
ar
X

iv
:2

30
6.

05
02

4v
1

 [
qu

an
t-

ph
]

 8
 J

un
 2

02
3

Approximative lookup-tables and arbitrary function

rotations for facilitating NISQ-implementations of

the HHL and beyond

1st Petros Stougiannidis†

LMU Munich

petros.stougiannidis@gmail.com

2nd Jonas Stein†

LMU Munich

jonas.stein@ifi.lmu.de

3rd David Bucher

Aqarios GmbH

david.bucher@aqarios.com

4th Sebastian Zielinski

LMU Munich

sebastain.zielinski@ifi.lmu.de

5th Claudia Linnhoff-Popien

LMU Munich

linnhoff@ifi.lmu.de

6th Sebastian Feld

Delft University of Technology

s.feld@tudelft.nl

Abstract—Many promising applications of quantum computing
with a provable speedup center around the HHL algorithm.
Due to restrictions on the hardware and its significant demand
on qubits and gates in known implementations, its execution
is prohibitive on near-term quantum computers. Aiming to
facilitate such NISQ-implementations, we propose a novel circuit
approximation technique that enhances the arithmetic subrou-
tines in the HHL, which resemble a particularly resource-
demanding component in small-scale settings. For this, we
provide a description of the algorithmic implementation of space-
efficient rotations of polynomial functions that do not demand
explicit arithmetic calculations inside the quantum circuit. We
show how these types of circuits can be reduced in depth
by providing a simple and powerful approximation technique.
Moreover, we provide an algorithm that converts lookup-tables
for arbitrary function rotations into a structure that allows
an application of the approximation technique. This allows
implementing approximate rotation circuits for many polynomial
and non-polynomial functions. Experimental results obtained for
realistic early-application dimensions show significant improve-
ments compared to the state-of-the-art, yielding small circuits
while achieving good approximations.

Index Terms—Quantum Computing, NISQ, Quantum Arith-
metic, HHL

I. INTRODUCTION

The discovery of the HHL algorithm [1] for solving linear

systems of equations on quantum computers has opened

up a plethora of applications for quantum computing while

offering an exponential speedup over classical analogs under

certain conditions [2]. Unfortunately, its implementation as a

quantum circuit is quite tedious due to necessary subroutines.

Specifically, the eigenvalue inversion and the encoding of the

resulting information into the amplitude of an ancilla qubit,

which incorporates the evaluation of an arcsine function, pose

a great challenge for NISQ-devices [3], [4]. While several

approaches to this problem were proposed [5]–[8], all of them

require many ancilla qubits and high circuit depths.

†These authors contributed equally.

Moreover, there are approaches that have a worse-than-

polynomial gate complexity, foremost lookup-tables that are

implemented with uniformly controlled Ry rotations [9] and

polynomial rotation circuits [10] in combination with poly-

nomial interpolation techniques. While these approaches are

only viable for very small input sizes, both have the advantage

that they are conceptually simple, easy to program and very

space-efficient, i.e., they require no or only few ancilla qubits.

Building on these favorable properties, this paper sets out to

address the problem of exponential circuit depth by devel-

oping a procedure that can reduce the circuit depth of these

circuits in a trade-off for accuracy. Concretely, the structure of

polynomial rotation circuits allows evaluating the contribution

of each individual gate to the overall result. We show that

by omitting rotation gates with small contribution and high

implementation cost, the circuits can be reduced in depth while

the introduced error is held comparatively low. In addition,

we show how lookup-tables, which in their canonical form

have different structural properties, can be transformed such

that their structure resembles that of the polynomial rotation

circuits. Thereby, the approximation procedure is also made

applicable to lookup-tables, which in return allows the com-

pilation of approximate rotation circuits for non-polynomial

functions.

Besides implementing rotations around the arcsine of a

binary bit string, polynomial rotation circuits and lookup-

tables can be used to rotate around any computable function.

The ability to approximately implement arbitrary function

rotations can be considered a fundamental quantum computing

primitive, with potential applications in quantum algorithms

similar to HHL, as well as in future quantum algorithms.

The structure of the paper is as follows: Sec. II presents re-

lated work, followed by Sec. III-A, which provides an algorith-

mic description of polynomial rotation circuits. Additionally,

it provides a compilation algorithm that, given a polynomial

p as specification, compiles a corresponding quantum circuit

that implements a rotation R(p(x)) for a binary number x, that

http://arxiv.org/abs/2306.05024v1
https://orcid.org/0009-0000-3680-3655
https://orcid.org/0000-0001-5727-9151
https://orcid.org/0009-0002-0764-9606
https://orcid.org/0009-0000-0894-8996
https://orcid.org/0000-0001-6284-9286
https://orcid.org/0000-0003-2782-1469

is basis-encoded in a quantum register. Sec. III-B introduces

a procedure that, given a preferred degree of approximation,

reduces the circuit depth of polynomial rotation circuits by

omitting rotation gates with a small contribution-to-cost ratio.

In Sec. III-C, an algorithm is presented that transforms the

circuit structure of pre-compiled lookup-tables to resemble

the structure of polynomial rotation circuits. The resulting

approximate lookup-table circuits are evaluated in Sec. IV

by compiling circuits for different functions, input register

sizes, and degrees of approximation, followed by numerical

simulations to determine their accuracy, Toffoli gate counts,

and required ancilla qubits.

II. BACKGROUND

The HHL algorithm solves linear systems of equations

Ax = b in the sense that it prepares a quantum state x̂ that is

proportional to the classical solution vector x. For encoding

the classical vectors x and b it uses amplitude encoding, e.g.,

b = (b1, . . . , bj)
T is encoded in the amplitudes of a normalized

quantum state

b̂ =
(b1, . . . , bj)

T

√

∑j

k=1 |bk|
2

. (1)

The HHL leverages the eigendecomposition of a Hermitian

matrix A and the Quantum Phase Estimation algorithm [11]

in order to efficiently compute a superposition of binary

values

∣

∣

∣

1
λj

〉

that are proportional to the inverse eigenvalues

of A. Subsequently, this information needs to be encoded

into the amplitudes of the quantum state b̂, by introducing

an ancilla qubit |anc〉 and setting its amplitudes to |anc〉 =
(√

1− C2

λj
2

C
λj

)T

. The normalization constant C needs to be

chosen such that C
λj

do not exceed one in absolute value.

