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Abstract—Recent hardware demonstrations and advances in
circuit compilation have made quantum computing with higher-
dimensional systems (qudits) on near-term devices an attractive
possibility. Some problems have more natural or optimal en-
codings using qudits over qubits. We explore this potential by
formulating graph 3-coloring, a well-known and difficult problem
with practical applications, using qutrits, and solve it using the
quantum approximate optimization algorithm (QAOA). Qutrit-
based cost and mixer Hamiltonians are constructed along with
appropriate quantum circuits using qutrit gates. We run noise-
less simulations using PennyLane to compare the formulation
against qubit-based QAOA, and analyze the solution quality
and resources required. Preliminary results show that the qutrit
encoding finds more accurate solutions with a comparable set of
hyperparameters, uses half as many qudits, and has a notably
smaller circuit depth per layer than an efficient qubit encoding.
This work suggests that qutrits may be useful in solving some
problems on near-term devices, however further work is required
to assess their potential in a noisy environment.

Index Terms—quantum algorithms, optimization, quantum
circuits, qutrits, graph coloring

I. INTRODUCTION

Significant progress in the design of quantum hardware
has taken place over the past decade. However, today’s
noisy, intermediate-scale quantum (NISQ) devices have many
important limitations, including low coherence times, high
error rates, a relatively small number of available qubits, and
restricted qubit connectivity on some platforms.

To work within these limitations, a wide variety of Vari-
ational Quantum Algorithms (VQAs) have emerged. VQAs
leverage trainable (parametrized) quantum circuits in a tightly-
coupled optimization loop with classical control hardware.
Flagship algorithms such as the variational quantum eigen-
solver (VQE) [1] and quantum approximate optimization
algorithm [2] have been applied in a variety of use cases
and demonstrated using multiple hardware modalities. Many
open questions remain, for example, regarding their trainability
in the presence of barren plateaus [3], parametrized circuit
(ansatz) design, and most critically, whether such algorithms
will yield a demonstrable quantum advantage on NISQ devices
in the near term.

Both VQE and QAOA require domain-specific problems to
be mapped (encoded) onto quantum systems, and the design of

suitable parametrized circuits and cost functions. The typical
encoding to qubits, however, is not always the most efficient or
most natural. Many problems would benefit from an encoding
into higher-dimensional systems, i.e., qudits.

Some physical implementations, such as superconducting
quantum computing platforms, inherently have more levels
as shown by Figure 1. Hardware providers typically seek to
suppress these levels in order to reduce noise and leakage that
would negatively affect qubit-based computation [4]. However,
some providers are making qudits available at the pulse level,
and both hardware and algorithm designers are exploring their
use [5], [6].

For example, work has shown that leveraging higher levels
can reduce resources across the compilation pipeline, such
as qudit-assisted Toffoli decompositions [7], [8]. There have
also been recent experimental demonstrations using qutrits to
execute actual quantum algorithms [9]. Other studies have
shown that qudit’s main source of error comes from decay
during measurement [10], for which there are straightforward
post-processing models for mitigating this type of error. Im-
portantly, gate infidelities of qudit implementations are not
disproportionately worse than qubit gate infidelities [9], [10].
Given these benefits and that the greater available computa-
tional space allows for larger problems to be encoded onto
current devices, qudits may thus be a crucial piece to finding
near-term quantum advantage.

Fig. 1: An anharmonic oscillator depicting the energy levels
of a quantum system (figure adapted from [11]). Typically,
higher energy levels are suppressed to obtain a qubit, however
it is possible to use and measure these higher energy states,
resulting in a qudit.

In this work, we compare qubit and qutrit encodings for
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solving the graph 3-coloring problem using QAOA. Graph
3-coloring is a common scheduling problem with real-world
applications [12]. It is of particular interest in our context as
qutrits act as a natural encoding while 3-coloring requires any
qubit encoding to work around extra, “illegal” states. We im-
plement both methods using PennyLane [13], a Python library
for differentiable quantum programming. As a precursor to
this work, we have contributed qutrit simulation capabilities
to PennyLane in order to fully support methods for finding the
gradient of qutrit operations using parameter-shift rules. Our
work aims to analyze the costs associated with both methods
and to explore whether qutrits may provide tangible benefits
over qubits for VQAs on NISQ devices.

