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Abstract—Practical quantum computing (QC) is still in its in-
fancy and problems considered are usually fairly small, especially
in quantum machine learning when compared to its classical
counterpart. Image processing applications in particular require
models that are able to handle a large amount of features, and
while classical approaches can easily tackle this, it is a major
challenge and a cause for harsh restrictions in contemporary
QC. In this paper, we apply a hybrid quantum machine learning
approach to a practically relevant problem with real world-data.
That is, we apply hybrid quantum transfer learning to an image
processing task in the field of medical image processing. More
specifically, we classify large CT-scans of the lung into COVID-
19, CAP, or Normal. We discuss quantum image embedding as
well as hybrid quantum machine learning and evaluate several
approaches to quantum transfer learning with various quantum
circuits and embedding techniques.

Index Terms—Quantum machine learning, Quantum transfer
learning, Quantum medical applications, Quantum image classi-
fication

I. INTRODUCTION

Quantum computing (QC) is an ever-growing field with
applications spanning a wide range of domains including
finance [1f], [2]], chemistry [3]], [4], simulation [5], machine
learning [6]], [[7] and optimization [[8]. While attention for this
field is rising rapidly, practical QC is itself in its infancy and
the capabilities of current and near-term quantum computers
are limited. Thus, the current phase of QC is famously referred
to as the noisy intermediate scale quantum era (NISQ-era)
[9]. Yet, QC has the potential to solve some computational
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problems faster than classical computers, for example provid-
ing an exponential [[10] or quadratical [11]] speedup. Quan-
tum machine learning (QML) currently is a popular domain
amongst researchers in which many hope to find a quantum
advantage or speedup. In this paper, we apply a QML assisted
approach to a real-world problem from the medical domain,
the classification of COVID-19 from CT scans of the lung.
However, as these CT scans are images with a large number
of features and the capacity of current QC-hardware is fairly
limited, we employ a hybrid approach, i.e., an approach that
consists of a classical as well as a quantum part, instead
of a purely quantum approach. The paper is structured as
follows. In Section [lI] we briefly discuss related work. We
introduce the necessary background in Section [[II} i.e., we
discuss the topic of classification of medical images in the
context of the detection of COVID-19 and give an overview of
various quantum embedding methods including image specific
encodings such as FRQI as well as more general encodings
like angle encoding. We conclude the background section with
an overview of quantum transfer learning (QTL). In Section
we discuss QTL approaches and quantum circuits used in
our experiments while the experimental setup and results are
presented in Section |V| We discuss the results in Section
and give a conclusion in Section

II. RELATED WORK

Hybrid algorithms are a popular substitute for algorithms
that are designed to solely run on quantum computers. One
popular hybrid algorithm is the classical-quantum transfer
learning approach proposed by Mari et al. in [12]]. In this
approach, a pre-trained classical neural network is combined
with a variational quantum circuit (VQC) that can then be used
for classification tasks. The authors furthermore propose their



dressed quantum circuit (DQC), a VQC that is comprised by
two classical layers, i.e., pre- and post-processing layers. This
approach is particularly suitable for large image classification.
An alternative to this QTL approach was proposed in [13].
Pramanik et al. propose a hybrid quantum-classical pipeline
for the problem of crack detection in images, this task includes
image classification and segmentation [14]. Otgonbaatar et al.
[15] employ quantum-transfer learning to image classification,
an approach similar to Mari et al.. Azevedo et al. apply a
hybrid quantum transfer learning approach to breast cancer
detection, i.e., a binary classification problem where the task
is to classify images (mammograms) into either malignant
or benign [16]. The proposed method also uses the dressed
quantum circuit model proposed by Mari et al. In [|17] a hybrid
quantum transfer learning approach is applied to histopatho-
logical cancer detection. The authors evaluate several classical
networks and VQCs. Landman et al. propose and evaluate
two quantum based methods for image classification in the
medical domain [[18]]. Umer et al. employ a QTL approach
based on Mari et al. for COVID-19 classification using X-ray
images [19]]. In this paper, we apply two different variants
of QTL. The first approach uses the DQC mentioned above.
In this approach, the quantum part of the algorithm is trained
alongside the classical pre- and post-processing layers, though
this makes it difficult to determine the exact impact of the
quantum circuit. We therefore also evaluate a second approach
in which we remove both classical layers usually used in
other QTL approaches and only optimize the parameters of
the quantum circuit, thereby strictly separating the classical
and quantum parts of this hybrid approach. We then evaluate
and compare both approaches.

