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Abstract—Quantum computing has shown considerable
promise for compute-intensive tasks in recent years. For instance,
classification tasks based on quantum neural networks (QNN)
have garnered significant interest from researchers and have been
evaluated in various scenarios. However, the majority of quantum
classifiers are currently limited to binary classification tasks due
to either constrained quantum computing resources or the need
for intensive classical post-processing. In this paper, we propose
an efficient quantum multi-classifier called MORE, which stands
for measurement and correlation based variational quantum
multi-classifier. MORE adopts the same variational ansatz as
binary classifiers while performing multi-classification by fully
utilizing the quantum information of a single readout qubit. To
extract the complete information from the readout qubit, we
select three observables that form the basis of a two-dimensional
Hilbert space. We then use the quantum state tomography
technique to reconstruct the readout state from the measurement
results. Afterward, we explore the correlation between classes to
determine the quantum labels for classes using the variational
quantum clustering approach. Next, quantum label-based super-
vised learning is performed to identify the mapping between the
input data and their corresponding quantum labels. Finally, the
predicted label is determined by its closest quantum label when
using the classifier. We implement this approach using the Qiskit
Python library and evaluate it through extensive experiments
on both noise-free and noisy quantum systems. Our evaluation
results demonstrate that MORE, despite using a simple ansatz
and limited quantum resources, achieves advanced performance.

Index Terms—quantum machine learning, quantum multi-
classifier, variational quantum algorithm, hybrid quantum-
classical method, observable-based method

I. INTRODUCTION

Quantum computing derived from quantum mechanics can
exponentially accelerate the solution of specific problems com-
pared to classical computing, because of the unique properties
of superposition and entanglement [1]. Nevertheless, we are
now in the Noisy Intermediate-Scale Quantum (NISQ) era, in
which quantum machines contain just 50-100 qubits and are
error-prone. Several months ago, IBM unveiled Osprey, the
world’s largest quantum computer with 433 qubits [2]. This
effort will provide the groundwork for the next era of quantum-
centric supercomputing. However, its computing procedure is
still plagued with qubit decoherence errors, gate errors, and
measurement errors [3]. Quantum Machine learning (QML) is
one of the most attractive applications of quantum computing
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Fig. 1. Two-step MORE. First, the classical labels are converted into quantum
labels in a two-dimensional Hilbert space based on the interclass correlation.
Next, quantum label-based supervised learning is employed to minimize the
difference between the readout state and its correct quantum label.

because of its demand for computing power and its resilience
to noise [4]–[6]. In recent years, many efforts have been made
to develop QML techniques as the counterparts of classical
ones, such as quantum k-nearest neighbor [6], [7], quantum
support vector machines [8]–[10], Quantum clustering [11],
[12], and quantum neural networks (QNNs) [13]–[15]. Since
classical neural networks have achieved remarkable success in
various fields [16]–[20], QNNs have also been attempted for
data processing in many domains, including finance [21], [22],
chemistry [23], [24] and healthcare [25]–[29].

Classification is a fundamental data processing technique
in many domains, making QNN-based classifiers an area of
significant interest. In 2018, Farhi and Neven proposed the first
QNN classifiers for near-term processors [13]. Following this,
in 2019, Cong et al. proposed quantum convolutional neural
networks (QCNNs) for image processing, which adopt the
architecture design of its classical analog [30]. Based on these
two quantum classifier designs, numerous variants are shown
[31]–[34]. Moreover, some other QNN designs are suggested
in [34]–[39].

Prior works on QNN-based classification have predomi-
nantly focused on binary classification tasks, with relatively
few addressing multi-classification problems. This is partly
due to the fact that QNNs typically produce binary measure-
ment results, meaning that a single readout qubit can only
represent two classes. The popular solutions for QNN-based
multi-classification are: (1) use extra ancillary qubits to repre-
sent labels for multiple classes. However, qubits are a limited
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resource on NISQ machines, and using more ancillary qubits
reduces the number of qubits available for data processing,
thus limiting the capacity of the QNN. (2) Select a subset of
qubits at the end of the QNN circuit to serve as the readout for
multi-class labels. However, if the one-hot encoding is used to
represent labels, the number of classes a QNN-based classifier
can handle is limited by the number of qubits available in
the circuit. On the other hand, if binary encoding is used
to represent labels, there may be cases where measurement
results are not interpretable, which is a limitation that also
applies to the previously mentioned solution. Specifically, the
binary property of qubit measurement results enables an n-
qubit state to include 2n possible labels. Thus, given a p-
classification task, where p ∈ (2n−1, 2n), some output states
will not map to any valid class. Especially when p = 2n−1+1,
almost half of the label space is wasted. (3) Attaching classical
fully-connected layers after QNNs is a common approach to
mapping the QNN outcomes to multiple classes. However,
this may incur high computational costs because the fully-
connected layers contain a large number of parameters to
train. Moreover, adding classical layers after QNNs may
offset the potential quantum advantage of using QNNs for
classification. And (4) decomposing the multi-classification
task into several binary classification ones. The downsides
include a complicated training process and lengthy training
and inference times due to the need to train multiple binary
classifiers. Therefore, there is a need for a novel QNN-based
multi-classifier that features a concise variational quantum
circuit, a streamlined classical post-processing procedure, and
a straightforward training process.