Doing so manipulates the amplitudes of b̂ ⊗ |anc〉 such that

the solution x̂ is prepared into the subspace where |anc〉 is in

state |1〉:

b̂⊗

(
√

1− C2

λj
2

C
λj

)

= (. . .)⊗ |0〉+ Cx̂⊗ |1〉 . (2)

The encoding of the rescaled inverse eigenvalues into the

amplitudes of |anc〉 can be implemented by deploying pa-

rameterized Ry rotations that are controlled by the qubits of

the register

∣

∣

∣

C
λj

〉

[6]. However, the relationship between the

parameter θ and the induced amplitudes is non-linear:

Ry(θ) |0〉 =

(

cos
(

θ
2

)

sin
(

θ
2

)

)

= cos

(

θ

2

)

|0〉+ sin

(

θ

2

)

|1〉 . (3)

Therefore, an additional computation needs to be performed,

such that the amplitudes can be set linearly proportional to the

inverse eigenvalues. For example, if the register that stores the

inverse eigenvalues

∣

∣

∣

C
λj

〉

is transformed into

∣

∣

∣2 arcsin
(

C
λj

)〉

beforehand, applying the Ry rotations then yields

Ry

(

2 arcsin

(

C

λj

))

|0〉 =

√

1−
C2

λj
2 |0〉+

C

λj

|1〉 . (4)

Uncomputing the eigenvalue register and measuring a one in

|anc〉 results in the desired quantum state x̂. A high-level

overview of the quantum circuit can be seen in Fig. 1.

However, computing one of the inverse trigonometric func-

tions, arcsine or arccosine, to a high degree of accuracy

is computationally expensive and, therefore, challenging to

perform on NISQ devices. However, there is a simple and

cost-efficient way to approximate this step using a first-order

Taylor series approximation [13]:

arcsin(x) ≈ x. (5)

Such an approximation comes at no implementation cost as

the circuit can directly rotate around the inverted eigenvalues,

instead of deploying costly arithmetic circuits. This is possible

due to the fact that the arcsine is almost linear close to

zero. However, if the rescaled inverse eigenvalues are large in

absolute value, a large error is introduced with this approxima-

tion. Although it is possible to further scale down the inverse

eigenvalues to reduce the error, this approach negatively affects

the post-selection step of the HHL algorithm and increases its

average runtime [13]. Since the arcsine function is monotoni-

cally increasing, decreasing its argument reduces the computed

function value. Consequently, the induced amplitude in front

of the |1〉 basis state will be smaller, making it less likely to

measure the correct subspace.

In order to mitigate this problem, the arcsine can be

approximated more accurately with polynomial interpolation

techniques. Instead of the function of interest, one or more

approximating polynomials are evaluated using arithmetic

circuits for addition [14]–[18], multiplication [5], [16], [19]

and the Horner scheme1. The most prominent approach of

this kind was proposed in [5], where a piecewise polynomial

approximation circuit for high-accuracy function evaluations

was implemented. However, the reversible nature of quantum

circuits requires each intermediate result of the Horner evalu-

ation to be stored in ancillary registers. This leads to high

space-requirements when implemented as quantum circuits,

with the number of ancilla qubits scaling linearly with the

register size of the argument and the degree of the polynomial

being evaluated. Iterative computations like the Horner scheme

or ones that are based on Newton iterations can quickly reach

ancilla requirements ranging from tens to hundreds of qubits

[5], [20].

In addition to explicit arithmetic implementations, there are

also methods that allow for direct rotation around the desired

value without the need for intermediate computations. One

such method for rotating around the arcsine of an n-bit-value

in a quantum register is to use precomputed lookup-tables

1The Horner scheme is an algorithm for evaluating polynomials of degree
d with d additions and d multiplications.

anc = |0〉 : Ry (
1
2n)

. . . Ry (
1
2)

✌✌
✌ 1

eign = |0〉 :

QPE(eiAt)

1
x

2 arcsin(Cx)

•

2 arcsin(Cx)† 1
x

†

QPE(eiAt)†

|0〉

...
. . .

...

eig1 = |0〉 : • |0〉

b̂ : / Cx̂

Fig. 1. A high-level overview of the HHL algorithm, with each subroutine depicted as an independent module. The first module, QPE(eiAt), estimates the

eigenvalues of the operator eiAt, which encodes information about the matrix A into the eigenvalue register |eig〉. The second module, 1

x
, computes the

reciprocal and can be implemented with an arithmetic circuit based on addition circuits [12]. Finally, the third module, 2 arcsin(Cx), prepares the inverse
eigenvalues to be encoded into |anc〉 in a linearly-proportional fashion.

that utilize n-fold controlled Ry gates [9]. These circuits are

easy to program, space-efficient, and highly accurate. Their

circuit depth, however, scales exponentially with n. Following

this approach, a patent [21] uses lookup-tables in combination

with an optimization technique called variable-sized binning.

Binning is used to reduce the exponential complexity with

respect to the register size n by treating growing batches of

inputs as equivalent and approximating the computation. As a

result, the computation scales linearly with n but exponentially

with the precision of the rotation. However, it is important

to note that this approximation technique is only suitable for

functions with a monotonically decreasing first derivative.

Another approach that utilizes precomputed rotation angles

involves rotating around polynomial functions. The gate counts

of these circuits are dominated by a sum of binomial coeffi-

cients
∑d

k=0

(

n
d

)

, where n denotes the size of the quantum

registers storing the argument and d denotes the degree of the

implemented polynomial. This sum of binomial coefficients,

however, quickly becomes prohibitively large for even moder-

ately large n and d. Furthermore, this method introduces inter-

polation errors when approximating non-polynomial functions

such as the arcsine using polynomials.

