ψ〉2. The ancilla qubit, on
which the stabilizer output is being projected, is represented as |0〉Az and
|0〉Ax for Z−stabilizers and X−stabilizers, respectively. The circuits are
presented as follows: a©: This circuit exhibits a Z−stabilizer similar to the
one depicted in Fig. 3. The ancilla qubit, |0〉Az measures Z |ψ〉0⊗Z |ψ〉1⊗
Z |ψ〉2, commonly denoted as Z0 ⊗Z1 ⊗Z2. b©: This circuit demonstrates
the same Z − stabilizer as in (a). The stabilizer is regenerated using H
gates and CZ gates instead of CNOT gates. The ancilla qubit, |0〉Az also
measures Z0⊗Z1⊗Z2. c©: This circuit represents an X− stabilizer. The
ancilla qubit, |0〉Ax measures X |ψ〉0⊗X |ψ〉1⊗X |ψ〉2, commonly denoted
as X0 ⊗ X1 ⊗ X2. d©: This circuit portrays the same X − stabilizer as
mentioned in (c). he stabilizer is recreated using H gates and CNOT gates
instead of CZ gates. The ancilla qubit, |0〉Ax also measures X0⊗X1⊗X2.

n logical qubits, |0〉⊗n = |000 . . .〉 and m stabilizers will be
applied on the final logical codeword, |ψ〉l. Fig. 4 shows a
generalized stabilizer circuit that detects errors.

B. Structure of the Stabilizer Generator

For a stabilizer generator (or stabilizer) to be able to detect
an error, the stabilizer has to anti-commute with the error (see
Table I). Therefore, we need Z − stabilizers to detect the
X or bit − flip errors and X − stabilizers to detect Z or
phase−flip errors. A Z−stabilizer will anti-commute with
a X or bit − flip error and produce an eigenvalue of −1.
In Fig. 3: 4© and 5© depict two Z − stabilizers which can
detect X errors only. Let’s take a quantum system with three
qubits |ψ〉0, |ψ〉1 and |ψ〉2, with a Z − stabilizer and an
X − stabilizer acting on these three qubits. Finally, these
stabilizers will project their values onto the ancilla qubits |0〉Az
and |0〉Ax, respectively. In Fig. 5 we note that |0〉Az measures
Z0 ⊗ Z1 ⊗ Z2 which will anti-commute with X − errors
to produce an eigenvalue of −1. Similarly, |0〉Ax measures
X0 ⊗ X1 ⊗ X2 which will anti-commute with Z − errors
to produce an eigenvalue of −1. Fig. 5 also shows different
ways of creating the two different types of stabilizers [40]. A
generalized circuit of a stabilizer generator is shown in Fig.
6 where P is a Pauli-gate operation and the circuit measures
P |ψ〉0 ⊗ P |ψ〉1 ⊗ P |ψ〉2 ≡ P0 ⊗ P1 ⊗ P2. An ancilla qubit,
initialized to |0〉 is a control for an arbitrary state |ψ〉 , using a
unitary operator, P i.e., operator P is applied when the control
is |1〉 and nothing happens when the control is |0〉. We explain
the state of the circuit (Fig. 6: left), one step at a time:

|ψ⟩0
|ψ⟩1
|ψ⟩2
|0⟩Ap SpH H

P

P
P

≡
H

P|ψ⟩

H|0⟩Ap Sp
Fig. 6. Illustration of a universal circuit of a stabilizer generator, in which P
represents a Pauli-gate operation. This circuit measures P |ψ〉0 ⊗ P |ψ〉1 ⊗
P |ψ〉2 ≡ P0 ⊗ P1 ⊗ P2. Usually for a stabilizer generator, P ∈ {X,Z}.