In this article, we propose MORE approach, a novel QNN
multi-classifier that utilizes measurements and interclass corre-
lations. MORE is designed to be resource-efficient, featuring
a simple ansatz similar to that used in binary classification,
with only one readout qubit at the end of the circuit. MORE
is a two-step approach, as shown in fig. 1. First, it converts
the classical labels of training data into quantum labels, which
are quantum states reconstructed from the measurement results
of the readout qubit. The quantum label of each class is
determined using the variational quantum clustering method
that considers the correlation between classes. Then, quantum
label-based supervised learning is conducted to converge the
QNN and achieve the desired performance quickly. Compared
to prior QNN-based multi-classifiers, MORE requires fewer
qubits and quantum gates, resulting in fewer gate and deco-
herence errors during the quantum state evolution. Moreover,
MORE is computationally efficient, with a fixed amount of
quantum computation and linearly increasing classical com-
putation, allowing scalability to more complex tasks.

The contribution of this work is fourfold:
• We present the attempt to design efficient quantum multi-

classifiers by leveraging the full quantum information
contained in a single qubit.

• We offer a technique for converting the classical labels
of training data into quantum states by investigating
interclass correlations.

• We introduce a quantum label-based quantum supervised
learning approach that includes a loss adjuster to improve
the quality of the QNN model.

• We implement the proposed MORE approach and eval-
uate it from many perspectives using comprehensive
experiments. And our experiment results demonstrate the
advantages of our proposed approach.

In the remaining content of this article, we provide some
basic knowledge needed for understanding this article in
section II. We then introduce our motivation for the proposed
approach by discussing quantum state tomography, which is
a method for reconstructing quantum states, in Section III.
The proposed two-step approach MORE is detailed in sec-
tion IV. The first step, variational quantum clustering based
on interclass correlation, is described in subsection IV-B, then
the second step, quantum label-based supervised learning, is
discussed in subsection IV-C. Then, we present the evaluation
setup and results in Section V, followed by a review of
related works in Section VI. Finally, we conclude our proposed
MORE approach in Section VII.

II. PRELIMINARIES

A. Quantum state and visualization

A qubit (short for a quantum bit) is the information carrier
in the quantum computing/communication channel [40]. A
qubit is defined as a two-dimensional Hilbert space with
two orthonormal bases |0⟩ and |1⟩, which are known as
computational bases in two-level quantum computing. These
computational bases are usually represented as vectors |0⟩ =
[1, 0]⊤ and |1⟩ = [0, 1]⊤. Due to the unique qubit characteristic
of superposition, the state of a qubit can be represented as
the sum of two computational bases weighted by (complex)
amplitudes:

|ψ⟩ = α|0⟩+ β|1⟩ =
[
α
β

]
(1)

where α and β ∈ C, and |α|2 + |β|2 = 1. |α|2 and |β|2 are
the probability of obtaining states |0⟩ and |1⟩ after multiple
measurements, respectively.

The Bloch sphere is a valuable tool for visualizing the state
of a single qubit, as shown in Fig. 2. It encompasses all
possible states of a qubit, making it an excellent representation
of a two-dimensional Hilbert space. In this article, we will use
the Bloch sphere to illustrate our proposed method clearly.
Every pure state of a qubit can be mapped to a distinct point
on the surface of the Bloch sphere, whereas mixed states
correspond to points within the sphere. The state of a qubit on
the Block sphere can be described with two real parameters,
θ and ϕ,

|ψ⟩ = cos
θ

2
|1⟩+ eiϕ sin

θ

2
|1⟩ (2)

where θ ∈ [0, π] and ϕ ∈ [0, 2π]. I.e., θ = 0 for |0⟩ and θ = π
for |1⟩, and global phase ϕ can be any value.
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Fig. 2. Bloch sphere and z-measurement

B. Quantum measurement

Quantum measurement is the retrieval of the numerical
information stored in a qubit. A measurement result is +1
for state |0⟩ and -1 for state |1⟩ according to a specified
probability distribution associated with the quantum state.
Therefore, numerous measurements are required to determine
the exact quantum state. The final result of the quantum
measurement is the expected value of all outcomes.

Observables are used to understand the properties of a quan-
tum system and can be measured. Mathematically, observables
are formulated as Hermitian operators that map Hilbert space
onto themselves. For a valid observable, its eigenvalues are real
numbers and can be the outcomes of measurement. Moreover,
observables can form an orthonormal basis of the target Hilbert
space, which will be the state of the quantum system after
measurement. The observables considered in this article are
Pauli matrices:

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (3)

These Pauli matrices span a complex two-dimensional Hilbert
space (a qubit). The projection measurement is to extract
quantum information by operating on the interested observable
and the density matrix of the target quantum state

⟨σ⟩ = Tr(σ|ψ⟩⟨ψ|) (4)

where |ψ⟩⟨ψ| generates the density matrix. For the general z-
measurement, the state vector is projected onto the z-axis of
the Bloch sphere, and the corresponding value on the z-axis is
the expectation of the measurement results, as shown in Fig. 2.