III. BACKGROUND

Before we discuss our approach to the problem of clas-
sifying large CT-scans with the assistance of QC, we will
introduce the necessary background information in this sec-
tion. We start by discussing the classification of images
from a medical perspective with regards to COVID-19. We
then briefly introduce quantum embedding techniques, general
approaches as well as image-specific. We continue by briefly
discussing QML and QTL.

A. Medical image classification

The COVID-19 pandemic posed significant challenges to
healthcare systems around the world. Early and accurate diag-
nosis of COVID-19 infection was critical, both for individual
patients who benefit from early treatment and for the general
population, which could be protected by early isolation of
infected patients.

While rRT-PCR was widely considered the gold standard for
detecting COVID-19 infection [20]], imaging techniques such
as X-ray and CT scans of the chest have also proven useful.
Although X-rays are widely available and more economical,
the sensitivity is lower than CT scans, thus chest CT is the
most accurate method of assessing the tendency and severity
of COVID-19 infection [21]. Moreover, CT scans are more

sensitive in the early stages of COVID-19 infection than rRT-
PCR, which has been found to have a high rate of false-
negative results [22[]. Patients with the suspicion of COVID-
19 pneumonia will undergo a CT scan of the chest, without
contrast enhancement, however since COVID-19 infection
is linked with an increased risk of acute thromboembolic
events, if there is a suspicion of pulmonary embolism, a CT
angiography will be performed.

COVID-19 infection can range from normal chest CT
findings to typical COVID-19 pneumonia or, less frequently,
cavitating lesions. The typical COVID-19 pneumonia findings
in early stages in CT scans include Ground-Glass Opaci-
ties (GGO) that are characterized as hazy areas with slightly
increased density in lungs without obscuration of bronchial
and vascular margins, which may be caused by the partial
displacement of air due to partial filling of airspaces or
interstitial thickening [23|]. The distribution of the GGOs
is usually peripheral, multifocal, and bilateral. A common
finding within GGO areas is the widening of the vessels.
Crazy paving patterns can also be visible during early stages,
which demonstrate thickened interlobular septa (interlobular
thickening) and intralobular lines with superimposition on
a GGO background, resembling irregular paving stones. CT
images of COVID-19 patients in later stages can also show
signs of consolidation, i.e. alveolar air being replaced by
pathological fluids, cells, or tissues, manifested by an increase
in pulmonary parenchymal density that obscures the margins
of underlying vessels and airway walls. The reverse halo signs,
which represent peripheral consolidation with GGO in the
center can be also visible in COVID-19 patients. In later
stages, the consolidations and GGOs reduce and gradually
disappear, while the reticular pattern becomes more evident.
Yet all these image findings can occur in other lung diseases
equally and pathognomonic CT findings of COVID-19 have
not been identified [24], which makes it difficult to distinguish
COVID-19 from other diseases leading to similar findings in
lung CT scans.

There are multiple classifications and grading systems for
COVID-19 lung findings. CO-RADS is based on the CT
findings and provides a level of suspicion of COVID-19
pneumonia (CO-RADS 1 represents a normal chest CT and
CO-RADS 5 represents typical COVID-19 findings and CO-
RADS 6 a positive rT-PCR test). Additionally, the CT severity
score (CTSS) assesses the affected region within each lobe,
as a percentage and assigns a grade according to that, which
correlated with clinical parameters help clinicians choose the
most appropriate treatment course. Both systems have proven
useful in clinical practice, the first in diagnosing COVID-19
pneumonia and the second in establishing the severity.

Researchers around the world have therefore developed
machine learning algorithms based on CT scans to properly
detect and predict COVID-19 infection [25]]. But these existing
models have methodological flaws and underlying biases and
the conventional Al-assisted analysis of CT data sets of lungs
of COVID-19 patients currently takes about ten minutes [26].
This makes the current pipeline way too slow for real-time



diagnosis in everyday clinical practice. Therefore, further re-
search is needed on how to improve the quality and ultimately
the clinical utility of these models with the goal to have an
automatic classification of lung CT images into “healthy,”
”COVID-19 pneumonia,” or “other findings”.

