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Abstract

Quantum support vector machines have the potential to achieve a quantum speedup for
solving certain machine learning problems. The key challenge for doing so is finding good
quantum kernels for a given data set — a task called kernel alignment. In this paper we study
this problem using the Pegasos algorithm, which is an algorithm that uses stochastic gradient
descent to solve the support vector machine optimization problem. We extend Pegasos to
the quantum case and and demonstrate its effectiveness for kernel alignment. Unlike previous
work which performs kernel alignment by training a QSVM within an outer optimization loop,
we show that using Pegasos it is possible to simultaneously train the support vector machine
and align the kernel. Our experiments show that this approach is capable of aligning quantum
feature maps with high accuracy, and outperforms existing quantum kernel alignment tech-
niques. Specifically, we demonstrate that Pegasos is particularly effective for non-stationary
data, which is an important challenge in real-world applications.

1 Introduction

Finding a practically relevant problem that can be solved better or faster with a quantum com-
puter compared to the best classical implementation is a grand challenge in the field of quantum
computing. Quantum machine learning problems are potential candidates for demonstrating a
quantum advantage [1–4] and it has been shown for certain artificially constructed data sets that
quantum support vector machines (QSVMs) offer an exponential speedup compared to any known
classical algorithm [4]. It is an ongoing topic of research to determine whether similar speedups
are heuristically available for practical problems.

The performance of QSVMs are dependent upon the degree to which a quantum kernel encodes
information about the problem [5], yet little is known about how to engineer quantum kernels
which exploit the structure of an arbitrary dataset. One solution to this problem is to choose
a parameterized family of quantum kernel functions and attempt to learn a kernel which is well
suited to a given dataset. This process of localizing a good kernel for class of given data is referred
to as kernel alignment [6–8]. A core limitation of this approach is that apriori it is not easy to
optimize over a parameterized space of kernels and the overheads introduced can be prohibitive.

In this work, we present a novel method to speedup the kernel alignment problem via the use
of the Pegasos algorithm [9, 10]. Pegasos is an iterative gradient-based algorithm that solves the
primal SVM optimization problem and allows for a direct integration of kernel alignment. Trainable
parameters in the quantum circuit that implements a feature map can be optimized simultaneously
with the weights of the SVM problem. This drastically reduces the complexity of quantum kernel
alignment (QKA) compared to the dual approach [8] where the full SVM problem has to be solved
as a subroutine in the optimization of the kernel parameters. Furthermore, the iterative nature of
Pegasos is ideal for online machine learning and non-stationary data as it enables easy continuation
of training as well as unlearning the impact of outdated training data.

In an experimental demonstration we show that we can successfully classify the covariant
data set proposed in [8] using Pegasos kernel alignment. We further show in a hardware ex-
periment that Pegasos can adapt to non-stationary data in real-time by continuously retraining
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the parametrization while keeping the training accuracy high. This may be relevant in practice
where non-stationarity is unavoidable.

2 Support vector machines

2.1 Classical support vector machines

Given an unknown probability distribution P (x, y) for data vectors x ∈ Rr and class membership
labels y ∈ {−1, 1}, we draw a set of training data X = {x1, . . . ,xM} with corresponding labels
y = {y1, . . . , yM}. The support vector machine (SVM) [11–13] defines a classification function
c : Rr → {−1, 1} implementing the trade-off between accurately predicting the true labels and
maximizing the orthogonal distance between the two classes within the training data.

For a given feature map ϕ : Rr → Rs, the decision boundary is

cSVM(x) = sign
[
w>ϕ(x)

]
,

for w ∈ Rs. L et w? denote the hyperplane defined as the solution to the primal optimization
problem

(primal problem) min
w∈Rs

{
λ

2
‖w‖2 +

M∑
i=1

max
{

0, 1− yi
〈
w,ϕ(xi)

〉}}
, (1)

where the term containing λ > 0 provides regularization and the second term is a sum over the
hinge losses of the data points from the training set.

The optimization problem (1) features a dual formulation as

(dual problem)

 max
αi∈R

∑M
i=1 αi −

1
2

∑M
i,j=1 αiαjyiyj k(xi,xj)− λ

2

∑M
i=1 α

2
i

s.t. 0 ≤ αi ∀i = 1, . . . ,M ,
(2)

where k(x,y) := 〈ϕ(x), ϕ(y)〉 denotes the kernel function. From (2), we see that solving the dual
requires the evaluation of the full kernel matrix K ∈ RM×M defined via its entries

Kij = k(xi,xj) for i, j = 1, . . . ,M .