II. BACKGROUND

A. Qutrits

A d-level quantum system can be expressed as a linear
combination of d basis states, |ψ⟩ =

∑d−1
k=0 αk |k⟩. In this

work we focus on qubits (d = 2), and qutrits (d = 3), whose
states we write as

|ψ⟩ = α0 |0⟩+ α1 |1⟩+ α2 |2⟩ . (1)

To execute a quantum computation using qutrits, we require a
universal set of unitary operations, and a means of performing
measurement. The literature contains a number of descriptions
for qutrit operations. We choose a natural representation based
on rotations using two-dimensional subspaces [14], and Gell-
Mann observables, which naturally generalize the qubit Pauli
operations and describe a measurement in the qutrit computa-
tional basis.

In particular, we use the formalism presented in [14], which
defines three rotation matrices analogous to the qubit rotations
RX(θ), RY (θ), and RZ(θ). We denote them as TRX(ij)(θ),
TRY (ij)(θ) and TRZ(ij)(θ). These operations act as a qubit-
like rotation by θ in the subspace of {|i⟩ , |j⟩} while leaving the
third state untouched. As an explicit example, for the (ij) =
(01) case, we define

TRX(01)(θ) =

 cos(θ/2) −i sin(θ/2) 0
−i sin(θ/2) cos(θ/2) 0

0 0 1

 ,

TRY (01)(θ) =

cos(θ/2) − sin(θ/2) 0
sin(θ/2) cos(θ/2) 0

0 0 1

 , (2)

TRZ(01)(θ) =

e−iθ/2 0 0
0 eiθ/2 0
0 0 1

 .

Operations in the (12) and (02) subspaces are defined simi-
larly. An arbitrary single-qutrit operation can be implemented
with a sequence of eight such rotation gates, comprising
four distinct rotations working in two different subspaces[14]1

The choice of subspaces leads to generalizations of non-
parametrized gates, such as analogs of Pauli X that perform

1For example, [14] uses the set {TRY (01), TRY (02), TRZ(01), TRZ(02)},
but as is the case with qubit operations, this choice is not unique.

addition modulo 3 on the basis states. The Hadamard gate,
which will be required later for QAOA, can be defined in
multiple ways [14], [15]. One option is the equivalent of a
single-qubit Hadamard acting in a two-state subspace. Another
version, which we use and define as TH , is the qutrit Clifford
gate [15]:

TH =
−i√
3

1 1 1
1 ω ω2

1 ω2 ω

 , ω = e2πi/3. (3)

The set of observables we measure are the Gell-Mann
observables [16]. These are a set of 8 Hermitian observables
which generalize the qubit Pauli group. Furthermore, they
constitute the Hermitian generators of the unitary operations
TRX , TRY , and TRZ defined in (2). The Gell-Mann ob-
servables are enumerated in Table I.

Pauli Gell-Mann observable

X λ1 =

0 1 0
1 0 0
0 0 0

 λ4 =

0 0 1
0 0 0
1 0 0

 λ6 =

0 0 0
0 0 1
0 1 0



Y λ2 =

0 −i 0
i 0 0
0 0 0

 λ5 =

0 0 −i
0 0 0
i 0 0

 λ7 =

0 0 0
0 0 −i
0 i 0



Z λ3 =

1 0 0
0 −1 0
0 0 0

 λ8 = 1√
3

1 0 0
0 1 0
0 0 −2


TABLE I: Qutrit Gell-Mann observables, grouped by their
analogous qubit Pauli operators.

For a two-qutrit operation, we choose the ternary addition
operator, TAdd, which performs controlled addition modulo
3. The action of TAdd and its adjoint (which we denote as
TSub) on the qutrit basis states is

TAdd |j⟩ |k⟩ = |j⟩ |k + j mod 3⟩ , (4)
TAdd† |j⟩ |k⟩ = |j⟩ |k − j mod 3⟩ = TSub |j⟩ |k⟩ .

Finally, as we will be using such operations in a vari-
ational algorithm, we require that parametrized qutrit gates
are differentiable. We can construct parameter-shift rules for
TRX, TRY and TRZ based on the differences of eigenvalues
of their Hermitian generators:

∂U(θ)

∂θ
=

2 +
√
2

8
(U(θ + π/2) + U(θ − π/2)) (5)

−2−
√
2

8
(U(θ + 3π/2)− U(θ − 3π/2)) .