C. Variational quantum algorithm

The variational quantum algorithm (VQA) is the standard
approach to performing QNN. It processes prepared quantum
information by applying a series of parametric quantum gates,
ultimately producing an output through measurement. As an
example, a binary quantum classifier is implemented using
VQA in [13]. It has an (n+1)-qubit circuit, where the first n
qubits are prepared using an encoding method (such as angle,
basis, or amplitude encoding) to represent specific information.
The final qubit acted as a readout, generating the output
through measurements. These qubits then pass a sequence of

quantum gates with trainable parameters U(θ) =
∏N

l=1 Ul(θl),
where θ is a set of parameters. A measurement outcome of 1
corresponds to one class, while a result of -1 corresponds to the
other class. VQA uses a hybrid quantum-classical procedure to
iteratively optimize the trainable parameters. The popular op-
timization approach includes gradient descent [41], parameter
shift [42], and gradient-free techniques, such as COBYLA. All
of the methods take the training data as input and evaluate the
model performance by comparing the generated and correct
labels. Based on this evaluation, the methods update the model
parameters for the next round, repeating the process until the
model converges and achieves the desired performance. The
hybrid method performs the evaluation and parameter selection
on a classical machine, while the model inference is carried
out on a quantum machine.

III. QUANTUM STATE TOMOGRAPHY

Quantum state tomography (QST) is a technique to re-
construct an unknown quantum state using its measurement
results [43]. The measured observables must form a basis in
the Hilbert space so that all state information can be recorded
and used to recover the state. In the present age of NISQ,
when the number of qubits is limited, QST is an essential
method for retrieving the complete information stored in a
quantum system. Nevertheless, as the number of qubits grows,
the number of measurements needed and the complexity of
state reconstruction increase exponentially. Hence, for the sake
of simplicity, we consider the reconstruction of a single qubit
using three observables to restore its state in a two-dimensional
Hilbert space in this work.

Any arbitrary density matrix of a 1-qubit state can be
expressed as a linear combination of Pauli matrices (basis of
two-dimensional Hilbert space) as

ρ =
1

2
(I + rxσx + ryσy + rzσz)

=
1

2

[
rz + 1 rx − ry
rx + ry −rz + 1

] (5)

where r denotes real number and r2x + r2y + r2z = 1. For the
typical qubit measurement using observable σz , as used by
most quantum applications, the expectation of the measure-
ment result is

⟨σz⟩ = Tr

(
1

2
(I + rxσx + ryσy + rzσz)σz

)
= rz (6)

Eq. 6 demonstrates that the expectation of measurement results
is directly related to the density matrix ρ of interest. In this
case, however, only diagonal entries of ρ can be retrieved,
while some useful information remains untouched. Hence,
in order to rebuild the density matrix ρ completely, the
measurements on observables σx and σy are necessary to
obtain rx and ry .

From the perspective of the geometric representation, the
expectation values ⟨σx⟩, ⟨σy⟩ and ⟨σz⟩ are exactly the pro-
jections of the state vector on the x-, y- and z-axis of the
Bloch sphere, respectively. Therefore, after getting sufficient
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Fig. 3. MORE overview. Step 1: variational quantum clustering (a)-(d). (a) The QNN takes a pair of training instances as input and reconstructs their
single-qubit readout states using x-, y-, and z-measurements. (c) QNN’s parameters are tuned to adjust the distance between readout states depending on (b)
the interclass correlations represented by MSE. (d) After iterative training, the distribution of readout states in Hilbert space corresponds to that of classes in
feature space. The centroid of readout states within the same class is the quantum label for this class. Step 2: quantum label-based supervised training (e).
The readout state tends to approach its corresponding quantum label during the training process. During inference, the predicted label of a test instance is the
quantum label closest to its readout state.

measurement results, we can restore the quantum state in the
Bloch sphere for an intuitive interpretation. In other words,
the interested 1-qubit state is a state vector with an unknown
direction in the Bloch sphere. By projecting the vector on the
three axes, we can figure out the direction of the state vector,
which contains all information about the state.

IV. MEASUREMENT AND CORRELATION-BASED QNN
MULTI-CLASSIFIER

In this section, we present MORE, an efficient quantum
multi-classifier that employs a simple QNN with a single
readout qubit. We use QST to reconstruct the state of the
readout qubit to retrieve the entire information from it. This
allows us to fully leverage information of a single qubit
to address complex multi-classification tasks via two steps.
First, we employ the variational quantum clustering method to
convert the classical labels of the dataset into 1-qubit states,
taking into account interclass correlations. Next, we proceed
to train the QNN using a quantum label-based supervised
learning approach, where the QNN learns to map an input to
its corresponding quantum label. After completing the training
process, the model can accurately categorize new data by
comparing the readout state of the data with quantum labels

and assigning it to the appropriate class based on the shortest
distance.