Given K, the dual optimization can be restated as a convex quadratic program (see [10]) and
therefore be solved in polynomial time regardless of the dimension of the feature vectors [14]. For
this reason the dual formulation is often favored in practice.

Interestingly, there is an algorithm to solve the primal problem called Pegasos [15], which
employs stochastic sub-gradient descent to minimize the objective. Unlike a direct implementation
of (1), Pegasos only requires access to the kernel matrix K and thus avoids explicitly representing
high dimensional feature vectors. A description of the original algorithm and its quantum version
can be found in [10,15].

2.2 Quantum support vector machines

A quantum support vector machine is simply a support vector machine equipped with a quantum
kernel function. Because there are quantum circuits that can be run efficiently on quantum hard-
ware but cannot be simulated efficiently on any classical computer, we can define kernel functions
that can only be evaluated efficiently on a quantum computer. Note that this does not yet answer
the question if these kernels are useful. Furthermore, while QSVMs show potential for practical
quantum advantage [4, 8] they also suffer from disadvantages such as exponential concentration
phenomena inducing flat training landscapes (also called barren plateaus) [16–19]. In fact, expo-
nentially vanishing gradients occur for quantum kernels [16] if (i) the quantum feature map forms
(an approximate) 2−design; (ii) the chosen quantum feature map leads to product states whose
fidelity is on average exponentially small; (iii) the quantum hardware used to evaluate the quantum
kernel entries is impacted by too much noise, e.g., Pauli noise acting before and after each gate.
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We can, therefore, conclude that quantum kernels have to be designed very carefully to allow for
efficient trainability.

More formally, consider a feature map

ψ : Rr → S(2q)

x 7→ |ψ(x)〉〈ψ(x)| ,

where S(2q) denotes the space of density matrices on q qubits [2]. The kernel function is then
given by

k(x,y) = tr
[
|ψ(y)〉〈ψ(y)| |ψ(x)〉〈ψ(x)|

]
= |〈ψ(x)|ψ(y)〉|2 . (3)

Figure 1 explains how to define and evaluate a kernel function via a quantum circuit.

...
...

...

|0〉⊗q E(x) E(y)† → |{z|z=0q}|
R ≈ k(x,y)

|ψ(x)〉

Figure 1: Quantum kernel evaluation [10, 20]: Let E(x) denote a parametrized unitary which
defines the feature map |ψ(x)〉 = E(x) |0〉⊗q. Preparing the state E(y)†E(x) |0〉⊗q and measuring
all of the qubits in the computational basis, a bit string z ∈ {0, 1}q is determined. Repeating this
process R-times, the frequency of the all zero outcome approximates the kernel value k(x,y) in (3).

It remains unknown how to reliably find good quantum kernels for practical datasets. Kernel
alignment is one method which has shown promise in tailoring quantum kernels to specific datasets.
In the remainder of this work, we propose a method for training a QSVM which allows for the
quantum kernel to be simultaneously aligned to the target dataset during training.

3 Quantum kernel alignment with Pegasos

3.1 Quantum kernel alignment

Here we discuss how trainable parameters can be used to optimize a feature map to match the
training data in the QSVM problem. Choosing the quantum circuit used as a feature map in the
QSVM problem is an important and non-trivial task. The choice of the feature map decides whether
the data is (linearly) separable in the feature space and, thus, whether the QSVM succeeds in
classifying the data. While there are some tricks, such as exploiting symmetries of the system [21],
these usually require some knowledge about the structure of the data. Furthermore, even when it
is known that data exhibits particular structure, it is often not obvious how to build a circuit which
takes advantage of this knowledge. Instead, Glick et al. [8] proposed to automate the fine-tuning
of the feature map by optimizing the training loss with respect to additional trainable parameters
in the circuit.

In the following, we denote the feature state prepared from our trainable quantum circuit as
|ψθ(x)〉 = |ψ(θ,x)〉. Again, the kernel function is defined as the overlap kθ(x,y) = |〈ψθ(x)|ψθ(y)〉|2.
With this notation, we can extend the primal and dual SVM optimization problems given by (1)
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. . .

. . .

. . .

...
...

...