First H gate ⇒ 1√
2

(
|0〉+ |1〉

)
|ψ〉

Controlled P ⇒ 1√
2

(
|0〉 |ψ〉+ |1〉P |ψ〉

)
Second H gate ⇒ 1

2

((
|0〉+ |1〉

)
|ψ〉+

(
|0〉 − |1〉

)
P |ψ〉

)
= |0〉

(
1 + P

2

)
|ψ〉+ |1〉

(
1− P

2

)
|ψ〉

Finally, |0〉Ap = |0〉λP+ |ψ〉+ |1〉λP− |ψ〉
where the eigenstate projectors are ⇒ λP+;λP−

The primary importance of the above equations is to show
that the stabilized state, |ψ〉 will always hold the form
α′ |0〉 + β′ |1〉. Consequently, even if an error occurs at an
arbitrary rotational angle, the stabilizer circuit will enforce a
non-superposed state for the error. As a result, when the error
detection circuit is applied, the stabilizers will consistently
return an eigenstate of either ±1 [31].

C. Topological Codes

Repetition codes exhibit limitations as QECCs because of
their restricted error correction capacities and diminished error
thresholds. Moreover, they do not possess fault tolerance and
encounter scalability issues. These codes are also unsuitable
for rectifying errors that transpire on multiple qubits or com-
plex errors. Therefore, a class of QEC codes, known as the
Topological Codes are proposed that use the properties of
topological order [41] to protect the quantum information
from errors. Topological codes [15] such as, toric codes
are designed to process and store quantum information by
exploiting the global features of lattice-like structures, which
makes them naturally resistant to local errors. Topological
codes have gained significant popularity due to their fault-
tolerant properties and ability to correct quantum errors with
relatively low overhead. Some key features of topological
codes include:
• Spatial separation: All logical qubits are encoded using

non-local degrees of freedom, meaning that the proba-
bility of local errors corrupting the information is really
low. Simply put, the logical qubits are spread out (i.e.,
not close to each other) making it harder for local errors
to affect the information encoded.

• Anyonic excitation: So far topological codes are built
using anyons, which have a unique braiding property to
manipulate and store quantum information

• Error correction: Stabilizer checks [19], [42]–[44] are an
important part of error correcting codes but stabilizers in



topological codes are non-local operators and they can
detect the anyonic excitation created by errors.

• Fault tolerant quantum computation: Topological codes
support fault-tolerant quantum computing with a low
error rate even in the presence of gate errors.

There exist multiple types of Topological codes, which can
include, but are not limited to, the following:

• Toric codes: These are one of the earliest known topo-
logical codes and are defined in a two-dimensional lattice
with periodic boundary conditions. The robustness of de-
tecting and correcting errors is increased by the structure
of the lattice [45].

• Surface codes: These are also one of the earliest known
topological codes and are defined in a two-dimensional
lattice, but unlike the toric codes, without periodic bound-
ary conditions. They are currently the most promising
candidate for a large-scale, fault-tolerant quantum com-
puter due to their high error threshold and low overhead
[16]. Realization of a surface code has been the primary
goal for multiple research articles [46]–[50].

• Color codes: These are another type of topological codes
that can be either on a two or three-dimensional lattice.
They possess similar error-correcting properties as sur-
face codes but offer additional advantages like the ability
to apply certain logical gates transversely [18], [51].

The overarching structure of a topological code entails the
construction of the complete code by assembling repetitive
elements. In this subsection, we primarily discuss the func-
tioning of topological codes, with a particular emphasis on
toric and surface codes. The operation of color codes and other
topological codes is beyond the scope of this paper.

The toric code is defined in terms of a square lattice with
periodic boundary conditions, meaning if we have an L∗L
square lattice wrapped around a torus, then the right-most
edge is equivalent to the left-most edge and the top-most edge
is equivalent to the lower-most edge. For surface codes such
boundary conditions do not exist and hence it is often referred
to as the planar code [52], [53]. Fig. 7 depicts a torus and how
it is used to model the boundary conditions of a toric code
lattice. It is important to keep in mind that the lattice for a
surface code would look exactly like the toric code lattice but
without the boundary conditions. A comparison between toric
codes and surface codes is shown in Table III.