A. Overview

The overview of MORE is presented in Fig. 3. The goal is to
solve a multi-classification task that assigns appropriate labels
to classical input data. A training dataset consisting of K sub-
sets is provided, D = {D1, D2, . . . , DK}. The subset Dk is a
collection of training data in class k, with each training data
instance being a pair of data point x and its correct classical
label y. MORE addresses this problem by utilizing a QNN
to learn the pattern that characterizes the mapping between
the input data point and its correct label from the training
dataset. The learning of MORE is a two-step procedure. First,
the classical labels y are converted into quantum labels −→y
in the two-dimensional Hilbert space. This step employs the
quantum clustering method while considering the inherent
correlation between classes. (Fig. 3(a-d) and Section IV-B).
Then, quantum label-based supervised learning is undertaken
to fine-tune the parameters (Fig. 3(e) and Section IV-C).

The ansatz of MORE is shown in Fig 3(a). Its circuit
includes three layers: (1) Encoding layer: the encoding layer
quantizes the classical input data by preparing the quantum



states based on classical data values. MORE is compatible with
any general encoding scheme, such as angle and amplitude
encoding. (2) Variational data processing layer U(θ): this layer
transforms the prepared state using its parameterized gates.
The parameter set θ of the layer is iteratively adjusted based
on MORE’s performance using a hybrid classical-quantum
method, as introduced in section II. The optimal parameters
should enable MORE to assign a label y to unseen input x
with high accuracy. (3) Measurement layer M : One qubit is
chosen as the readout in this layer, and its observable σx, σy ,
and σz are measured to produce a three-dimensional vector
(reconstructed state vector −→vi and −→vj ).

As the quantum measurement operator in superconducting
hardware implementation can only measure the state on the
z-axis, MORE requires two additional measurement units to
measure the observables σx and σy , as shown in Fig. 4. The
unit for observable σx inserts an H gate before the mea-
surement operator, which can be conceptualized as rotating
the x-axis of the Bloch sphere to the location of the z-axis
first and then projecting the state vector to the new z-axis.
Similarly, for observable σy the readout qubit passes an S†

gate and an H gate, followed by the measurement operator in
the measurement unit. In the measurement layer of the QNN,
these three measurement units are applied in succession to
construct the state vector −→v = (⟨σx⟩, ⟨σy⟩, ⟨σz⟩).

|Ψ⟩ H

|Ψ⟩ HS† ⟨σy⟩

⟨σx⟩

|Ψ⟩ ⟨σz⟩

Y

X

Z

Fig. 4. Measurement unit of MORE

B. Class correlation-based variational quantum clustering

To perform multi-classification on the 1-qubit state vectors,
it is necessary to determine the distribution of classes in a
two-dimensional Hilbert space first. This involves converting
classical labels to quantum labels. To accomplish this, we use
the variational quantum clustering method while investigating
the correlation between classes. Deep clustering is a technique
in classical machine learning that concurrently learns the
parameters of neural networks and the cluster assignments for
processed inputs [44]. Here, we borrow this idea and apply
it to variational quantum clustering. Specifically, we train the
parameters of the QNN to map readout state vectors from the
same class to a particular quantum state.

Class correlation. First of all, we calculate the correlation
between classes by measuring the difference between the
data instances belonging to different class collections. To be
specific, we first pre-process the training data using Principal
Component Analysis (PCA) to extract critical features and
downscale the data to a size that is suitable for our quantum

circuit. Then, the average pattern set Dpattern is created by
averaging the data instances of the class dataset Dk,

Dpattern = {x1, x2, . . . , xK} (7)

where xk = 1
|Dk|

∑|Dk|
i=1 x

i
k, k ∈ [1,K]. The correlation

between the average pattern of classes is then recorded in a
K ×K array, known as scaler array S. For example, we use
Mean square error (MSE) to quantify the difference between
two average patterns. As a result, the entry (i, j) of the scaler
array S can be calculated by

Si,j =MSE(xi, xj) (8)

The larger the MSE value, the lower the correlation. The
original diagonal entries of S are 0s, indicating that the
correlation between two identical patterns is maximal. We
modify these 0s to negative values, which will be explained
and utilized later in this section. Fig. 3(b) shows an example of
the scaler array S that stores the correlations between classes
‘0’, ‘1’, and ‘2’ from the MNIST handwritten digit dataset.

Clustering dataset. We then prepare the clustering dataset
by pairing the instances in the given dataset D. The
clustering dataset consisting of data pairs: Dcluster =
{[(xi, yi), (xj , yj)]t}Nt=1 where i, j ∈ [1,K] and N is a
small number to ensure the model can fast converge. In our
evaluation, we set it to

(
5K
2

)
. Each data pair is independently

sampled from D across all classes, i.e., (xi, yi) and (xj , yj)
are two sampled instances from class i and j.