III. CONCEPT

Aiming towards facilitating NISQ-implementations of quan-

tum algorithms that incorporate arbitrary function rotations,

we explore circuits for space-efficient polynomial rotations in

Sec. III-A. Afterwards, in Sec. III-B, we propose an efficient

approximation of such circuits and introduce an approach to

approximate lookup-tables in Sec. III-C.

A. Rotating around arbitrary polynomials space-efficiently

The polynomial rotation circuits and a corresponding com-

pilation algorithm can be derived by reformulating the math-

ematical expression for multiplying two n-bit integers x =
x1 . . . xn and y = y1 . . . yn in terms of their binary represen-

tations

xy =
n
∑

i=1

n
∑

j=1

2n−i2n−jxiyj. (6)

Every summand is either zero or the product of the bit weights

of the i-th bit of x and the j-th bit of y if both bits are set

to one. This expression can be used to design a circuit for

rotating around the product of x and y:

Ry(xy) = Ry





n
∑

i=1

n
∑

j=1

22n−i−jxiyj



 . (7)

Such a circuit can be implemented by preparing two input

registers that store x and y, and applying a doubly controlled

rotation Cxi
Cyj

Ry

(

22n−i−j
)

for every (i, j) ∈ {1, . . . , n}2

to the target qubit. Here, a unitary operation with a prefix

Cxi
denotes a controlled version of the operation in which the

control is set on the qubit that stores the i-th bit of x. This idea

can be generalized for rotating around the product of multiple

factors, signed numbers in two’s complement representation,

and fixed-point fractional numbers. This ultimately allows for

rotating around arbitrary monomials axd, where a is a scalar

coefficient, by preparing d registers, each storing the argument

x:

Ry

(

axd
)

= Ry

(

n
∑

i1=1

· · ·
n
∑

id=1

a2q−i1xi1 · · · 2
q−idxid

)

=
∏

(i1,...,id)

∈{1,...,n}d

Cxi1
· · ·Cxid

Ry

(

a2q−i1 · · · 2q−id
)

. (8)

Here, q denotes the binary-point position of x2. Note that, at

this point, each control is set on exactly one qubit of a different

input register, which all redundantly store x.

Concatenating several monomial rotations then allows for

rotation around arbitrary polynomials. Evaluating a polyno-

mial of degree d on an n-bit argument results in O(nd)
d-fold controlled rotation gates. Further, this requires nd
qubits for redundantly storing the argument and d− 1 ancilla

qubits for the d-fold controlled operations. We assume an

implementation of multi-controlled single-qubit operations as

described in [22], which requires 2(k − 1) Toffoli gates and

k−1 ancilla qubits to implement a k-fold controlled gate. The

ancilla qubits can be reused by subsequent rotation gates. As

a result, the number of required ancilla qubits is determined

by the rotation gate with the highest number of controls.

2In general, it is also possible to choose bit weights such that the numbers
that the argument register can represent are not equidistant, e.g., x = x1 ·
−2−1 + x2 · 2−3 + x3 · 2−7.

x4 : •

x3 : •

x2 : •

x1 : •

|0〉 :

|0〉 :

|0〉 :

|φ〉 : R(x)

=

x4 : • •

x3 : • •

x2 : • •

x1 : • •

|0〉 : • •

|0〉 : • •

|0〉 : •

|φ〉 : R(x)

Fig. 2. Implementation of a four-fold controlled rotation gate. The right
circuit shows how three ancilla qubits, initialized in state |0〉, can be utilized
for implementing four-fold controlled operations.

Fig. 2 depicts an implementation of a four-fold controlled

rotation.

input : Register size n, a list of coefficients

a = [a0, . . . , ad] that specifies a polynomial

p =
∑d

i=0 aix
i and a list w that stores the

weights of the argument bits.

output: A map circuit that assigns a set of control

qubits in the input register to a rotation

angle according to the input polynomial.

1 X ← {0, . . . , n− 1}
2 circuit ← HashMap()

3 forall d ∈ {0, . . . , deg(p)} do

4 forall (c1, . . . , cd) ∈ Xd do

5 θ ← ad
6 for i← 1 to d do

7 θ ← θ · wci

8 end

9 cq ← HashSet(c1, . . . , cd)
10 if cq ∈ circuit then

11 circuit[cq]← circuit[cq] + θ
12 else

13 circuit[cq]← θ
14 end

15 end

16 end

Algorithm 1: A naive O(nd) algorithm for compiling

polynomial rotation circuits.

However, as this circuit is derived from generic multi-

plication rather than exponentiation, it can be optimized by

using the assumption that every argument of the multiplication

is the same factor x. Thereby, almost all rotation gates of

the circuit can be replaced by gates with fewer controls.

Most importantly, this optimization circumvents the need to

prepare the n-qubit registers d − 1 times, which store x
redundantly. Hence, the ancilla requirement is reduced from

n(d−1)+(d−1) to d−1. Additionally, sets of rotation gates

that share the same control qubits can be collapsed into a

single rotation. Since there are only 2n possible constellations

of control qubits on a register of size n, the number of

rotation gates is limited to 2n, and the ancilla requirements

are additionally bound by n−1. This optimization task can be

performed by a classical algorithm that takes a specification of

TABLE I
THE NUMBER OF ROTATION GATES, ANCILLA QUBITS, AND TOFFOLI

GATES FOR DIFFERENT n AND d. THE COMPUTATION OF THE TOFFOLI

AND ANCILLA COUNT ASSUMES AN IMPLEMENTATION OF THE

MULTIPLE-CONTROLLED ROTATION GATES AS DESCRIBED IN [22].

n ≤ d n > d

Rotation gates 2n
∑

d

k=0

(

n

d

)

Ancilla qubits n− 1 d− 1

Tofolli gates
∑

n

k=1

(

n

k

)

· 2(k − 1)
∑

d

k=1

(

n

k

)

· 2(k − 1)

a polynomial as input and compiles an optimized polynomial

rotation circuit (see Algorithm 1).