. . .

|0〉⊗q F0(θ) E1(x) F1(θ) E2(x) Ed(x) Fd(θ) |ψθ(x)〉

Figure 2: Trainable feature map: The feature map composed of unitary gates Ei(x) used to
upload the datum x is expanded by embedding unitaries Fi(θ). The parameters θ are trained to
minimize the training loss.

and (2), by taking into consideration the optimization of θ. This results in

(QKA: primal problem) min
θ∈Rd

min
w∈Rs

{
λ

2
‖w‖2 +

M∑
i=1

max
{

0, 1− yi
〈
w, ψθ(xi)

〉}}
(4)

and

(QKA: dual problem)

 min
θ∈Rd

max
αi∈R

∑M
i=1 αi −

1
2

∑M
i,j=1 αiαjyiyj kθ(xi,xj)−

λ
2

∑M
i=1 α

2
i

s.t. 0 ≤ αi ∀i = 1, . . . ,M .
(5)

In [8] the dual problem (5) is solved through a nested optimization. In an outer loop the
trainable parameters θ are optimized, where in every optimization step the dual QSVM problem
is solved to optimize the hyperplane parameters α. While this is a viable option for smaller data
sets, solving the dual optimization problem becomes prohibitively expensive if the size of the data
set M is large. In fact, to reach an accuracy of ε with respect to the ideal hyperplane, a total of
O
(
M4.67/ε2

)
circuit evaluations are required [10]. Thus, solving the dual problem as a subroutine

in the optimization of the trainable parameters makes this algorithm unfeasible for large M .
Instead of solving the min-max problem in (5), we utilize the min-min property of the primal

formulation of the QKA problem (4). The min-min problem has the advantage that the two
minimizations can be done simultaneously where the min-max problem has to be solved sequentially
which is considerably more expensive. To solve the primal problem, the Pegasos algorithm is
employed and adapted to also optimize the trainable parameters.

3.2 Pegasos quantum kernel alignment

In the following, we derive how we can adapt the stochastic gradient descent (SGD) based Pe-
gasos algorithm to solve the primal formulation of the quantum kernel alignment problem (4).
Pegasos is a classical algorithm that finds the optimal weights w in the primal SVM problem
through SGD [9]. Compared to the more commonly used dual solvers, Pegasos has been shown to
scale favourably for large training data sets in the presence of shot noise [10].

The main idea of the Pegasos algorithm is to write the the weights as a linear combination of
the feature vectors, i.e.,

wτ =
1

λτ

τ∑
t=1

αtyitψ(xit) .

Here we sum over the iterations, where (xit , yit) is the datum (with features and label) sampled
in iteration t and αt ∈ {0, 1} indicates whether the datum has been chosen as a support vector.
Using this ansatz for w allows us to write the inner product 〈w, ψ(xj)〉 in (4) in terms of the kernel
function such that direct access to the feature vectors is not required.

We now extend this ansatz by adding trainable parameters θt to the feature map via

wτ =
1

λτ

τ∑
t=1

αtyitψθt(xit) . (6)
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In addition to updating w, we also perform an update step on θ. This is possible thanks to the
min-min structure of (4).

Assuming we know the values of αt for t < τ and θt for t ≤ τ , we next derive the values for
ατ and θτ+1 using SGD. The optimization step starts by uniformly sampling (xiτ , yiτ ) from the
training data set. The loss function for this data point is then given as

fτ (θ,w) =
λ

2
‖w‖2 + max [0, 1− yiτ 〈w, ψθ(xiτ )〉] . (7)

We first calculate the gradient with respect to w as

∂fτ

∂w
(w, θτ ) =

{
λw, if yiτ+1

〈w, ψθτ (xiτ )〉 > 1

λw − yiτψθτ (xiτ ), otherwise .

The inner product in the if-condition can be evaluated using the kernel trick as

〈w, ψθτ (xiτ )〉 =
1

τ − 1

τ−1∑
t=1

αtyitkθt,θτ (xit ,xiτ ) ,

where we introduced the pseudo-kernel kθ,φ(x,y) = 〈ψθ(x), ψφ(y)〉 = |〈ψθ(x)|ψφ(y)〉|2. Next, the
weights are updated according to a learning rate of µτ = 1/λτ , which leads to

wτ = wτ−1 −
1

λτ

∂fτ

∂w
(θτ ,wτ−1)

=

(1− 1
τ )wτ−1, if yiτ 〈w, ψθτ (xiτ )〉 > 1

(1− 1
τ )wτ−1 + 1

λτ yiτψθτ (xiτ ), otherwise.

=
1

λτ

τ∑
t=1

αtyitψθt(xit) ,

where ατ = 1 [yiτ 〈w, ψθτ (xiτ )〉 ≤ 1] for 1[·] being the indicator function. Having found the value of
ατ , we determine the trainable parameters for the next step θτ+1. Note that if we are in the regime
where the hinge-loss in (7) is 0, the gradient with respect to θ will vanish. In the non-zero hing-
loss regime, we can approximate the gradient in the θ-direction numerically, e.g. with simultaneous
perturbation stochastic approximation (SPSA). A detailed instruction of the algorithm is provided
in Algorithm 1.