Clustering loss. In a training step, the QNN U(θ) sequen-
tially takes as input of a data pair xi and xj and generates
two three-dimensional state vectors −→vi = (⟨σx⟩i, ⟨σy⟩i, ⟨σz⟩i)
and −→vj = (⟨σx⟩j , ⟨σy⟩j , ⟨σz⟩j). We express the loss function
as

Lclt = −Si,j ×Dist(−→vi ,−→vj ) (9)

where
Dist(−→vi ,−→vj ) = 1−

−→vi · −→vj
||−→vi || ||−→vj ||

(10)

The function Dist(−→vi ,−→vj ) computes the Cosine distance be-
tween two vectors −→vi and −→vj , and the coefficient Si,j serves as
the scaler of cosine distance. We assume that the distribution
of state vectors in a two-dimensional Hilbert space is relevant
to the distribution of data in feature space. Therefore, the
clustering step aims to bring the generated state vectors −→vi
and −→vj closer together if xi and xj belong to the same class,
and farther apart otherwise. In addition, the distance between
−→vi and −→vj will be larger if their class correlation is significantly
smaller. Specifically, as illustrated in Fig. 3(c), if xi and xj
from the same class, the negative scaler value Si,j where
i = j, will minimize the cosine distance between −→vi and −→vj .
Otherwise, the distance between −→vi and −→vj will be maximized,
and the final distance between them depends on the value of
Si,j . The higher the correlation, the closer they will be.

Quantum labels. After the training of quantum clustering,
the state vectors of data instances belonging to the same class
are oriented in similar directions (a cluster). The centroid of
these directions is recorded as the quantum label of the class.
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So far, we have mapped the classcial labels y into quantum
labels −→y , which are distributed in the Hilbert space based on
the correlation between classes, as shown in Fig. 3(d). Then
we substitute the classical labels y in the training dataset D
with quantum labels −→y , and now we are ready to proceed with
quantum label-based quantum supervised learning.

C. Quantum label-based supervised learning

After the clustering step, we initially train the parameters θ
of QNN U(θ) to determine the quantum labels for classes.
However, as the U(θ) is trained on a small subset of the
training data, it may not be optimal for classification. Thus, to
enhance the performance of U(θ), we fine-tune the parameters
by conducting quantum label-based supervised learning. We
use the dataset containing the training data points x and their
quantum labels −→y to train U(θ). The goal is to map the
readout state vector of inputs to be as close as possible to
their corresponding quantum labels, as shown in Fig. 3 (e).
In this step, the U(θ) takes one training instance as input and
generates the 1-qubit state vector −→v . Then, we compare the
generated vector with its corresponding quantum label −→y , and
express the loss function of quantum label-based supervised
learning as

Lsup = Dist(−→v ,−→y ) (11)

The training procedure aims to minimize the value of Lsup.
For inference, the class of the unseen data is determined by

y = argmink{Dist(−→v ,−→yk)} (12)

where −→yk is the quantum label for class k ∈ [1,K].
However, misclassifications are more likely to occur when

there are a large number of classes and their quantum labels
are closely distributed in the Hilbert space, which is known as
the curse of density (see Fig. 5 left). The circle is a side view
of the Bloch sphere, and the colored dots are quantum labels.
The triangle represents the readout state of an input. It may
be classified into a nearby but incorrect class (represented by
the pink dot) due to the small distance between the readout
state and the pink quantum label. To improve the accuracy of
the classifier in scenarios with crowded quantum labels, we
introduce a loss adjuster R.

In each training step, if the distance between the readout
state and its correct quantum label is less than a threshold
r, we also consider the other quantum labels whose distance

from the readout state is less than the threshold, as shown in
Fig. 5 right. Specifically, when Dist(−→y ,−→v ) ≤ r, we define
the loss regulator as

R =
∑
k∈K′

Dist(−→yk,−→v ) (13)

where K ′ is a subset of classes whose quantum label −→yk
satisfies Dist(−→yk,−→v ) ≤ r.

We then assign a weight factor w ∈ [0, 1] to the supervised
loss term. Hence, the overall objective function of the quantum
labels-based training process is

Lsup+R = wLsup − (1− w)R. (14)

By minimizing the value of Lsup+R, this objective function
tends to bring the readout state closer to its correct quantum
label while moving farther away from the incorrect quantum
labels surrounding it, resulting in the readout state being
closest to its correct label among crowded quantum labels. The
selection strategy for the values of r and w will be discussed
in Sec. V-C.

V. EVALUATION

We conducted empirical studies in various scenarios to eval-
uate the performance of the proposed quantum multi-classifier
MORE. To implement MORE and related baselines, we used
Python 3.8 and the IBM Qiskit package [45] to simulate
quantum systems both with and without noise. For simulating
noisy systems, we employed several noisy backends, including
FakeAuckland, FakeAthensV2, and FakeBelemV2.
The source code used to generate the experiment results is
available in github.com/Jindi0/MORE.