B. Quantum (image) embedding

Current quantum computers contain relatively few and error-
prone qubits, and error-correction is not feasible. This has
severe consequences for algorithm development in many ways.
For instance, only algorithms with a low depth, i.e., a low num-
ber of gates, and few qubits can be executed on actual quantum
hardware. This limits the number of classical features that can
be efficiently embedded through quantum state preparation,
an important procedure in particular for QML applications.
Images contain a large number of features, especially CT-
scans may have many thousands, and embedding all features
efficiently presents a difficult, if not impossible challenge.
In QC there exist many embedding strategies or procedures,
general as well as image-specific, and we will introduce a
selection next.

1) FRQI: The Flexible Representation of Quantum Images
(FRQI) [27] enables representation of a 2™ x 2™ classical
image as a quantum state |I) by encoding colors and its
corresponding position in the image using control rotation
matrices and 2n + 1 qubits:
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basis quantum state that encodes position of the corresponding
pixel, and 6 = (g, 01, ..., 022._1) encodes the color values of
each pixel. For example, in a 2x2 classical grayscale image,
7 would take values 00, 01, 10, and 11, and 6; be within
the range [0, 7] with O for black and 7/2 for white. Since
FRQI uses only one qubit for color information, it is limited
to represent pixel-wise complex operations.

2) NEQR: The Novel Enhanced Quantum Representation
(NEQR) [28] approach was introduced as an improvement of
FRQI. To overcome the limitation of FRQI, it uses n qubits to
store the color values to encode classical grayscale images in
a normalized superposition. According to NEQR, the classical
2™ x 2™ image can be represented as a quantum state |I) with
2n + n qubits as follows:
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where the binary sequence Cij,j =0,1,...,n—2,n—1 encodes
the color information f(¢) of the corresponding pixel i.
Enhanced versions of the NEQR such as Improved Novel
Enhanced Quantum Representation (INEQR) [29] and gen-
eralized model of NEQR (GNEQR) [30] have been intro-
duced in the literature. Moreover, there have been research
results on further encoding schemes in the filed of quantum
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Fig. 1. Overview of transfer learning architecture. The network A (green)
is initially trained on the dataset A, and its weights are then transferred to
the network B (orange). The last layer of A is replaced in the network B by
a new layer, which is trained on the dataset B. The remaining layers of the
network A (grey) do not change during training on the dataset B.

image processing, e.g., the Quantum Indexed Image Repre-
sentation (QIIP) [31]], the Quantum Block Image Represen-
tation (QBIR) [32]] and the Double Quantum Color Images
Representation Model (DQRCI) [33]] just to name a few.
However, in terms of hardware resources required for its
realization, these methods are unfeasible on the NISQ-devices
when it comes to encode chest CT-images.

3) Amplitude embedding: Amplitude embedding encodes a
normalized feature vector x = (x1,Za,...,2an), > || =1
of a classical n x n image into the amplitude vector of logan
qubits:

1) = @ w4i), 3)

where x; is the i-th feature and |é) is the i-th vector of the
computational basis [34]. Note that amplitude embedding can
be used to encode arbitrary features, i.e., it is not restricted to
images.

4) Angle embedding: Angle embedding is widely used in
QML applications. In this method, each feature x; is encoded
as a rotation parameter in the RY (x;) or RX (z;) rotation
gate, which is applied on a qubit in some initial state, e.g.,
|0):

1I) = ®iL Ri(2:)[0), €y

where k = {X,Y} is the rotation axis and N = n % m is the
number of features of a classical n x m image. Thus, angle
embedding requires /N qubits and a single gate per qubit for
its realization.

An advanced version of this encoding strategy is known as
dense angle encoding [35]]. Employing this method, one qubit
is utilized to encode two features serving as angles for two
rotation gates RY (z;) or RX (x;) by using a phase gate after
each rotation. It allows to encodes N features in N/2 qubits.