The naive implementation of the algorithm scales in O(nd)
as it exhaustively inspects every rotation, determines its rota-

tion value (lines 5-8), and the set of bits of x it is ultimately

controlled by (line 9). The rotation value is then accumulated

into a rotation gate of the new circuit that is controlled by

exactly the determined set of bits. The general structure of the

resulting polynomial rotation circuits is shown in Fig. 3.

Furthermore, inspecting the compilation procedure reveals

that if n is chosen larger than d, a certain subset of the

2n possible compiled rotation gates are guaranteed to have a

rotation angle of zero and can therefore be omitted. Precisely,

any gate with a number of control qubits greater than d
will never accumulate any rotation angle because a d-fold

controlled rotation can only be controlled by at most d of

the n bits of x. Line 9 in Algorithm 1 can, therefore, never

produce any set with a cardinality larger than d. By properly

implementing the compilation, i.e., not initializing such gates,

the resulting circuit consists of at most min
(

2n,
∑d

i=0

(

n
d

)

)

rotation gates and min(n, d)−1 ancilla qubits next to argument

register. Tab. I gives an overview of these circuit properties.

To our knowledge, there is no published literature

on this approach. However, a more sophisticated algo-

rithm for compiling polynomial rotation circuits is im-

plemented in the PolynomialPauliRotations mod-

ule in IBM’s Qiskit [10]. This algorithm first prepares the

min
(

2n,
∑d

i=0

(

n
d

)

)

final rotation gates and subsequently

uses multinomial coefficients in order to compute their rotation

values more efficiently.

B. Introducing approximate polynomial rotation circuits

Despite the fact that the presented polynomial rotation

circuits are highly space-efficient, the circuit depth becomes

prohibitive for even moderate input sizes. Other state-of-the-art

approaches typically reach smaller circuit depths while keep-

ing approximation errors in acceptable regions. For example,

binning [21] or truncated multiplication [5] introduce a certain

error to the computation in a trade-off for smaller circuits. In

contrast, the polynomial rotation circuit, as described up to this

point, computes the polynomial rotation exactly, i.e., there is

no approximation and thus no error. In order to further reduce

the circuit depth, additional gates could be omitted. However,

as all remaining gates have non-zero rotation angles, the final

polynomial rotation will inevitably become approximate. If

further gates were to be omitted, there should be a worthwhile

trade-off between circuit size and introduced error. Fortunately,

compiling and inspecting these circuits very often reveals

rotation gates with minuscule rotation angles, especially when

the coefficients and the degree of the polynomial are not too

large.

In the following, we denote a rotation gate with a rotation

value of θ and controlled by the set of qubits s by (θ, s).
In general, rotation gates with small θ contribute less to the

final rotation, i.e., the absolute error introduced by omitting

these gates is small compared to gates with large angles.

Moreover, rotation gates with many control qubits are also

worthy candidates for omission as they are more expensive

to implement than gates with fewer control qubits. Naturally,

with every omitted gate the potential error further increases.

In order to upper-bound the introduced error for a certain set

of omitted gates O, consider a circuit Rp that implements

a rotation around a polynomial p and is applied on a register

storing a certain value x. Each rotation gate in Rp is controlled

by a certain set of qubits of said register, and depending on

which qubits are in state |1〉, some gates will contribute to the

final rotation, while others will not. If O is omitted from Rp,

where Rp = R̃p ∪O and R̃p ∩O = ∅, the introduced error in

the resulting approximate circuit R̃p is given by:
∣

∣

∣

∣

∣

∣

∑

(s,θ)∈Rp

θ
∏

i∈s

xi −
∑

(s,θ)∈R̃p

θ
∏

i∈s

xi

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

(s,θ)∈O

θ
∏

i∈s

xi

∣

∣

∣

∣

∣

∣

≤
∑

(s,θ)∈O

|θ|
∏

i∈s

xi ≤
∑

(s,θ)∈O

|θ|. (9)

The worst-case scenario is then easily identified to be when x
is a bit string consisting purely of ones. In this case, each gate

contributes to the final result. The largest possible deviation

from the correct result can therefore be upper bounded by the

sum of the absolute values of the rotation angles of all gates

in O.

A straightforward approach to further shrink the circuit

depth is to keep omitting gates until their absolute rotation

values add up to a threshold, namely the maximum error one

is willing to accept. In order to minimize the gate count,

rotation gates with small rotation angles should be omitted

first. However, in order to minimize the Toffoli count, the

decision on which gates to omit first should not only be based

on the absolute value of their rotation angles, but also on the

number of required Toffoli gates. Hence, the compiled rotation

gates can be sorted by a ratio of rotation value and Toffoli

count before gates are omitted until the threshold is reached.

An alternative approach is to omit rotation gates from the

sorted list until a certain circuit depth is reached, and then

analyze the introduced error.

The approximation procedure not only reduces the circuit

depth but also has the potential to decrease the number

of required ancilla qubits. For instance, omitting all k-fold

controlled rotation gates, where k is the largest number of

x3 : • • • •

x2 : • • • •

x1 : • • • •

|φ〉 : Ry(·) Ry(·) Ry(·) Ry(·) Ry(·) Ry(·) Ry(·) Ry(·) Ry(p(x)) |φ〉

Fig. 3. The general structure of polynomial rotation circuits, implementing
a rotation around a polynomial p. Here, a rotation gate makes a contribution
to the final result if its set of control qubits is a subset of the set of the input
bits that are in state |1〉.

control qubits across all rotation gates of a circuit, leads to

a reduction in the ancilla count from k − 1 to k − 2. In

some cases, the dimensions of a polynomial rotation circuit

can be significantly reduced while still maintaining satisfactory

accuracies. For instance, an exact polynomial rotation circuit

implementing R(x7), where −0.5 ≤ x < 0.5 is stored

in a 14-qubit register, requires 94874 Toffoli gates, whereas

an approximate circuit that implements the rotation with a

maximum error of 3.01 × 10−5 across all possible inputs x
requires only 4348 Toffoli gates. A circuit with a maximum

error of 2.93×10−4 needs only 1298 Toffoli gates. Depending

on the implemented polynomial functions, the speed-ups can

be smaller or larger. Ultimately, this makes this approach very

promising for expanding the use cases of polynomial rotation

circuit beyond toy problems.