3.3 Kernel alignment for non-stationary data

The formulation in (6) provides a clear chronological structure to how the weights w are defined.
This is useful in online machine learning, where the structure of the data is time dependent and
training data becomes outdated after a certain period. In standard machine learning models, it
is usually easy to add new training data and continue training an existing model. However, it is
often unclear how to remove or unlearn the impact of outdated training data. For that reason,
models are usually completely retrained after a some time in order to adjust to the change in the
data structure. This is not the case for classification with the Pegasos algorithm: If we realise that
the structure in our training data has changed significantly, we can simply discard past iterations
(and the corresponding data points) and only sum over the relevant time period by setting αt = 0
for t lying far in the past.

4 Experimental demonstration

In this section we demonstrate that the proposed algorithm succeeds in solving the kernel alignment
task proposed in [8]. For a detailed derivation and motivation of the specific classification problem,
we thus refer to [8]. Crucially, given a device with n qubits and connectivity graph G(V,E), a
data set D(n,G) with n features x ∈ Rn and binary labels y ∈ {−1, 1} is created. We classify
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Algorithm 1 Kernel Alignment with Pegasos

1: Inputs:
2: training data T = {x1,x2, ...,xM}
3: labels L = {y1, y2, ..., yM}
4: regularization parameter λ ∈ R+

5: pseudo-Kernel of the form kθ1,θ2(x,y) = |〈ψθ2(x)|ψθ1(y)〉|2
6: initial kernel parameters θ1 ∈ Rd
7: number of steps τ ∈ N
8: number of initialization steps τin < τ
9:

10: for t = 1, 2, ..., τ do
11: Choose it ∈ {1, ...,M} uniformly at random.
12: if t = 1 then
13: αt ← 1
14: θt+1 ← θt
15: else
16: if yit

1
λt

∑t−1
s=1 αsyiskθs,θt (xis ,xit) < 1 then

17: αt ← 1
18: if t > τin then
19: f(θ)← −yit 1

λt

∑t−1
s=1 αsyiskθs,θ (xis ,xit)

20: θt+1 ← Peform minimization step on f(θ) around θt, e.g. using SPSA.
21: else
22: θt+1 ← θt
23: end if
24: else
25: αt ← 0
26: θt+1 ← θt
27: end if
28: end if
29: end for
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D(n,G) using the feature map |ψθ(x)〉 = U(x)Vθ |0〉, where U(x) =
⊗n

k=1RX(x2k−1)RZ(x2k) and
Vθ =

(∏
(kl)∈E CNOT(k, l)

)(⊗n
k=1RY (θ)

)
. For the ideal parameter θ = θopt = π/2 the data set

becomes linearly separable and the QSVM can thus reach 100% accuracy, however if θ is chosen
badly, the data cannot be separated, resulting in a lower training accuracy.

4.1 Stationary data

In this fist experiment, we train Pegasos on D(n,G). We initialize θ = 0 and perform the simulta-
neous optimization of θ and α as described in Section 3. Figure 3 shows that we are able to reach
100% accuracy.

Figure 3: Quantum kernel alignment with Pegasos using statevector simulation on 10 qubits
using Qiskit. We train Pegasos on the data provided in [8] to classify the training data correctly
while aligning the kernel. The top plot shows how the trainable parameter is trained using SPSA
with a learning rate of µ = 0.1. The bottom plot shows if the sampled data points are classified
correctly for every iteration (single shot accuracy) and averaged over the last 50 iterations, as well
as the test accuracy on 25 unseen data points.

4.2 Non-stationary data

In a second experiment, we test the algorithm on non-stationary data. For this, we slightly change
the setup from the above experiment by changing the structure of the data set as a function of
time. Instead of fixing the parameter θopt = π/2 used to generate the data, we allow θopt to vary
every time a new tuple (xi, yi) is sampled like

θopt(t) = sin(2πt/T ) ,

where t indicates the current iteration count and T = 1000. As described in Section 3.3, we only
keep a window of τ iteration steps in memory in order to forget the impact of outdated training
data. The goal is to correctly classify new samples while keeping the structure parameter θ close
to θopt(t). Figure 4 shows a hardware experiment demonstrating that Pegasos is able to track
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the change in the data structure by continuously tracking θopt and classifying the newly sampled
points correctly with an accuracy over 90%.

Figure 4: Quantum kernel alignment with Pegasos for non-stationary data. In every
iteration we modify θopt defining the structure in the data and draw a random data point from
the corresponding training set as defined in [8]. We let θopt change continuously according to a
sine wave and see how PegasosQKA is able to track this parameter, while keeping up the accuracy
of the classification. Experiment on 7-qubit device ibm nairobi with SPSA learning rate µ = 0.1
and training window τ = 100.