Every edge of a lattice corresponds to one qubit. Therefore,
in a L∗L lattice there are 2L2 edges, i.e., 2L2 physical qubits.
Every plaquette is a Z−stabilizer generator and every vertex
is a X − stabilizer generator. Fig. 8 showcases the following
aspects: a© demonstrates that there exists a Z−stabilizer that
operates on the four physical qubits located on the four edges
of a plaquette, while b© depicts an X−stabilizer that operates
on the four physical qubits located on the four edges of a
vertex. This implies that each physical qubit would have one
Z−stabilizer and one X−stabilizer operating on it. Hence,
it is essential to note that plaquettes and vertices overlap with
each other, and as a result, these two operators commute. Upon

Edge

Plaquette

Vertex

Fig. 7. Left: A torus that is used to model a toric code. Right: A toric code
in the form of a lattice. The lattice comprises of two loops that run through
the torus. Various components of the lattice, such as the edge, plaquette,
and vertex, are designated in the figure. 1© represents the vertical loop that
corresponds to the top-most and the lower-most edge of the lattice, whereas
2© represents the horizontal loop that corresponds to the left-most and the

right-most edge of the lattice. It is noteworthy that a surface code would
possess a lattice that appears exactly like the one depicted here but would
not have any boundary conditions. This means that a surface code does not
model on a torus and is therefore referred to as a planar code.
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Fig. 8. Depiction of Z and X−stabilizers acting on qubits in a toric code,
and showcasing of the erroneous qubits that trigger plaquettes and vertices at
the end of the error strings. a©: A plaquette that represents Z − stabilizers
acting on qubits. b©: A vertex that represents X − stabilizers acting on
qubits. c©: The red line exhibits the error string that triggers the marked
Z − operators, However, only the plaquette− operators that are marked
in grey at the end of the error string will produce an eigenstate −1. The green
color denotes the erroneous qubits that activate the grey plaquettes at the end
of the error string. d©: The red line illustrates the error string that activates
the marked X−operators. Nevertheless, only the vertex−operators that
are marked in grey at the end of the error string will generate an eigenstate
of −1. The blue color is used to identify the erroneous qubits that initiate the
grey vertices at the end of the error string.

multiplying a set of plaquette operators, the resultant operator
would be equal to the Z − operators that operate on the
boundary of the consolidated plaquettes. The same principle
applies to vertices.

In the toric code, the lattice has periodic boundary con-
ditions, meaning that it is modeled around a torus. Such a
structure leads to two independent loops: one in the horizontal
direction and the other in the vertical direction, as shown
in Fig. 7. Such a structure gives rise to two logical qubits.
Mathematically, the toric code will have four logical operators:
two X − operators on the horizontal and vertical loops
(X̄1, X̄2) and two Z−operators on the horizontal and vertical
loops (Z̄1, Z̄2). These operators must commute with the
stabilizer generator but never with each other. Given that there
are two pairs of non-commuting logical operators (X̄1, X̄2



TABLE III
A COMPARATIVE STUDY BETWEEN TORIC CODES AND SURFACE CODES

Property Toric Code Surface Code

Dimensionality 2D in a L∗L lattice 2D in a L∗L lattice
Lattice Structure Regular lattice with periodic boundary conditions Regular lattice without periodic boundary conditions
Logical Qubits 2 (two independent logical qubits) 1 (one logical qubit)

Error Correction Detects and corrects any single-qubit error Detects and corrects any single-qubit error
Stabilizer Generators Two types: vertex and plaquette operators Two types: vertex and plaquette operators
Boundary Conditions Periodic (closed topology) Open (open topology)

Logical Gates Braiding anyons Lattice surgery or code deformation
Implementation Complexity More complex due to periodic boundary conditions Simpler due to open boundary conditions

[[n, k, δ]] [[2L2, 2, L]] [[2L2, 1, L]]

and Z̄1, Z̄2), the toric code has 2 logically encoded qubits.
On the contrary, the surface code lattice has open boundary
conditions, meaning there are no loops. In this case, there are
two logical operators: one X − operator line that goes in
one direction (X̄) and another Z − operator line that goes
in the direction orthogonal (Z̄) to the previously mentioned
line. These operations must commute with the stabilizers but
never with each other. Given there is only one pair of non-
commuting logical operators (X̄1 and Z̄1), the surface code
has only 1 logically encoded qubit.