C. Transforming the structure of lookup-tables into the struc-

ture of polynomial rotation circuits

Lookup-tables and polynomial rotation circuits differ in

their structure, particularly in how their gates contribute to

the final result. In a lookup-table, only one of its 2n gates

performs a non-identity operation in each evaluation (assuming

that the qubits of the argument register are only in states |0〉 or

|1〉), while in a polynomial rotation circuit, multiple gates are

involved. Since the single gate in a lookup-table is essential to

the computation, omitting any subset of gates is not feasible.

Thus, the approximation procedure presented in Sec. III-B is

not applicable to lookup-tables due to their distinct properties.

However, extending the approximation procedure to include

lookup-tables would be highly desirable, as lookup-tables can

compute any computable function. In the context of the HHL

algorithm, this would allow to implement approximate arcsine

rotations, which would eliminate the need for polynomial

interpolation and the associated interpolation error. For this

reason, we developed an algorithm that transforms a compiled

lookup-table, as depicted in Fig. 4, into circuits with the

same structure as polynomial rotation circuits (see Fig. 3),

allowing for potential reduction in circuit depth. First, our

algorithm modifies the control mechanism of rotation gates

of the lookup-table by removing the controls on the |0〉
states. By removing the restrictive |0〉-controls, more rotation

gates perform a non-identity operations during an evaluation.

However, in order to restore the correctness of the lookup-

table the rotation values of the gates need to be adjusted in

order to compensate for the changes. Therefore, the algorithm

subsequently inspects each rotation gate (s1, θ1) and subtracts

its rotation value θ1 from the rotation values θ2 of each rotation

gate (s2, θ2) whose set of control qubits s2 are a superset of

s1 (see Algorithm 2). This ensures that the rotation values of

gates that perform a non-identity operation for a certain input

add up to the correct final rotation angle.

input : Register size n, a function f and a list w that

stores the weights of the argument bits.

output: A map circuit that assigns a set of control

qubits in the input register to a rotation angle

according to the input function.

1 X ← {0, . . . , n− 1}
2 circuit ← HashMap()

3 forall s ∈ P(X) do

4 x ← 0
5 forall i ∈ s do

6 x ← x+ wi

7 end

8 circuit[s] = f(x)
9 end

10 for i← 0 to n− 1 do

11 forall s1 ∈ P(X) where |s1| = i do

12 forall s2 ∈ P(X) where |s2| > i do

13 if s1 ⊂ s2 then

14 circuit[s2]← circuit[s2]− circuit[s1]
15 end

16 end

17 end

18 end

Algorithm 2: An O(n22n) algorithm for compiling and

transforming the structure of a lookup-table into the struc-

ture of polynomial rotation circuits.

Overall, in the modified lookup-tables, the contribution of

a single rotation gate is distributed among many others. This

transformation has the advantage that lookup-tables can now

be made subject to the proposed approximation procedure, as

it is now possible to assess each rotation gate regarding its

contribution to the final result and its implementation cost.

Consequently, this allows for compiling approximate rotation

circuits for any computable function, not only polynomials.

The efficiency of the approximation, however, heavily depends

on the function to be implemented.

In addition, this algorithm is capable of compiling the exact

same circuits as the polynomial compilation algorithms, up to

rounding errors and zero-angle rotation gates that can simply

be filtered out. If the transformed lookup-tables implement

polynomial functions, their circuit dimensions are also bound

by the formulas in Tab. I. This behavior is also observed in

our experiments (see Sec. IV). In that sense, the algorithm

offers a more generalized approach to the compilation of both

lookup-tables and polynomial rotation circuits.

Due to its exponential scaling with register size but inde-

pendence of polynomial degree, this algorithm is best suited

for compiling circuits for high-degree polynomials and non-

x3 : • •

x2 : •

x1 : . . . •

|φ〉 : Ry(f(000b)) Ry(f(001b)) Ry(f(111b)) Ry (f(x)) |φ〉

Fig. 4. The general structure of a lookup-table implementing a rotation around
a function f . Here, exactly one rotation gate makes the entire contribution
to the final result for a certain input x. White bullets indicate a control on a
qubit in state |0〉, black bullets control on a qubit in state |1〉.

polynomial functions when the register sizes are moderate3.

For this reason, the Qiskit algorithm remains relevant for cases

where low-degree polynomial circuits need to be compiled for

large register sizes.

IV. EVALUATION

In order to evaluate the space and time efficiency, as well

as the accuracy, of the proposed approximative lookup-table

approach, we now conduct numerical simulations. For that,

lookup-tables are compiled for various functions, argument

register sizes, and degrees of approximation to assess their

performance.

A. Strategy for compiling and approximating lookup-tables

First, lookup-tables are compiled and their structure is

transformed with a Python implementation4 of Algorithm 2.

The bit weights of the argument registers of size n are chosen

such that they represent 2n values in a certain interval. For

instance, choosing w = [−0.5, 0.25, 0.125, . . . , 2−n] lets the

argument register represent 2n values in the interval [−0.5, 0.5[
in two’s complement representation. Then, the rotation gates

within each circuit, which cost at least one Toffoli gate, are

sorted according to a contribution-to-cost ratio. For a rotation

gate (s, θ), the ratio gets computed with:

|θ|

2(|s| − 1)
, (10)

where the set s ∈ P({0, . . . , n − 1}) denotes the indices of

its control qubits, and θ is the rotation value represented as

a double-precision floating point number. The denominator

computes the Toffoli count of a rotation gate depending on

the number of its controls. This heuristic was chosen in order

to encapsulate the contribution to the final result as well as the

implementation cost: Thereby, the approximation procedure is

guided towards a reduction of the Toffoli count. Subsequently,

the rotation gates with the lowest contribution-to-cost ratio are

removed until the Toffoli count of the remaining gates falls

below a set threshold.