Dataset: (1)We utilize the MNIST dataset [46] to conduct
experiments in the noiseless quantum system. The MNIST
is a widely used benchmark for image classification tasks,
consisting of ten classes of hand-written digits ranging from 0
to 9. We randomly select 1,000 training and 200 test images
from each class and reduce their dimensions to 8 using PCA.
(2) Additionally, we evaluate MORE using the Iris dataset
[47] in simulated noisy quantum systems. The Iris dataset
contains 150 instances classified into three distinct classes,
each consisting of 50 instances with 4 pixels. We use 70% of
the instances (105 instances) for training, while the remaining
30% (45 instances) are reserved for testing purposes.

Model implementation: We develop the QNN classifiers
based on Qiskit NeuralNetworkClassifier class, and
use the optimizer COBYLA to update trainable parameters.
MORE employs an 8-qubit QNN for the MNIST dataset and
a 4-qubit QNN for the Iris dataset, with 91 and 39 train-
able parameters, respectively. We build QNNs based on the
design principles for quantum convolutional neural networks
proposed in [30]. For the readout, we choose the last active
qubits at the end of the circuit and measure it with σx, σy ,
and σz observables. To efficiently convert classical labels to
quantum labels during the clustering step, we randomly select
five instances from each class and form pairs from the resulting
dataset. The clustering dataset consists of

(
5K
2

)
pairs in total,

https://github.com/Jindi0/MORE.git
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Fig. 7. Accuracy of multi-classification tasks

where K is the number of classes. We use MSE to calculate the
interclass correlations. And to make the quantum labels spread
out as much as possible, the MSE between different classes is
normalized to the interval [0.5, 1]. During supervised learning,
then, the entire training dataset is used.

A. Accuracy
We evaluate the accuracy of the proposed approach MORE

using the MNIST dataset on noise-free quantum systems. We
conduct nine classification problems ranging from binary to
10-class.

Our evaluation starts by investigating the effect of using
multiple observables of a readout qubit on binary classification
tasks. To do so, we compare our results to BaseBin, which
serves as the baseline in this experiment. The comparison
is illustrated in Fig. 6. Both MORE and BaseBin use the
same ansatz (QCNN with 91 trainable parameters) for binary
classifications, but the readout qubit of BaseBin is measured
only with observable σz . The expected value of its measure-
ment results is associated with two distinct classes: a positive
expected value represents one class, and a negative expected

value represents the other. We conduct 45 binary classifications
on MNIST using MORE and BaseBin, respectively. The class
pairs for classification are listed on the x-axis of Fig. 6 and are
sorted in descending order of interclass correlations. E.g., the
training data of classes ‘4’ and ‘9’ have the highest similarity,
while those of classes ‘0’ and ‘1’ have the lowest. The results
indicate that MORE outperforms BaseBin in 37 out of 45
tasks and achieves comparable accuracy in the remaining tasks.
MORE improves accuracy by up to 22.28% and by an average
of 4.9%. Furthermore, the performance of MORE demon-
strates greater stability across tasks of varying difficulty than
BaseBin. As observed, a roughly inverse relationship exists
between accuracy and interclass correlation for both MORE
and BaseBin, i.e., as class correlation increases, classification
becomes more challenging. Consequently, both MORE and
BaseBin exhibit the highest accuracy on (0, 1)-classification
and the lowest accuracy on (4, 9)-classification. Nonetheless,
the variance of MORE’s accuracy over 45 tasks is only 34.01,
while that of BaseBin is 59.41, indicating that MORE is more
stable than BaseBin. It shows the advantage of MORE, which
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has three observables, in terms of accuracy and stability.
Next, we evaluate MORE on multi-classification tasks using

the MNIST dataset and summarize the results in Fig. 7. We
conduct eight multi-classification tasks, categorizing handwrit-
ten digits into three to ten classes. Note that the ansatzes used
in multi-classifications are identical to the binary classification
ansatzes. The accuracy of MOREs is compared to that of
BaseAnc and BaseMea, which serve as the baselines in
this experiment. BaseAnc and BaseMea are both variational
quantum multi-classifiers. BaseAnc utilizes eight qubits for
data processing and n ancilla qubits as the readout for n-class
classifications. And BaseMea employs a total of eight qubits
and measures a subset of qubits at the end of the circuit to
produce a result. In a multi-classification task with n classes,
n qubits are measured. They encode class labels as one-hot
vectors and measure the readout qubits on the z-basis. So
BaseAn and BaseMea can only support the classifications in-
volving up to eight classes, due to the limitation in dimensions
and the number of qubits, respectively. MORE, however, is
capable of conducting 10-class classification regardless of the
number of qubits, and we believe it still qualifies if the dataset
contains more classes. Fig. 7 indicates that MORE outperforms
BaseAnc and BaseMea across the board. The reason is that
both BaseAnc and BaseMea require simultaneous control of
several qubits to represent the class label, which can be
challenging, particularly for an unstable quantum system. In
contrast, MORE only utilizes a single qubit to record the
outcome, thus reducing the number of factors contributing to
instability.

Overall, our proposed MORE approach, which uses a simple
circuit with only one readout qubit, can beat other general
approaches and achieve the desired performance. In the fol-
lowing subsections, we will analyze the impact of the MORE’s
components and access MORE in noisy quantum systems.