5 Conclusion

Quantum kernel alignment is a promising technique for fine-tuning quantum kernels and the Pega-
sos algorithm allows for an elegant implementation which simultaneously performs kernel alignment
as the primal QSVM problem is being solved. The speedup obtained over embedding one opti-
mization loop within another and extends the applicability of kernel alignment to larger QSVM
problems. In addition, Pegasos naturally supports online machine learning and non-stationary
data as new data can easily be added to the training set and old data can be easily unlearned at
any point. Our experiments demonstrate that Pegasos with simultaneous kernel alignment works
well in practice and we expect this technique to be of value as QSVM models are scaled to larger
and more realistic problems.

Code availability The code for our experiments presented in Section 4 has been written using
Qiskit [22] and is available at [23].
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[5] J. Kübler, S. Buchholz, and B. Schölkopf. The inductive bias of quantum kernels. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in
Neural Information Processing Systems, volume 34, pages 12661–12673. Curran Associates,
Inc., 2021. Available online: https://proceedings.neurips.cc/paper_files/paper/2021/
file/69adc1e107f7f7d035d7baf04342e1ca-Paper.pdf.

[6] N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. Kandola. On kernel-target alignment. In
T. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Process-
ing Systems, volume 14. MIT Press, 2001. Available online: https://proceedings.neurips.
cc/paper_files/paper/2001/file/1f71e393b3809197ed66df836fe833e5-Paper.pdf.

[7] C. Cortes, M. Mohri, and A. Rostamizadeh. Algorithms for learning kernels based on centered
alignment. J. Mach. Learn. Res., 13(1):795–828, 2012. DOI: 10.5555/2503308.2188413.

[8] J. R. Glick, T. P. Gujarati, A. D. Corcoles, Y. Kim, A. Kandala, J. M. Gambetta, and
K. Temme. Covariant quantum kernels for data with group structure. pages 1–9, 2021.
arXiv: 2105.03406.

[9] S. Shalev-Shwartz and N. Srebro. SVM optimization: Inverse dependence on training set size.
Proceedings of the 25th International Conference on Machine Learning, pages 928–935, 2008.

[10] G. Gentinetta, A. Thomsen, D. Sutter, and S. Woerner. The complexity of quantum support
vector machines, 2022. DOI: 10.48550/ARXIV.2203.00031.

[11] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A Training Algorithm for Optimal Margin
Classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory,
COLT ’92, pages 144–152, New York, NY, USA, 1992. Association for Computing Machinery.
DOI: 10.1145/130385.130401.

[12] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer Science+Business Media,
LLC, 2000.

[13] C. Cortes and V. Vapnik. Support-vector networks. In Machine Learning, pages 273–297,
1995.

[14] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[15] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: Primal esti-
mated sub-gradient solver for SVM. Mathematical Programming, 127(1):3–30, 2011.
DOI: 10.1007/s10107-010-0420-4.

[16] S. Thanasilp, S. Wang, M. Cerezo, and Z. Holmes. Exponential concentration and untrain-
ability in quantum kernel methods, 2022. DOI: 10.48550/ARXIV.2208.11060.

9

http://dx.doi.org/10.1038/nature23474
http://dx.doi.org/10.1038/s41586-019-0980-2
http://dx.doi.org/10.1038/s43588-021-00084-1
http://dx.doi.org/10.1038/s41567-021-01287-z
https://proceedings.neurips.cc/paper_files/paper/2021/file/69adc1e107f7f7d035d7baf04342e1ca-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/69adc1e107f7f7d035d7baf04342e1ca-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/1f71e393b3809197ed66df836fe833e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/1f71e393b3809197ed66df836fe833e5-Paper.pdf
http://dx.doi.org/10.5555/2503308.2188413
http://arxiv.org/abs/2105.03406
http://dx.doi.org/10.48550/ARXIV.2203.00031
http://dx.doi.org/10.1145/130385.130401
http://dx.doi.org/10.1007/s10107-010-0420-4
http://dx.doi.org/10.48550/ARXIV.2208.11060


[17] M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles. Cost function dependent barren
plateaus in shallow parametrized quantum circuits. Nature Communications, 12(1), 2021.
DOI: 10.1038/s41467-021-21728-w.

[18] S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone, L. Cincio, and P. J. Coles. Noise-induced
barren plateaus in variational quantum algorithms. Nature Communications, 12(1):6961, 2021.
DOI: 10.1038/s41467-021-27045-6.
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