3For n ≤ 17, the compilation times range from microseconds to a few
minutes. However, for n = 18, the compilation time became excessively
long, taking around one hour on a conventional computer with an Intel Core
i7-8550U CPU and 16 GB of RAM.

4Implementation source code
https://github.com/petros-stougiannidis/quantum-rotation-compiler.

https://github.com/petros-stougiannidis/quantum-rotation-compiler

B. Assessing the accuracy of a lookup-table

To evaluate the accuracy of each circuit, a numerical sim-

ulation is performed on all possible quasi-classical states of

the argument register, i.e., where each qubit is limited to the

states |0〉 or |1〉. There are 2n such inputs for a register size

of n, which are specified by a set containing the indices of

all qubits in state |1〉. For each input, the rotation gates in the

approximate circuit are iterated. Whenever the set of control

qubits s of a rotation gate resembles a subset of the input

qubit indices, the rotation value θ is added to an accumulator

variable. The value of the accumulator is then treated as

the simulated output of the circuit for the given input. The

accuracy of the circuit is measured by computing the absolute

error as the distance between the simulated output f̃(x) and

the optimal output f(x), and then selecting the largest absolute

error across all inputs:

max
x∈X

∣

∣

∣f(x) − f̃(x)
∣

∣

∣ , (11)

where X denotes all 2n input values. The average errors are

computed as

1

|X |

∑

x∈X

∣

∣

∣f(x)− f̃(x)
∣

∣

∣ . (12)

C. Evaluating gate efficiency and approximation accuracy

The three plots in Fig. 5 depict the performance of lookup-

tables implementing R(x3), R(x5) and R(arcsin(x)), respec-

tively. The circuits were evaluated for values in the interval

[−0.5, 0.5[. Each data point represents the accuracy of a

different lookup-table, with the y-axis showing the largest

error across all inputs (see Eq. 11) and the x-axis showing

the Toffoli count of the circuit. The better a lookup-table

performs on implementing the desired approximate rotation,

the lower its error on the y-axis and the lower its Toffoli

count on the x-axis. Lookup-tables that were compiled and

simulated for the same register size are color-coded identically.

The colored graphs for a fixed register size show the error

that is introduced when reducing the circuit depth with the

approximation procedure from Sec. III-B. Flatter sections

of these graphs correspond to lower introduced error when

omitting further rotation gates.

Similarly, steep slopes in a graph indicate that a circuit

greatly profits in terms of accuracy with more gates in-

vested. For example, the plot of the R(arcsin(x)) rotations

displays steep slopes in the region of the x-axis between 0

and approximately 5000 Toffoli gates. Investing a number

of Toffoli gates corresponding to these regions of the x-axis

yields the highest increase in accuracy. Data points in these

regions therefore highlight sweet spots for compiling shallow

circuits with comparatively high accuracy. Tab. II shows a few

selected example circuits for the R(arcsin(x)) rotations that

achieved moderately high accuracy (in the order of 10−3 to

10−6), with a reasonable circuit depth (between 98 and 1298

Toffoli gates) and remarkably small circuit width (2-6 ancilla

qubits). For comparison, the accuracy of a first-order Taylor

series approximation in the interval [−0.5, 0.5[is 2.36×10−2.

0 200 400 600 800 1000

Toffoli gate count

0

10 14

10 13

10 12

10 11

10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

L
a
rg

e
s
t

a
b
s
o
lu

te
 e

rr
o
r

R(x3)

0 2000 4000 6000 8000 10000

Toffoli gate count

0

10 14

10 13

10 12

10 11

10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

L
a
rg

e
s
t

a
b
s
o
lu

te
 e

rr
o
r

�(�5)

0 10000 20000 30000 40000

Toffoli gate count

0

10 14

10 13

10 12

10 11

10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

L
a
rg

e
s
t

a
b
s
o
lu

te
 e

rr
o
r

�(arcsin(�))

Fig. 5. The accuracies of approximate lookup-tables compiled for the
functions x3 (top), x5 (middle), arcsin(x) (bottom) for different circuit
depths (x-axis) and argument registers sizes n (colored). Each circuit is
evaluated on 2n inputs in the interval [−0.5, 0.5[.

Therefore, investing a few hundred Toffoli gates and a small

number of ancilla qubits increases the accuracy by several

orders. Moreover, our approach compares favorably to [5]

in terms of ancilla requirements for implementing arbitrary

function rotations. The authors did not evaluate the accuracy of

their approach for register sizes smaller than 30. However, im-

plementing piecewise-linear interpolation with their approach

requires at least 17, 21 and 25 ancilla qubits for n = 8, n = 10
and n = 12, respectively. Implementing piecewise-cubic

interpolation already results in ancilla requirements of 33, 41,

and 49 for these register sizes. Hence, in these smaller-scale

settings and specifically for implementing function rotations,

our approach shows a noticeable improvement.

Fig. 5 also highlights an interesting phenomenon: the sud-

den decrease in slopes at certain circuit depths. The in-

tersections of the graphs with the x-axis signify the point

beyond which adding more depth to the circuit no longer

improves accuracy. Ideally, it’s best to reach these points with

0 10000 20000 30000 40000

Toffoli gate count

0

10 14

10 13

10 12

10 11

10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

L
a
rg

e
s
t

a
b
s
o
lu

te
 e

rr
o
r

R(sin(x))

0 10000 20000 30000 40000

Toffoli gate count

0

10 14

10 13

10 12

10 11

10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

L
a
rg

e
s
t

a
b
s
o
lu

te
 e

rr
o
r

R(ex)

Fig. 6. The accuracies of approximate lookup-tables compiled for the
functions sin(x) (top), ex (bottom) for different circuit depths (x-axis) and
argument registers sizes n (colored). Each circuit is evaluated on 2n inputs
in the interval [−1, 1[.

small circuit depths, as that implies highly accurate rotations

with low implementation costs. However, the circuit depth at

which a graph intersects with the x-axis can vary substantially

depending on the implemented function5. For instance, the

simulations demonstrate that polynomial functions of lower

degree hit this point earlier than those of higher degree.