Every stabilizer measurement is projected onto an ancilla
qubit and the syndrome measurement tells us where the error
has occurred on the lattice. A stabilizer generator circuit can
be found in Fig. 5. If in a plaquette there are four qubits,
then their respective Z − stabilizer or plaquette− operator
measurement will be Z1⊗Z2⊗Z3⊗Z4 and similarly, the X−
stabilizer or vertex − operator will measure X1X2X3X4.
If there is an error on any one of the qubits, depending on the
type of error, either the X − stabilizer or the Z − stabilizer
linked with that qubit will return an eigenvalue of −1. This is
the case when only one qubit has an error.

Now suppose, there is a string of errors on the lattice,
represented by a product of Z operators along the string.
Mathematically, when we measure the plaquette operators, we
are taking the tensor product of the Z − operators on the
edges forming the plaquette. If the plaquette is not at the end
of the string, the product of Z − operators for the plaquette
will cancel out and will always result in a +1 eigenstate. This
is due to the fact that Z − operators square to the identity
i.e. ZZ = I and the tensor product of an even number of
Z−operators will result in identity. However, if the plaquette
is at the end of the error string, the product of Z− operators
will not cancel out thus, resulting in a −1 eigenstate. This
is because there is an odd number of Z − operators at the
end plaquette, making the tensor products of Z − operators
unequal to the identity. In simple terms, when there is a string
of errors on the lattice, the only plaquette or vertex with −1
eigenstate will be at the end of the error string. Fig. 8: c©
displays that plaquette − operators situated at the end of
an error chain produce an eigenvalue of −1 and similarly, d©
demonstrates that vertex − operators located at the end of
an error chain solely produce an eigenvalue of −1.

Given that solely the ‘end of the error string’ generates a
signal that an error has transpired, it is imperative to address
the concern of the existence of multiple paths between the

Hq0
q1
q2
q3

q0

q1 q2

q3

Fig. 9. Left: A vertex − operator operator acting on four qubits,
q0, q1, q2, q3 on a lattice. Right: A state preparation encoding circuit operates
on qubits q0, q1, q2, q3, within the vertex-operator, all initialized to |0〉. When
applied to |0000〉, the circuit yields 1√

2
(|0000〉+ |1111〉).

two endpoints. Therefore, a fundamental query arises, which
is how to identify the precise location of the error string
between two given endpoints. How do we know which is
the correct path? To solve this problem large-scale QECCs
use approximate inference algorithms to determine the most
likely error that might have occurred given a specific syn-
drome value. These methods allow for application in real-
time between successive stabilizer code cycles. To date, there
is no particular algorithm that does this job efficiently for
all ECC. For toric and surface codes an algorithm known
as the Minimum Weight Perfect Matching (MWPM) is often
used for decoding [54], [55]. The effectiveness of a QECC’s
error rate is highly dependent on the type of decoder utilized,
as some approximate algorithms perform better than others.
To combat this problem, error-correcting codes are simulated
over multiple cycles and the syndrome is sampled to better
understand a noise model. Surface codes are also simulated
over multiple cycles in the hope of eventually creating fault-
tolerant quantum computers [49], [56], [57].

D. A General Encoding Circuit

In quantum error correction, before employing stabilizer
circuits for error detection, an encoding circuit is needed
to map logical qubits to physical qubits, thereby protecting
quantum information. The encoding process, often termed
state preparation, is represented by a unitary transformation U
that encodes k qubits with n logical qubits. Two methods exist
for state preparation: stabilizer generator circuits and unitary
circuits [58], [59]. This paper focuses on the former. Encoding
of logical states has been experimentally demonstrated in
small-scale error correction protocols using various codes
[60]–[67].