B. Graph Coloring

The 3-coloring problem takes as input an undirected graph
G = (V,E) and asks if there is a possible coloring of the
vertices, V , such that no edge in E connects two nodes with
the same color. Although the premise is simple and solutions
are easy to check, this problem is NP-complete [12]. NP-
complete problems such as 3-coloring are of particular interest
as they all have polynomial transformations into each other



Fig. 2: An example encoding of a graph 3-coloring using
qutrits (left) vs. qubits (right). The qutrit-based encoding is
seemingly more natural given that only a single qutrit is
required, and all three basis states are leveraged. The aim of
this work is to explore what practical advantages this may
offer over the qubit-based version when solving the problem
using QAOA, and analyze the tradeoffs involved.

while spanning a vast array of important applications. Finding
an algorithm to solve 3-coloring with low error rate would be
significant, and as such there is a breadth of work using VQAs
to solve this problem [17]–[19].

While the solution of graph coloring in general has been
explored using qubit-based quantum algorithms [18], compar-
atively less work has been done on their solution using qudit-
based algorithms. In particular, 3-coloring maps very naturally
to a qutrit-based solution, as each color can be mapped to a
qutrit computational basis state, as shown in Figure 2.

Using qubits for the same problem requires a more complex
encoding. Some work has taken a one-hot encoding approach
[20], while others choose a space-efficient encoding that uses n
qubits to represent 2n colors [18]. A space-efficient encoding
for 3-coloring requires two qubits per node meaning that a
fourth, extra state is present. This adds complexity to the
optimization and must be penalized, which further motivates
the use of qutrits.

C. Quantum Approximate Optimization Algorithm

QAOA finds approximate solutions to combinatorial op-
timization problems by minimizing the expectation value
of a cost Hamiltonian on a parametrized circuit. The cost
Hamiltonian must be formulated such that its ground state
solutions correspond directly to the analogous solutions of the
optimization problem. This cost Hamiltonian, HC , is used to
construct a parametrized cost evolution unitary,

UC(θ) = e−iθHC . (6)

A mixer Hamiltonian, HM , that does not commute with the
cost Hamiltonian is used to define a second parametrized
unitary,

UM (φ) = e−iφHM . (7)

The algorithm begins by initializing the qudits in the ground
state of the mixer Hamiltonian2. QAOA proceeds by alter-
nating between the two parametrized unitaries of Equation 6

2This is typically accomplished by applying a Hadamard to every qudit.

and Equation 7, for p layers, as depicted in Figure 3. The
parameters of the circuit are then optimized using classical
methods. Once trained, the circuit can be run and sampled to
obtain solutions with a higher probability.

QAOA has been the subject of interest for solving graph-
theoretic problems across multiple domains, such as max-cut.
Its accuracy increases with the number of layers, however this
increases the circuit depth, giving low-depth evolution circuits
an obvious advantage [2]. This motivates finding encodings
with a lower depth per layer; we find that a qutrit encoding
satisfies this criteria. We note that an existing work explores
using qutrits specifically for the case of single-layer recursive
QAOA, but does not consider the more general p-layer version
[17] or present any specific circuit implementations or analysis
of the qubit-qutrit tradeoffs involved.

layer i = 1 layer i = p

. . .

. . .

...
...

. . .

|0⟩ H

UC

(θ1)
UM

(φ1)
UC

(θp)
UM

(φp)
Optimize

⟨HC⟩

|0⟩ H

|0⟩ H

Fig. 3: The circuit for QAOA. Each layer contains two
trainable parameters, which are optimized classically. The H
gate is a standard Hadamard gate in the qubit case, and the
TH gate of Equation 3 in the qutrit case.

III. ALGORITHMS AND IMPLEMENTATION

To compare qutrit- and qubit-based QAOA algorithms, we
must first construct circuits based on the QAOA ansatz. This
begins by finding a cost Hamiltonian.