B. Quantum label

We now examine the impact of selecting quantum labels for
classes. To do so, we compare the following approaches:

• BaseRand: A baseline method that randomly assigns
quantum states to classical labels.

• MORE\cor: A variant of the MORE approach that does
not consider interclass correlation during the variational
quantum clustering step, i.e., all diagonal entries in the
scaler array S are -1s and all other entries are 1s.

• MORE: The vanilla MORE method employs interclass
correlation for determining quantum labels.

Then, based on the selected quantum labels, each of the
three approaches is followed by quantum label-based super-
vised learning using objective function Eq. 11 without the loss
regulator R. The test accuracy of the above approaches is
summarized in Fig. 8. Across eight multi-classification tasks,
MORE outperforms other methods in all cases. BaseRand and
MORE\cor have comparable performance, all of which are
inferior to MORE. Therefore, we conclude that it is beneficial
to take interclass correlations into account when deciding the
quantum labels for classical labels. A possible reason is that
the data distribution in the Hilbert space is strongly related to
that in the classical feature space. As an example, Fig 3 (d)
shows the distribution of quantum labels for class ‘0’, ‘1’, and
‘2’ of MNIST, according to their relationship as listed in Fig 3
(b). Classes ‘1’ and ‘2’ have the smallest MSE value (strongest
correlation), so their quantum labels are closer to each other
compared to other class pairs. Similarly, the readout states of
the instance from classes ‘1’ and ‘2’ are supposed to be closer
than those of other classes. As a result, assigning quantum
labels based on class correlation can capture the training data
pattern to some extent, which is advantageous for enhancing
model quality, as shown in Fig. 8. Nonetheless, the figure
reveals that the accuracy of quantum classifiers decreases as
the number of classes increases. This trend is also observed
in quantum classifiers that employ alternative implementation
strategies. Thus, we introduce a loss adjuster to alleviate this
issue, as shown in Eq. 13, and analyze its impact in the next
subsection.



TABLE I
PARAMETERS AND RESULTS FOR LOSS ADJUSTER

Task Min. label
distance r w More\R acc. MORE acc.

0-2 1.302 1.5 0.1 84.13% 88.7%

0-3 0.713 1.0 0.2 63.45% 70.1%

0-4 0.57 0.8 0.1 53.5% 63.3%

0-5 0.077 0.2 0.4 40.48% 50.2%

0-6 0.212 0.4 0.5 29.06% 37.2%

0-7 0.067 0.2 0.5 44.8% 48.6%

0-8 0.099 0.15 0.2 29.4% 33%

0-9 0.086 0.15 0.2 22.6% 27.8%

C. Loss adjuster

Table I summarizes the parameters and results for the loss
adjuster over the multi-classification tasks. The accuracy of
MORE (with R) and MORE\R (without R) are listed in
the last two columns. The comparison indicates that MORE,
which uses the loss function (Eq. 14) with R during su-
pervised learning, improves the accuracy across all tasks.
This improvement is caused by the corrected misclassification
between the classes whose quantum labels in the Hilbert
space are too near together. In Eq. 14, two hyper-parameters
need to be determined by users: the threshold r and the
weight w. The threshold r is empirically determined based
on distances between quantum labels. In our experiments, the
Cosine distance between quantum labels is calculated. Usually,
r is specified to be slightly larger than the shortest distance,
as shown in the 2nd and 3rd columns of table I. E.g., the
smallest Cosine distance between quantum labels in the 0-9
task, a 10-class classification, is 0.086 (about 24 degrees), so
we set the r to be 0.15 (about 32 degrees around the target
quantum label). Moreover, we test MORE with a w range from
0.1 to 1.0 and identify the optimal value of w for each task. We
report these values in the 4th column of the table, although we
found accuracy improvements across all values of w in each
task. The w values demonstrate that R has varying importance
across different tasks, but its contribution is not greater than
half in any task. Hence, we recommend that users search for
an appropriate value of w within the range of 0.1 to 0.5.

D. Noisy quantum system

Table II summarizes the test accuracy of MORE using the
noisy quantum backends, including FakeAuckland, FakeA-
thensV2, and FakeBelemV2 on the Iris dataset. The hybrid
quantum-classical training method of QNN typically requires
a long time to execute on a quantum machine, but the IBM
cloud quantum computing platform imposes time limits for
tasks. In this experiment, we therefore utilize simulators of
noisy quantum computing systems. The noisy backends used
in this experiment have the noise model collected from real
quantum machines, which includes T1 and T2 time, 1-qubit
and 2-qubit gate errors, and measurement errors. So these

TABLE II
TEST ACCURACY OF MORE ON IRIS DATASET WITH NOISY BACKENDS

# Shots FakeAuckland FakeAthensV2 FakeBelemV2

1k 95.56 95.56 93.33

2k 97.78 93.33 95.56

3k 97.78 93.33 95.56

4k 97.78 93.33 95.56

5k 93.33 93.33 95.56

6k 95.56 95.56 95.56

simulated backends provide us with a practical and reasonable
way to evaluate the performance of MORE in noisy quantum
systems. To process the Iris instances of size 4, we construct
4-qubit QNNs with 39 trainable parameters. We update the
QNNs for 300 steps using the COBYLA optimizer. We varied
the number of shots for the quantum program from 1,000
to 6,000 on the backends to examine the impact of quantum
computation costs.