It is well-established that a logical codeword commutes with
a stabilizer generator, meaning they have +1 eigenstates for
each stabilizer generator in a group of stabilizers. To prepare
the logical state from an arbitrary input state, it is essential to



project qubits into the +1 eigenstate of the relevant stabilizer
operators. When initializing the quantum circuit with n qubits,
all set to |0〉, we obtain a stabilized state at |0〉⊗n. This con-
dition is valid when applying Z−stabilizers; however, when
applying X − stabilizers, nearly half of the resultant eigen-
state will be +1, and the rest will be −1 due to superposition.
The primary goal of the state preparation circuit is to ensure
that the X−stabilizers consistently return a +1 eigenstate in
the absence of errors. Fig. 9 illustrates an X − stabilizer or
vertex − stabilizer acting on four qubits (q0, q1, q2, q3) and
the corresponding encoding circuit. This circuit is inspired by
the Greenberger–Horne–Zeilinger (GHZ) state [68]. Assuming
the circuit depicted in Fig. 9 can be represented by U, a product
of operators, and all qubits (q0, q1, q2, q3) initialized to |0〉,
then U |0000〉 = 1√

2
(|0000〉+ |1111〉). The decomposition is

valid only when the initial Hadamard qubit is in the |0〉 state;
thus, the choice of Hadamard’s qubit must be made cautiously.
The superposition generated by the state preparation circuit
counteracts the superposition induced by the X − stabilizer.
Consequently, in the absence of errors, the X-stabilizer eigen-
state yields a +1 result.

IV. PRACTICALITY OF QECC

In this section, we show a comparative analysis of existing
QECCs in literature (Table IV). We also examine diverse qubit
types and the corresponding suitable QECCs for them.

A. Superconducting Qubits

a) Technological Details: Superconducting qubits are
LC oscillator circuits maintained at cryogenic temperatures.
Typically, the inductor is implemented as a Josephson Junction
(for introducing non-linearity in the circuit) using supercon-
ducting material such as, niobium or aluminium and the ca-
pacitor is implemented as either an inter-digitated capacitor or
parallel plate capacitor. Additionally, the Josephson Junction
possesses its own intrinsic capacitance. The overall LC circuit
forms a harmonic oscillator that creates different energy levels
out of which the lowest two energy levels are selected as the
basis states of the qubit. The basis states are also determined
by the flow of the current in the LC circuit e.g., flow in one
direction may correspond to state |0〉 while flow in the opposite
direction may correspond to state |1〉 (more information can
be found in [69]).

b) Feasibility: Surface codes are implemented in [70]
on seven qubits (four data qubits, three ancilla qubits). It has
been observed that repeated error correction results in longer
coherence times of qubits than no error correction at a high
96.1% average local fidelity. [71] implements a distance three
surface code on 17 qubits to achieve fidelity up to 0.9 after
error correction. A [[5,1,3]] error correcting code is produced
in [72] using 92 gates overall that corrects single-qubit gate
errors at ∼75% fidelity. There are older works like [61] that
incorporate a nine qubit code to rectify bit-flip errors, [73]
that propose a quantum error detection-only circuit on N-qubit
systems and two-qubit error correction schemes.