A. Cost Hamiltonians

1) Qubit: Work has already shown multiple qubit-based
encodings for 3-coloring. We use a modified version of [18]’s
space-efficient encoding Hamiltonian for 4-coloring,

HCE =
∑

[v,w]∈E

[Zv1Zv2Zw1
Zw2

+ Zv1Zw1
+ Zv2Zw2

] , (8)

with an added cost to penalize the fourth color [18],

HCS =
∑
v∈V

[Zv1Zv2
− Zv1 − Zv2 ] . (9)

The expectation value of Equation 8 is minimized for
eigenstates representing good colorings, and is higher for
eigenstates representing bad colorings. The expectation value
of Equation 9 is low when the qubit pair that makes up each
node is in a valid state and high when they are in the |11⟩
state. The Hamiltonian in Equation 9 will thus be referred to



as the suppression term as it suppresses the |11⟩ state. The
entire cost Hamiltonian is

HC =
∑

[v,w]∈E
[Zv1Zv2Zw1

Zw2
+ Zv1Zw1

+ Zv2Zw2
]

+α
∑
v∈V

[Zv1Zv2 − Zv1 − Zv2 ] ,

(10)
where α is a real-valued coefficient defining the magnitude of
this cost.

2) Qutrit: Often when one is making a cost Hamiltonian
for a qubit-based encoding it makes sense to find an equivalent
version in terms of binary variables and then translate the
solution to the qubit domain. Unfortunately, this does not make
as much sense in the case of qutrits as the qutrit operations and
Gell-Mann observables have different behaviour than ternary
logic. However, it is possible to construct an appropriate
cost Hamiltonian by using combinations of the Gell-Mann
observables λ3 and λ8, which are analogous to the qubit
Pauli Z used in the qubit cost Hamiltonians. A valid cost
Hamiltonian was found through a computational search:

HC =
∑

[v,w]∈E

(λ3vλ
3
w) + (λ8vλ

8
w). (11)

This cost is promising as not only is it simple, but all six per-
mutationally equivalent colorings have the same expectation
value (and similarly for invalid solutions) so solutions are not
biased towards any particular assignment of colors.

B. Mixer Hamiltonians

A mixer Hamiltonian that does not commute with the cost
Hamiltonian must also be chosen. The mixer is a hyperpa-
rameter of the algorithm and there are many choices. As an
infinite number of mixers are possible, it can be advantageous
to create simple low-depth circuits and then convert them back
to the Hamiltonian.

1) Qubit: A selection of mixers were tested by running
the qubit algorithm using each mixer on a consistent set of
graphs with eight nodes of varying connectivity. Probabilities
of sampling a solution were plotted and the best candidate,
the mixer where an RX gate is applied to each qubit, was
selected to continue comparisons against the qutrit algorithm.

2) Qutrit: To construct a mixer for qutrits, it is possible to
apply just one TRX subspace rotation, however the resulting
Hamiltonian shares most eigenstates with the cost Hamilto-
nian. Instead, we use all three subspace rotations sequen-
tially, guaranteeing the minimal amount of shared eigenstates
without using entangling gates. While other constructions are
possible and could be explored, this mixer has the most natural
form (and is analogous to the qubit one).

C. Unitary Circuit Decompositions

To execute QAOA, the evolutions under the cost and mixer
Hamiltonians must be converted into elementary gates. In the
qubit case, the gate set is RX , RZ and CNOT ; for the qutrit
case, it is TRX and TRZ for various subspaces, and TAdd.

1) Qubit: To implement evolution under the cost Hamilto-
nian we treat the edge coloring Hamiltonian in Equation 8 and
the suppression Hamiltonian of Equation 9 separately creating,

UCE(θ) = exp(−iθHCE), (12)

and,
UCS(γ) = exp(−iγαHCS), (13)

respectively. These unitaries are defined in Equation 13 and
must be applied like this as the coloring Hamiltonian applies to
edges, while the suppression Hamiltonian applies only once for
each node. UCS is easily decomposed and shown in Figure 4.
We make use of circuit identities for the Pauli gadgets that
implement the typical cascades of CNOT s in logarithmic
depth (this has the further positive effect of cancellation of
some CNOT gates in subsequent terms and the suppression
term). The resultant Edge coloring term UCE is shown in
Figure 4.