The MOREs reach their highest accuracies of 97.78 (44/45),
95.56 (43/45), and 95.56 (43/45) on the FakeAuckland, FakeA-
thensV2, and FakeBelemV2 backends, respectively. The noisy
MOREs achieve comparable performance to the noise-free ver-
sion, with an accuracy of 97.78%. Surprisingly, we found that
the accuracy was not directly proportional to the number of
shots, suggesting that the quantum computation cost required
for this task is not significant. However, we acknowledge that
the number of shots required may increase with an increase in
the number of classes. Nonetheless, the cost is still acceptable
only if the distribution of learned quantum labels is scattered
in the Hilbert space. Furthermore, while it is true that accurate
measurement results are necessary for the MORE approach,
we want to highlight that using a simple quantum circuit (with
fewer qubits, gates, and shallow depth) can lead to less error
compared to other methods. This makes the MORE approach
feasible and promising to implement on NISQ machines.

VI. RELATED WORK

In recent years, numerous attempts have been made to
explore the capabilities of QNNs using various techniques.
In this section, we will discuss some notable works that focus
primarily on the classification task, which is the central theme
of this article.

First of all, there are several suggested concepts for the
design of QNN-based classifiers [13], [30], [31], [35]. [13]
and [30] concentrate on the ansatz design of QNNs. They are
the fundamentals of current popular QNNs that use parametric
unitary transformations to process data efficiently. However,
scalability is a crucial concern for QNNs, particularly on
NISQ devices, where the limited number of qubits restricts the
quantum circuit’s size and performance. Quanvolutional NN
[35] employs the quantum circuit of modest size as kernels
of quantum convolution NN, rather than building the entire
QNN. And SQNN [31] scales up QNNs by constructing large-



scale QNNs modularly and leveraging quantum computation
resources from multiple quantum machines. All of these
studies focus on binary classification tasks and demonstrate
the advantages of QNNs. In addition to model scalability, the
ability to scale the problem size is essential for improving the
capacity of QNNs. In this article, we propose an approach
that aims to expand the problem size that a QNN can handle
without having to scale up its quantum circuit.

Many prior efforts have attempted to enhance the problem
size that QNN classifiers can address [33], [36], [37], [48]–
[53]. A QNN classifier with four ancilla qubits for 4-class
classification is built in [48]. The capability of the solution
is restricted by the quantum hardware, as larger problem
sizes require additional ancilla qubits, which are not currently
available on NISQ machines. [33], [53] also address milt-
classification problems by using ancilla qubits. An alternative
solution is QuClassi proposed in [39]. It breaks down a
multi-classification into several binary classifications. For each
binary classification, the cost function is constructed based on
quantum state fidelity by using SWAP, and only one ancilla
qubit is needed for measurement to get the readout. The
measurement results of all classes are softmaxed to obtain the
final classification result. Despite the quantum computing re-
sources being limited in this method, the training and inference
processes are complicated and time-consuming. Similarly, a
fidelity-based QNN classifier is proposed in [37], but its QNN
ansatz can only solve binary classification tasks. Moreover,
VSQL [49] slides a predefined partial observable “xx” across
the qubits to get the classical shadows of the quantum state
prepared by a QNN, and then feeds the local shadows to
a classical fully-connected layer for decision making. Yet,
the computationally demanding classical fully-connected layer
may counteract the quantum speedup. A unified quantum
classifier is presented in [50]. This approach investigates the
connection between class labels and quantum states. In our
study, we further investigate the distribution of quantum labels
in Hilbert space based on interclass correlations and demon-
strate its significance by highlighting the superior performance
of our approach. Additionally, we introduce a loss adjuster
during supervised learning to ensure optimal performance
when dealing with multiple classes in the task at hand.

VII. CONCLUSION

We propose MORE, a QNN-based multi-classifier that
maximizes quantum resource efficiency. By fully leveraging
quantum information, MORE employs a simple ansatz as
the binary classifier with only one readout qubit to solve
multi-classification problems. To achieve this, MORE first
converts classical labels into corresponding quantum labels
using variational quantum clustering. This process considers
interclass correlations, allowing the learned quantum labels to
capture intrinsic patterns in the classical feature space of the
training data. Quantum supervised learning is then performed
based on the quantum labels to efficiently train the model.
Furthermore, we introduce a loss adjuster to enhance the
model’s quality by making it more sensitive to the labels

that can result in misclassifications during training. Our com-
prehensive evaluations demonstrate that MORE outperforms
general quantum multi-classifiers and is capable of effective
operation in noisy quantum systems due to its reduced error
sources. This suggests that fully utilizing quantum information
offers a promising approach for scaling up the problem sizes
that can be addressed during the current NISQ era.
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