Specifically, these circuit depths coincide with the Toffoli

counts of the polynomial rotation circuits outlined in Tab. I

in Sec. III-B. In contrast, polynomial functions of degree

d ≥ n and non-polynomial functions such as arcsin(x), ex,

and sin(x) (see Fig. 6) do not intersect the x-axis unless all

2n rotation gates are employed. Nevertheless, it’s important to

note that even if a circuit reaches the highest possible accuracy,

there may still be noticeable rounding errors introduced by

floating point numbers and a large number of additions during

circuit compilation and simulation. This effect is especially

noticeable in the R(ex) rotations of Fig. 6, where machine

precision (≈ 10−16) cannot be reached, even when all 2n

rotation gates are used.

While the circuit approximation procedure is generally

effective at reducing the circuit depths of non-polynomial

functions, there are cases where it struggles to offer a satisfac-

tory trade-off. The limitations of the approximation procedure

are demonstrated in the simulations presented in Fig. 7, where

lookup-tables were compiled for the functions R(arcsin(x))

and R
(

2 arcsin
(

2−n

x

))

, with circuits operating on values

5Note that the x-axis scales differently across the plots for R(x3), R(x5)
and R(arcsin(x)).

TABLE II
TOFFOLI GATE COUNT, ANCILLA REQUIREMENTS AND ERRORS FOR

APPROXIMATE CIRCUITS IMPLEMENTING R(arcsin(x)), WHERE THE

ARGUMENT x IS STORED IN AN n-QUBIT REGISTER. THE CIRCUITS WERE

REDUCED IN DEPTH UP TO A MAXIMAL TOFFOLI COUNT OF 100, 500, 900
AND 1300, RESPECTIVELY.

Toffoli Ancilla Average error Largest error

n = 8 100 2 4.54e-04 3.33e-03
494 4 1.46e-05 1.62e-04
894 5 5.67e-07 1.41e-05

1292 6 3.61e-08 1.19e-06

n = 10 98 2 4.58e-04 3.44e-03
498 4 3.55e-05 3.47e-04
896 4 8.89e-06 1.13e-04

1298 4 2.84e-06 4.21e-05

n = 12 98 2 4.66e-04 3.56e-03
496 4 5.87e-05 5.04e-04
896 4 1.67e-05 1.79e-04

1294 4 6.83e-06 8.67e-05

0 10000 20000 30000 40000

Toffoli gate count

0

10 11

10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

101

102

103

L
a
rg

e
s
t

a
b
s
o
lu

te
 e

rr
o
r

R(arcsin(x))

0 10000 20000 30000 40000

Toffoli gate count

0

10 11

10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

101

102

103

L
a
rg

e
s
t

a
b
s
o
lu

te
 e

rr
o
r

R(2arcsin (
2 n

x))

Fig. 7. The accuracies of approximate lookup-tables compiled for the

functions arcsin(x) (top), 2 arcsin
(

2
−n

x

)

(bottom) for different circuit

depths (x-axis) and argument registers sizes n (colored). Each circuit is
evaluated on 2n inputs in the interval [−1, 1[. Note that in the bottom plot

the function 2 arcsin
(

2
−n

x

)

depends on n, which ensures that the function

is defined for all inputs that are represented by the corresponding register.

in the range [−1, 1[. Notably, the lookup-tables of Fig. 6

evaluated for values in the same range exhibit steep slopes

in the beginning of their graphs, while the lookup-tables of

Fig. 7 do not. The arcsine function is notoriously difficult to

approximate near the values of -1 and 1, and this is reflected

in the highly irregular course of the graphs in Fig. 7. For

R(arcsin(x)), it can be observed that the rotation can only be

reasonably approximated up to a certain circuit depth, beyond

which the circuit incurs large errors on the order of 100. The

case of R
(

2 arcsin
(

2−n

x

))

is even more extreme. Unless

all 2n rotation gates are used, the circuit incurs extremely

large errors, on the order of 103. This effect arises because

the rotation values of the gates in this circuit are large

in absolute value relative to the range of the implemented

function. This causes the circuit to alternate between over-

and undershooting, rather than slowly approaching the correct

result from one direction. As a result, the circuit is highly

sensitive to omitting rotation gates. While this function would

be especially useful in the context of the HHL algorithm, as it

would absorb the eigenvalue inversion subroutine and reduce

the overall circuit depth, it can not be approximated with our

approach.

To summarize, while clearly limited to moderate register

sizes and in terms of implementable functions, our approach

allows compiling approximate circuits for many polynomial

and non-polynomial functions with satisfactory accuracy,

while needing only a few hundred Toffoli gates and almost

no ancilla qubits.

V. CONCLUSION

The goal of this paper was to develop an efficient imple-

mentation of the arithmetic subroutines in the HHL algorithm,

which represent a difficult task to perform on NISQ-devices.

Known implementations to these problems typically require

many gates and ancilla qubits. Classical computing methods

often suffer from high ancilla requirements in the quantum

realm as the reversible nature of quantum circuits requires

intermediate results to be stored in ancillary registers. To

address this issue, we investigated polynomial rotation circuits

and lookup-tables, which are structurally simple and space-

efficient but scale exponentially with the size of the argument

register. We proposed a promising new method that trades

off accuracy for reduced circuit depth, making these circuits

feasible and competitive with other state-of-the-art methods.

Our approach requires significantly fewer ancilla qubits than

iterative methods such as ones that are based the on Horner

scheme. The circuit depths can be reduced to only a few

hundred Toffoli gates while providing good approximations

with an accuracy of about 10−3 to 10−6. In addition, our

approximation procedure maintains the structural simplicity

of these circuits, which makes them very easy to specify and

program in a circuit specification language of choice.