Edge Coloring Suppression Mixer

v1 RZ RX

v2 RZ RZ RX

w1 RZ RZ RX

w2 RZ RZ RZ RZ RX

Fig. 4: The qubit-based circuit decomposition of one QAOA
layer used for a graph with one edge. The Edge Coloring term
is applied for each edge in a graph, while the suppression and
mixer terms are applied only once for each node.

Applying both the cost and mixer unitaries will result in
a circuit with depth approximated by 6m + 5, where m is
the maximum node degree in the graph. This is assuming a
fully-connected device layout, and a best case scenario graph
allowing for maximum parallelization. The circuit correspond-
ing to a graph made of two nodes connected by an edge is
shown in Figure 4.

2) Qutrit: We hypothesized that the structure of the unitary
over one edge would be similar to the unitary exp(−iθZ1Z2).
Thus we explored circuit structures consisting of two entan-
gling gates surrounding rotation gates applied to the target
wire. TAdd, unlike CNOT , is not self adjoint so the two
entangling gates are TAdd and TSub. The rotation gates are
discovered by considering the diagonal matrix

UC qutrit edge = exp(−iθ(λ31λ32 + λ81λ
8
2)) (14)

whose entries are e−iθ 4
3 and eiθ

2
3 . Choosing rotations

TRZ(01)( 43θ) and TRZ(02)( 43θ) results in the correct struc-
ture. The full circuit, including entangling gates, is shown in
the Edge Coloring of Figure 5.



Edge Coloring Mixer

v TRX(01) TRX(02) TRX(12)

w TSub TRZ(01) TRZ(02) TAdd TRX(01) TRX(02) TRX(12)

Fig. 5: The qutrit-based circuit decomposition of one QAOA layer for a graph with one edge. The Edge Coloring term is
applied for each edge in a larger graph and the mixer term is applied only once for each node.

Like the qubit circuit, it is worth considering the depth
of the circuit, which will be proportional to m, the highest
degree of any node in the graph (again assuming a fully-
connected device and a best case selection of graph). 3 Depth
of a well-parallelized circuit will be close to 4m+3 however,
the connectivity of other nodes will affect this.

D. Graph Construction

The algorithms were tested on small non-isomorphic 3-
colorable graphs of varying connectivity. The graphs were gen-
erated using Nauty [21] and a recursive algorithm was used to
select only 3-colorable graphs. Also, larger 3-colorable graphs
were generated to find entangling gate counts using a method
similar to the algorithm described in [17]. The algorithm works
by splitting the nodes into three sets and randomly connecting
nodes together, creating a tripartite graph.

E. Optimization Parameters

In order to train QAOA, there are a significant number
of hyperparameters that must be chosen. This includes the
optimization algorithm, number of optimization steps, step
size, number of QAOA layers (p), and the value of the
suppression cost α. The Adam optimizer was chosen as it is
an ensemble method that outperforms many other optimizers.
Currently, the simulation of qutrit circuits in PennyLane is
not as efficient as for qubit circuits; as a result, the number of
optimization steps for qutrits was capped to 50. This resulted
in convergence of the cost expectation value to within 0.01 in
small graph instances.

The qubit-based algorithm could not converge in 50 steps,
so we removed the step limit and allowed for convergence
to 0.001 or a minimum of 200 steps. This allowed for more
reasonable solutions as with just 50 steps true colorings were
not sampled for qubits, which biases the analysis against the
qubit algorithm. Also, the suppression cost α = 2 was decided
as it is proportional to the coloring cost and gave better results
than larger values. Finally, testing showed that separating the
cost unitary trainable parameter into one parameter for the
edge coloring unitary and one parameter for the suppression
unitary generated significantly better results. Therefore this
modified version of QAOA was used.

3Finding a maximally parallelized circuit for a graph is an NP-hard problem
as minimal k-coloring can be reduced to it in polynomial time.

IV. RESULTS

Our algorithms were implemented using the development
version of PennyLane 0.32.0-dev [13], with the JAX backend
[22] to speed up gradient calculation. Simulations were run
on a desktop computer with 64 GB of RAM and an i7-
13700KF processor with a RTX 4090 graphics card. The code
and numerical data is available at [23].