C. Quantum Machine Learning

To overcome current limitations in QC, hybrid algorithms
are a popular choice, in particular in QML, instead of us-
ing algorithms that exclusively run on quantum computers.
Variational quantum algorithms (VQAs) are hybrid algorithms
that operate iteratively quantum and classical computers, i.e.,
consist of a classical and a quantum part running on the
respective machine. The core component of a VQA is the
variational quantum circuit (VQC), a parameterized quantum
circuit. For a classification problem, a VQC usually starts by
embedding classical data, i.e., transforming classical input data
to a quantum state. This is followed by repeating layers of
rotation and entangling gates, where the rotation angles 6
are the parameters adjusted by an optimization algorithm
running on a classical computer such that the cost function
is minimized. In the last step the qubits are measured and
the measurement results can then be interpreted for a class
prediction [36[]-[38]].

D. Quantum Transfer Learning

The main idea behind transfer learning is to reuse existing
knowledge by combining a pre-trained network (A) with a
separate (new) network (B) rather than training an entirely new
network from scratch. The first network (A) is usually a large
neural network trained on a generic task whose final layer is
replaced by network B. The combined network is then applied
to a related task for what network A was originally trained
for. The architecture is displayed in Figure |1| If the weights
of the pre-trained network A are frozen, only the weights of
network B will be trained, i.e., updated. This process is known
as feature extraction, the original network is used as a feature
extractor. The alternative approach where the weights of the
original network A are also trained is known as fine tuning.

Mari et al. proposed a hybrid classical-quantum transfer
learning approach in [[12]. Their approach uses a classical neu-
ral network as network A and a dressed quantum circuit (DQC)
as network B, however, they also discuss other approaches.
They furthermore introduce their DQC, a VQC surrounded by
a classical pre-processing and a classical post-processing layer.

The QTL approach is particularly suitable for image classifi-
cation tasks as the classical neural network drastically reduces
the number of features. The reduced feature set is then further
processed by the quantum part of the algorithm.

IV. METHODS

Our QTL approach is similar to that of Mari et al. [[12]. That
is, we use ResNetl8 as classical network, network A, while
the second network, network B, is a quantum circuit. Note
that we use a dressed quantum circuit as defined above in one
approach, however, we also use a regular variational quantum
circuit in a second approach. In this section, we discuss
our QTL approaches in detail, i.e., we describe the overall
architecture of our QTL variants. Moreover, we introduce the
VQCs we utilize within the QTL networks.

A. Dressed Quantum Circuit

Recall that a DQC is a variational quantum circuit sur-
rounded by two classical fully connected layers, a pre- and
a post-processing layer. The exact number of neurons and
connections depends on the number of qubits in the quantum
circuit. In our case, the classical pre-processing layer connects
512 ResNet18 output features to either 4 or 8 neurons (depend-
ing on the number of qubits) and thus serves as a dimension
reduction layer while the post-processing layer connects either
4 or 8 neurons to either 2 or 3 neurons (depending on the
number of classes) and hence acts as a classification layer.
These additional classical layers greatly increase the number
of parameters that are being trained, however, only for the
classical layers as the number of trainable parameters for the
quantum circuit depend on its depth and number of qubits.
Furthermore, note that the parameters for the classical layers
as well as for the VQC are trained simultaneously. While the
pre-processing layer has the advantage of further reducing the
dimensions of the features (from 512 to either 4 or 8 in the
case of ResNet18), it is difficult to determine what impact each
part (classical vs. quantum) have on the overall performance.
Moreover, the classical part contains vastly more parameters
than the quantum one. We will come back to this fact in the
discussion of the results in the next chapter.

With the DQC, we use various circuit architectures and
embedding methods, including angle embedding, where we
embed one feature per qubit, and an angle embedding ap-
proach, where we embed two features in one qubit using a
RX rotation for one feature and a RY rotation for another.
The overall architecture of our QTL approach using a DQC
is depicted in Fig. 2]

B. Variational Quantum Circuit

We also use a regular VQC for the quantum part in our QTL
approach. That is, we do not include any classical pre- or post-
processing layers. However, as described above, the output of
ResNet18 second last layer is 512 features, too many to embed
using angle encoding, since 512 qubits (or 256 qubits for the
advanced approach using two rotations mentioned above) are
required, far too many for simulators or quantum computers
of the NISQ-era. We instead use amplitude embedding. With
this embedding, only 9 qubits are required to embed all 512
features and thus a pre-processing layer is not required. The
post-processing layer is also not necessary as we measure one
qubit per class and apply Softmax to get the prediction. The
architecture of this QTL approach is shown in Fig. 3]

C. Quantum Circuits

We implemented various quantum circuits for our exper-
iments. These circuits were deliberately kept “simple”, i.e.,
they follow a straightforward pattern. More specifically, we
first embed the features using an appropriate scheme (angle
or amplitude embedding). This is followed by repeated layers
of parameterized rotation and entangling gates. We used a
“nearest neighbour” entangling method, i.e., adjacent qubits
as well as the last and first qubit perform a CNOT gate.
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The number of repeating layers is determined by the “depth”
parameter. The circuits are shown in Fig. [TT]in the appendix.