While our approach is capable of providing approximate

circuits for many polynomial and non-polynomial functions,

it has limitations. On the one hand, there are functions for

which the circuits cannot be approximated sufficiently well.

For example, implementing circuits that evaluate the arcsine

function over its entire domain still require a large number

of Toffoli gates. In the worst case, certain functions can

only be implemented with exponentially many gates, as an

approximation would introduce very large errors. On the

other hand, the exponential complexity of the compilation

algorithms naturally limits the problem sizes for which these

circuits can be compiled. Although classical computing pro-

vides significant computing power, compiling circuits for large

register sizes would be time-consuming and impractical. It is

also important to note that while we made a step towards

facilitating NISQ-implementations for the HHL and similar

algorithms, implementing circuits that require several hundred

Toffoli gates will remain a challenge in the near future.

Despite these challenges, we believe that our approach

has great potential for further improvement and optimization,

which is facilitated by the structural and conceptual simplicity

of the circuits. Future work on this topic could include explor-

ing different implementations for multiple-controlled rotation

gates, different heuristics for the contribution-to-cost ratio, or

embedding the circuits in more sophisticated algorithms, e.g.,

by conditionally rotating around different functions in different

intervals. Exploring these ideas could lead to further reduction

in circuit size, an increase of accuracy or expanding the class

of functions that can be approximated.

Overall, we believe that our proposed method offers a valu-

able contribution to the field of quantum computing, providing

a promising alternative for implementing arbitrary function

rotations with smaller circuit dimension, and paving the way

for the implementation of resource-intensive algorithms on

future quantum computers.

ACKNOWLEDGMENT

This work was partially funded by the German BMWK

project QCHALLenge (01MQ22008A).

REFERENCES

[1] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum
algorithm for linear systems of equations. Physical Review Letters,
103(15), oct 2009.

[2] Scott Aaronson. Read the fine print. Nature Physics, 11:291–293, 2015.

[3] John Preskill. Quantum computing in the NISQ era and beyond.
Quantum, 2:79, 2018.

[4] Romina Yalovetzky, Pierre Minssen, Dylan Herman, and Marco Pistoia.
Nisq-hhl: Portfolio optimization for near-term quantum hardware, 2023.

[5] Thomas Häner, Martin Roetteler, and Krysta M. Svore. Optimizing
quantum circuits for arithmetic, 2018.

[6] Yudong Cao, Anargyros Papageorgiou, Iasonas Petras, Joseph Traub, and
Sabre Kais. Quantum algorithm and circuit design solving the poisson
equation. New Journal of Physics, 15(1):013021, 2013.

[7] Shilu Yan, Tong Dou, Runqiu Shu, and Wei Cui. Module for arbitrary
controlled rotation in gate-based quantum algorithms, 2021.

[8] Shengbin Wang, Zhimin Wang, Wendong Li, Lixin Fan, Zhiqiang Wei,
and Yongjian Gu. Quantum fast poisson solver: the algorithm and
complete and modular circuit design. Quantum Information Processing,
19(6), apr 2020.

[9] Mikko Möttönen, Juha J. Vartiainen, Ville Bergholm, and Martti M.
Salomaa. Quantum circuits for general multiqubit gates. Physical Review

Letters, 93(13), sep 2004.

[10] Qiskit contributors. Qiskit: An open-source framework for quantum
computing, 2023.

[11] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca. Quantum algo-
rithms revisited. Proceedings of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences, 454(1969):339–354,
jan 1998.

[12] Himanshu Thapliyal, Edgard Muñoz-Coreas, T. S. S. Varun, and
Travis S. Humble. Quantum circuit designs of integer division opti-
mizing t-count and t-depth, 2018.

[13] Yudong Cao, Anmer Daskin, Steven Frankel, and Sabre Kais. Quantum
circuit design for solving linear systems of equations. Molecular
Physics, 110(15-16):1675–1680, 2012.

[14] Yasuhiro Takahashi, Seiichiro Tani, and Noboru Kunihiro. Quantum
addition circuits and unbounded fan-out, 2009.

[15] Thomas G. Draper. Addition on a quantum computer, 2000.

[16] Lidia Ruiz-Perez and Juan Carlos Garcia-Escartin. Quantum arithmetic
with the quantum fourier transform. Quantum Information Processing,
16(6), apr 2017.

[17] Thomas G. Draper, Samuel A. Kutin, Eric M. Rains, and Krysta M.
Svore. A logarithmic-depth quantum carry-lookahead adder, 2004.

[18] Steven A. Cuccaro, Thomas G. Draper, Samuel A. Kutin, and
David Petrie Moulton. A new quantum ripple-carry addition circuit,
2004.

[19] Edgard Muñoz-Coreas and Himanshu Thapliyal. T-count optimized
design of quantum integer multiplication, 2017.

[20] Nathan Wiebe and Martin Roetteler. Quantum arithmetic and numerical
analysis using repeat-until-success circuits, 2014.

[21] Albert Frisch, Harry Barowski, Dominik Steenken, David Bucher, Gawel
Kus, Isabel Haide, and Jan Mueggenburg. Quantenschaltungsanordnung.
International Business Machines Corporation, Armonk, NY, US. DE 11
2020 000 193.8. Deutsches Patent- und Markenamt, München, 2020.
https://register.dpma.de/DPMAregister/pat/register?AKZ=1120200001938.

[22] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and

Quantum Information (10th Anniversary edition). Cambridge University
Press, 2016.

	Introduction
	Background
	Concept
	Rotating around arbitrary polynomials space-efficiently
	Introducing approximate polynomial rotation circuits
	Transforming the structure of lookup-tables into the structure of polynomial rotation circuits

	Evaluation
	Strategy for compiling and approximating lookup-tables
	Assessing the accuracy of a lookup-table
	Evaluating gate efficiency and approximation accuracy

	Conclusion
	References