To assess the quantum resource requirements of the algo-
rithm, sets of up to 20 non-isomorphic 3-colorable graphs
were compiled. Each set is constructed with a set number
of nodes (n = 9 to n = 27, in steps of 3) and connectivity
using the second method outlined in subsection III-D. Circuits
for 3-layer QAOA are constructed, and the average number
of entangling nodes for both circuits is shown in Figure 6.
As already seen from Figure 4 and Figure 5, the qubit
circuits require many more entangling gates than their qutrit
counterparts.

9 12 15 18 21 24 27
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Fig. 6: Comparison of the number of entangling gates for
QAOA with p = 3. Low connectivity refers to most nodes
having degree 3, whereas high connectivity means most nodes
have degree n/3, and highest connectivity means most nodes
have degree 2n/3.

Next, QAOA is simulated to compare the quality between
the qubit/qutrit versions. Non-isomorphic sets of up to 20
3-colorable graphs are produced (some smaller graph sizes
have less than 20 non-isomorphic graphs), but with fewer
nodes (n = 4, . . . , 9) due to memory constraints. We train
the algorithm with p = 3 QAOA layers on each graph and
determine the probability of sampling a correct solution after
training. This probability is averaged for each set of graphs



and is displayed in Figure 7. These results showed that the
qutrit-based algorithm led to a higher probability of sampling a
correct solution, despite the optimization algorithm not having
converged to the same degree as the qubit-based version.

4 5 6 7 8 9
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Solution method
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Qutrit

Average connectivity
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d=3
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Fig. 7: Comparison of the average probability of sampling the
correct solution using three QAOA layers of multiple graphs
with n nodes. Average connectivity is the average number
of edges per node. All samples of the qubit algorithm that
include the invalid state are removed. When not post-selected
the margins are closer, however this is expected as it would
be a four-coloring. The error bars shown correspond to the
standard deviation.

Finally, we select sets of 20 graphs with n = 7 nodes and
increasing connectivity between sets, and run both algorithms
with varying numbers of layers, p. The average probability
of sampling a solution is shown in Figure 8, where it can be
seen that while for both versions of the algorithm the solu-
tion quality improves with increasing p, the qutrit algorithm
consistently outperforms the qubit algorithm. This is notable
as it suggests that we can obtain better results using not only
fewer qudits, but also fewer layers of circuits requiring fewer
resources.

V. CONCLUSION AND FUTURE WORK

We presented a formulation of QAOA for solving graph
3-coloring using qutrits. We tested this against an efficient
qubit embedding of the problem. Our results show a significant
decrease in cost metrics including entangling gates per layer
and circuit depth. Noiseless simulations show that the qutrit al-
gorithm has a higher probability of sampling a correct solution,
and can do so with fewer QAOA layers. This indicates that
the qutrit algorithm may be less susceptible to noise which
is important given that qutrit implementations have higher
error rates [9], [10]. These metrics are promising and suggest
qutrit-based variational quantum algorithms may be better for
solving some combinatorial problems.
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Fig. 8: Comparison of the average probability of sampling the
correct solution of five graphs for n = 7 nodes with a varying
number of QAOA layers, p. All samples of the qubit algorithm
that include the invalid state are removed.

More work must be done to perform a thorough analysis of
the tradeoffs involved. For instance, further tuning of the opti-
mization hyperparameters is necessary to ensure a consistently
fair comparison between the two encodings. Subsequent work
will also include simulations with noise, as well as running
these algorithms on a real device. Comparing the simulations
in the presence of noise will be interesting in particular
because, while the qutrit circuits require fewer resources, the
parameter-shift rules call for twice as many circuits to be
executed to evaluate the gradients for the qutrit case. An
analysis of the relative amounts of noise in qubit vs. qutrit
gates on hardware is essential. The trainability of the ansatze
themselves is also of interest to study, and the algorithm can be
tested on more graphs with different properties (for example,
graphs that are not perfectly 3-colorable).

Finally, because minimum k-coloring is a more common
problem, it is worth considering other qudit implementations.
For instance, in 3-coloring, the embedding into 2 qubits
leads to extra states that must be suppressed; in 8-coloring
this would instead occur in the qutrit case. Depending on
k, a combination of systems with different dimensions may
prove valuable to explore, should their realization in hardware
become widely available.
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