B. Trapped-ion Qubits

a) Technological Details: Trapped-ion quantum comput-
ers use ions as qubits, that are trapped in electromagnetic
traps such as the Penning trap that provides confinement in
up to two directions or the more widely used RF Paul trap
that confines in two or three directions. The ions selected,
are usually of alkaline earth metals, such as Be+, Mg+, and
Ca+, or of those used in atomic clocks such as Al+, In+,
Lu+. These trapped ions are maintained at low temperatures
and in vacuum chambers for long coherence times. Quantum
gates are implemented using laser pulses that change the
quantum state of the ions, and readout is performed by shining
fluorescent light on the ions and measuring the intensity of
fluorescence (more information can be found in [74]).

b) Feasibility: Bacon-Shor logical qubit is implemented
on 13 trapped ion qubits in [75] for error of up to 0.6% and
> 99% fidelity after error correction. [[7,1,3]] Steanne code
is built on 10 qubits in [76] that provided fidelity of up to
93%. Fault-tolerant parity readout has been incorporated in
[77] with 93% parity measurement fidelity. A non-traditional
work includes dissipative processing to incorporate a three-
qubit code on trapped ions in [78]. Older works such as
[67] correct single-qubit errors and improve the fidelity of
computation by roughly 1%.

C. Photonic Qubits

a) Technological Details: A photon is used as a qubit,
where the life of the qubit starts from the generation of
the photon and ends at the detection. The photon is gen-
erated usually via processes like spontaneous parametric
down-conversion (SPDC) or spontaneous four-wave mixing
(SFWM), where a higher energy pump photon is converted
into two lower energy daughter photons, and the detection of
one of the photons (heralding photon) indicates the presence of
another photon (heralded photon). Cryogenic methods like su-
perconducting nanowire single-photon detectors (SNSPD) are
used to detect photons with up to ≥ 95% detection efficiency.
The state of photonic qubits is given by different degrees of
freedom such as, polarization (vertical: |0〉, horizontal: |1〉),
and spatial modes (such as Orbital Angular Momentum a.k.a
OAM), while quantum gates are implemented using different
optical devices such as, beam splitters, and phase shifters
(more information can be found in [79]).

b) Feasibility: OAM-based photons are error corrected
in [80] that provide up to 20% fidelity in a noisy channel as
opposed to less than 1% fidelity in the uncorrected scenarios.
Silicon-based photonic qubits were error corrected, leading to
a 30% increase in overall qubit fidelity in [81]. Bosonic logical
qubits have been proposed in [82] that improve fidelity up to
97%. Older works such as, [83] demonstrate error correction
on a two-qubit system and achieve up to 98% fidelity and [84]
implements photonic quantum memories to perform quantum
error correction that provides around 95% fidelity.



TABLE IV
A COMPARATIVE ANALYSIS AMONG THE VARIOUS QUANTUM ERROR CORRECTION CODES AVAILABLE IN THE EXISTING LITERATURE

Code Year # Qubits Description Complexity Decoding
Algorithm Advantage Disadvantage

Shor’s 9-qubit
code [13] 1995 9

First quantum error-correcting
code, correcting 1 arbitrary
error. Simple example of an
error-correcting code.

Moderate
(9 physical
qubits for 1
logical qubit)

Syndrome
measurement,
lookup table

Good for
understanding basic
error correction
concepts.

Requires 9
qubits, not very
resource-efficient.

Steane’s 7-qubit
code [14] 1996 7

Corrects single error, example
of Calderbank-Shor-Steane
code. Exploits classical
error-correcting codes.

Moderate
(7 physical
qubits for 1
logical qubit)

Syndrome
measurement,
lookup table

More resource-
efficient than Shor’s
code, easy to
implement.

Only corrects
single error, not
suitable for larger
systems.

Toric codes [15] 1997 Varies(2D
lattice)

Topological codes defined
on 2D lattice, robust
against local errors.
High threshold and
fault-tolerant.

High
(2D lattice)

Minimum
weight perfect
matching
(MWPM)

High error
threshold, robust
against local errors.

Requires complex
decoding
algorithms.

Surface
codes [16] 2002 Varies(2D

lattice)

Topological codes defined
on 2D lattice, most studied
topological code. High
threshold and fault-
tolerant.

High
(2D lattice)

Minimum
weight perfect
matching
(MWPM)

High error
threshold,
well-studied,
many efficient
decoders.

Requires large
qubit overhead.

Bacon-Shor
codes [17] 2006 Varies

Subsystem codes with good
error-correction properties.
Separates error correction
into subsystems.