V. EXPERIMENTAL SETUP AND RESULTS

In this section, we discuss our experimental setup and
present the results of the experiments. The main work focuses
on the classification of COVID-19 from CT-scans, however,
we also performed experiments on a benchmark dataset from
the medical domain in order to evaluate the proposed approach
on a related task. Before discussing the results, we introduce
the dataset and the details of the configuration settings used
in our experiments.

A. Experiments Configuration

Circuits were executed with 4 and 8 qubits, each with a
depth of 1, 2 and 4. In order to facilitate the reproducibility
of our results we ran all our experiments with seeds. The
following evaluation and the related plots summarize the
results over the parameters depth and seed for the specific
number of qubits. The number of classical features embedded
in the quantum circuit is dependent on the circuit archi-
tecture, as discussed in the previous section. Training was
run for 45 epochs in the multi-class experiments on the
COVID-19 dataset while 25 training epochs were run on the
PneumoniaMNIST and OrganAMNIST dataset as well as the
binary experiments on the COVID-19 dataset. All circuits were
implemented using the PennyLane framework [39]. We use
Adam [40] and the cross entropy loss to optimize parameters

for both classical network and quantum circuit. To prevent
overfitting, we use weight decay with the value of 0.01 in the
optimizer. Furthermore, in all training setups we employed
the same value 8 and 0.0001 for batch size and learning rate
respectively. Final model selection was based on the value of
the validation AUROC score.

B. Data

To conduct our experiments, we use the COVID-CT-MD
dataset [41]]. The dataset contains 512x512 volumetric chest
CT scans of 169 patients diagnosed positive for COVID-19
infection, 60 patients with Community-Acquired Pneumonia
(CAP) and 76 healthy patients. All these three cases are
collected from Babak Imaging Center in Tehran, Iran, and
labeled by three experienced radiologists in patient-level, slice-
level, and lobe-level manners.

In our experiments, we utilize slice-level labels only,
whereby each slice is treated as an independent input for
the classifier. After converting data from DICOM to PNG
format, we produce a balanced multi-class splitting. To achieve
this, we begin by filtering out slices for each COVID-19 and
CAP patient, since the lung changes are not as obvious on all
series. After this process is finished, 1178 CAP examples (the
smallest class) remain. Therefore, we left the same number of
images for COVID-19 and healthy cases and split data into
train (831 images), validation (184 images) and test (163 im-
ages) sets. Statistics of patients and data examples is depicted



TABLE I
STATISTICS OF PATIENTS AND IMAGES IN THE MULTI-CLASS VERSION OF
THE COVID-CT-MD DATASET.

Class Train set ~70% | Validation set ~15% | Test set ~15%)
Patients | Images |Patients Images Patients | Images
Cap 16 831 4 184 5 163
COVID-19| 29 831 15 184 9 163
Normal 98 831 31 184 25 163

in Table [l For the balanced binary splitting of the dataset,
we removed the "CAP” class while for the remaining classes
”COVID-19” and ”"Normal” we retained the same number
of images to facilitate more accurate comparison of results.
Another important point to consider is that the CT images
from the same patient are highly correlated. Therefore, the
images from a particular patient can only be included in one
subset. Once any CT image of the patient is assigned to the
train, the validation, or the test subset, the rest of the slices
can be obtained in the same subset only.

C. COVID-19 Experiments

We ran a range of experiments on the dataset described
above and applied it to multi-class classification using the
three classes "Normal”, "CAP” and "COVID-19” and a binary
classification for the classes "Normal” vs. "COVID-19".