Moderate
to High
(depends on
specific code)

Syndrome
measurement,
lookup table

Simple structure,
transversal gates
for some operations.

Lower error
threshold
compared to
topological codes.

3D Color
codes [18] 2006 Varies(3D

lattice)

3D generalization of surface
codes, improved error-
correction properties.
Combines features of toric
and color codes.

High
(3D lattice)

Minimum
weight perfect
matching
(MWPM)

Higher error
threshold than
2D codes,
transversal gates.

Requires 3D
lattice structure,
more complex
to implement.

Homological
Product
codes [20]

2013 Varies

Product codes combining
different quantum codes,
allowing transversal gates.
Exploits the structure of
different codes

Varies
(depends on
specific
codes used)

Syndrome
measurement,
classical error-
correction
algorithms

Enables
transversal gates,
versatile, can
combine various
codes.

Complexity and
error threshold
depend on the
specific codes
used.

Flag-qubit
codes [21] 2020 Varies This code is constructed on

low degree graphs.

Varies
(depends on
specific
parameters)

Classical
maximum
likelihood
decoding

Reduces overhead
and maintains high
error threshold.

The decoding
algorithm can be
computationally
demanding.

V. CHALLENGES AND FUTURE DIRECTION

Quantum error correction encounters various hurdles that
require resolution to facilitate a fault-tolerant, large-scale
quantum computer. Addressing these challenges is critical to
executing complex computations with a low error rate. Some
of the prevalent challenges include:

• Scalability: To implement QEC, it is necessary to employ
a significant number of qubits to encode a small number
of logical qubits. Hence, scaling towards a large number
of logical qubits is a substantial challenge.

• Complexity of error decoding algorithms: Sometimes the
complexity of decoding algorithms can be remarkably
high, making it challenging to perform real-time QEC.

• Resource overhead: Error correction necessitates a sub-
stantial amount of physical overhead, including gates,
qubits, and time. As the code scales towards a higher
number of qubits, the overhead also intensifies. Therefore,
optimizing the resource overhead is a challenging task.

• Fault-tolerant gates: The implementation of fault-tolerant
quantum gates that can function reliably in the presence
of errors is one of the major challenges. While some
ECCs permit the use of transversal gates, they do not

cover all the gates required for universal quantum com-
putation. [85].

• Noise modeling and error characterization: Although the
development and comprehension of precise noise models
are paramount for ensuring the optimal performance of
error-correcting codes, it remains a challenging task in
quantum systems.

Future research in this area may focus on developing more
efficient error-correcting codes, enhancing the complexity
of decoding algorithms, and refining hardware designs to
achieve fault tolerance and improved performance. Hybrid
codes that amalgamate the most effective aspects of various
types of error-correcting codes are also being investigated
by researchers [86]. Additionally, machine learning is being
employed to optimize the performance and scalability of error
correction codes [87]. As quantum computing advances, ad-
dressing quantum error correction challenges becomes crucial
for achieving fault-tolerant computation.

VI. CONCLUSION

In this paper, we provide a simplified overview of quantum
error correction aimed at researchers who may not possess
relevant knowledge in quantum physics and mathematics. We



begin by discussing classical error correction and its analogous
application in the quantum domain, specifically through the
use of a 3 − qubit error correction code. We emphasize that
every error-correcting code comprises three components: de-
tection, deduction, and correction. Subsequently, we delve into
the stabilizer formalism, examining the necessary properties
of a stabilizer to effectively detect quantum errors. Following
this, we explore the requirements and general mathematical
framework of an encoding circuit before transitioning to
topological codes. We discuss both toric and surface codes,
comparing their differences despite their shared lattice-based
structures for quantum error correction. Lastly, we address
current qubit technologies and their application in quantum
error-correcting codes. Upon completing this article, readers
should possess a fundamental understanding of the workings
of quantum error correction, its current state, and potential
future developments.
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