Training performance on the multi-class problem is depicted
in Fig. Bp. While the classical and the DQC approaches
perform similar, all achieving an accuracy roughly in the range
0.55 and 0.60, the approach where only the quantum part is
trained, i.e., where we use amplitude embedding rather than a
quantum circuit with classical pre- and post-processing layers,
does not improve over training. When 8 qubits are used in the
DQC, the “simple circuit” that embeds 2 features into one
qubit using 2 different angles performs similar to the classical
approach. Note that while the approach uses more qubits, the
number of classical features is also increased, as described
in the previous section. In the middle plot of the figure, the
AUROC value achieved over training is shown. The bottom
plot of the figure displays the loss values during the training
phase. While loss values of the DQC and classical approaches
decrease as expected, the loss of the circuit with amplitude
embedding remains almost the same over training.

We furthermore evaluated the model on a binary prob-
lem, i.e., classifying CT-scans into either "COVID-19” or
”Normal”, the results can be seen in Fig. Eb In the binary
setting, all models achieve better training accuracy than in
the multi-class setting. The DQC with two angle embedding
and classical network reach almost the same train accuracy,
roughly within the range 0.7-0.75, and perform slightly better
than the DQC with a simple circuit. However, the AUROC
values achieved by the two DQCs and classical model are
almost identical, roughly in the range 0.80 - 0.85. In this
setting, the amplitude embedding circuit still does not perform
well, especially when compared to the other approaches.
Closer inspection revealed that in this case the model tends
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the classical network.

to predict only one class (either "COVID-19” or "Normal”)
while disregarding the other, even though the data is balanced.
Results on the test subset are shown in Fig. Eh (multi-class)
and Fig. [Bp (binary). Results on the test data for our QTL
approach using amplitude embedding can be seen in Fig. [6]
The explainability component is a crucial part of any ma-
chine learning application in the medical context. To visualize
model decisions, we apply Grad-CAM++ [42] on the hybrid
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network. To provide an explanation of which areas of the input
image influenced the model prediction the most, GradCAM++
makes use of extracting positive gradients of the final convolu-
tional layer feature maps and weighting it w.r.t. a specific class
score. GradCAM++ works with any CNN architecture without
any retraining but needs the final score for the particular class
to be a differentiable function of the last convolution layer
activation maps. The result of the GradCAM++ technique is
a heat map (or class activation map), which highlights the
important parts of the input image. Fig. [7] shows heat maps
produced by a DQC model trained on the binary version of
the COVID-CT-MD dataset.
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Fig. 6. Results on multi-class COVID-CT-MD (left) and binary COVID-CT-
MD (right) test data: QTL approach with amplitude embedding.
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Fig. 7. Pathology localization through the DQC model on a binary version
of the COVID-CT-MD dataset. Areas highlighted in red are most important
for the model decision in particular cases. The top row depicts examples,
where the model classifies the input correctly and focuses on areas with
pathologies. The middle row shows examples, where the model also gives
a correct prediction but focuses on areas that are considered irrelevant by
experts. The bottom row displays examples of false classified images.

D. Application to other datasets

In order to further evaluate our approach, we ran exper-
iments on other benchmarking datasets from the medical
domain. For this we used the binary dataset PneumoniaMNIST
and multi-class dataset OrganAMNIST from MedMNIST
v2 [43]]. These 28 x28 images are substantially smaller than the
CT images used in previous experiments. Note that we ran the
following experiments with 4 different seeds. Table [T shows
the statistics on the data and splits used for these experiments.

1) PneumoniaMNIST Experiments: Training accuracy as
well as AUROC on the binary pneumonia classification prob-
lem is shown in Fig. Eh For both metrics, the classical model



TABLE 11
DATASET SIZES OF PNEUMONIAMNIST AND ORGANAMNIST

PneumoniaMNIST

Class Train set Validation set Test set
Normal 1214 135 234
Pneumonia 3494 389 390

OrganaMNIST

Bladder 1956 321 1036
Femur-left 1408 233 784
Heart 1474 392 785

as well as both DQCs achieved similar results, which are
relatively good when compared to the COVID-19 experiments.
The amplitude embedding circuit also performs far worse in
this setup than the other approaches. Furthermore, the AUROC
value does not improve much over the entire training process.
Various factors may be responsible for these results, and we
will discuss some issues in the next section.

We evaluated our quantum circuits with 4 and 8 qubits, a
comparison on the PneumoniaMNIST dataset can be seen in
Fig. [0] While the accuracy values vary to some degree over
training, the end results are mostly the same. The AUROC
scores remain fairly close throughout the training process. Test
accuracy and AUROC score from this experiment can be seen
in Fig. [I0h.

2) OrganAMNIST Experiments: While the OrganAMNIST
dataset originally has 10 classes, we adjusted it to only include
3 classes (“bladder”, “femur-left” and heart”). Training per-
formance on this dataset is shown in Fig. [8p. On this dataset,
the model achieves higher accuracy and AUROC scores than
on the COVID-19 multi-class task, except the quantum circuit
using amplitude embedding, where the results are similar. Test
results are depicted in Fig [TOp.

VI. DISCUSSION

In this work, our main focus was to evaluate different QTL
approaches on an image classification task from the medical
domain, namely classifying CT-scans of the lung into one of
three classes. However, we also evaluated our model on other
datasets for related problems from the medical domain. While
the applied models work fairly well on the PneumoniaMNIST
and OrganAMNIST datasets, binary and multi-class tasks
respectively, it does not perform that well on the COVID-CT-
MD dataset, especially on the test data. There could be several
reasons for this. The COVID-19 dataset is relatively small
with an unequal amount of patients for each class (although
the number of images was balanced), which could affect
training and hinder generalization, the PneumoniaMNIST and
OrganAMNIST datasets on the other hand contain vastly more
training data. Using circuits with more qubits and layers (and
thus more parameters) may also yield better results as this may
increase the models capacity, however, more investigation in
this regard is required.

An important note to stress, though, is the fact that the DQC
is not entirely “quantum”, so to speak, as it is surrounded
by a classical pre- and a post-processing layer, each with
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Fig. 8. Results on MedMNIST train data: DQC 8 qubits, 8 hidden units in
classical, 9 qubits amplitude embedding.

classical parameters that are being simultaneously optimized
as the parameters of the quantum part. It is thus difficult to
determine what part is ultimately responsible for the overall
performance. Also note that the number of classical parameters
vastly outnumber the parameters used in the quantum circuit.

While our second approach uses amplitude embedding to
embed all 512 features resulting from ResNetl8, it does not
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contain any classical layers that are trained further. That is,
only the angles of the rotation gates in the quantum circuit
are being optimized and trained on the respective dataset. It is
then furthermore crucial to point out that we ran experiments
with depth 1, 2 and 4, and thus only up to 36 parameters in
this architecture were trained on the medical dataset, where
the number of parameters depends on the depth of the circuit.
Increasing the number of layers and hence trainable parameters
may result in a better performance as this can increase the
models expressibility.

VII. CONCLUSION

We applied different QTL variants to the task of classifying
CT-scans of the lung into either "Normal”, "CAP” or "COVID-
19”. As CT-scans are fairly large and because the capabilities
of current QC-hardware are not sufficient to be able to run
large quantum circuits, we chose a hybrid approach. In this
setting, a classical pre-trained network such as ResNet18 acts
as a feature extractor and reduces the dimensions such that
these reduced number of features can be further processed
by a quantum circuit. The results show that it is a difficult
task to classify large CT-scans in a multi-class setting as
well as in the binary case, albeit the results are slightly
better in the latter. Training on a larger dataset or increasing
the depth of the quantum circuits may result in a better
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classical. Right: DQC 8 qubits, 8 hidden units in classical.

performance on the COVID-19 classification task. To further
evaluate our approach, we applied it to related tasks from the
medical domain, the classification of pneumonia and organs,
these datasets being binary and multi-class respectively. Our
approach yielded better results on these datasets, although
these images are also smaller and the datasets contain more
images. Further work is required to unleash the potential of
applying QC to problems of this magnitude, and whether
this will be the case in the NISQ-era remains to be seen.
Until then, though, several research avenues may be explored.
Different circuit architectures as well as their trainability and
ability to avoid barren plateaus could be evaluated in this
context. In addition to this, efficient image specific embedding
techniques should be considered. Furthermore, other means
of feature reduction should be investigated, in particular such
methods where the classical and quantum parts are strictly
separated, i.e., are trained separately. As for medical image
classification, image segmentation prior to classification may
also be a worthwhile endeavour.
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Fig. 11. Variational quantum circuits utilized in experiments.
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