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Abstract—Due to the advances in the manufacturing of quan-
tum hardware in the recent years, significant research efforts have
been directed towards employing quantum methods to solving
problems in various areas of interest. Thus a plethora of novel
quantum methods have been developed in recent years. In this
paper, we provide a survey of quantum sampling methods along-
side needed theory and applications of those sampling methods
as a starting point for research in this area. This work focuses in
particular on Gaussian Boson sampling, quantum Monte Carlo
methods, quantum variational Monte Carlo, quantum Boltzmann
Machines and quantum Bayesian networks. We strive to provide
a self-contained overview over the mathematical background,
technical feasibility, applicability for other problems and point
out potential areas of future research.

I. INTRODUCTION

Sampling from a population is a well established way to

learn about the structure of large data or to learn about a

distribution of properties in spaces that are too large for

an exhaustive examination. Sampling is the act of drawing

samples from some unknown distribution with the goal of

learning about the underlying distribution by using statistical

reasoning. One samples to generate a smaller population

from a distribution because querying all possible elements is

prohibitively expensive. For many problems sampling provides

a reasonable approximation of the total distribution and is an

important approximative method. Sampling is used to build an

understanding of complex systems with limited resources and

therefore an important tool in many areas of science. [1].

For reliable statistical reasoning, one needs a sufficient

amount of samples. The number of samples depends on the

problem at hand and the applicable statistical rigour and is

an important consideration when using a sampling approach.

Samples also need to be independent and identically dis-

tributed (i.i.d.), meaning that subsequent samples should have

no relationship with each other and should not affect each

other’s result and that they need to come from the same total

distribution. In turn, this means that sampling processes can

be easily parallelized for fast querying.

These benefits of sampling approaches to problem solving,

namely fast approximative solutions to complex systems ex-

plain their ubiquity and applicability across a broad range of

subjects [2], [3]. There is continuous effort to improve current

theory and provide better approaches to creating independent

samples for individual problems.

A novel approach in generating samples is the use of a quan-

tum computer. Quantum computing is a new computational

paradigm with promises of significant computational speedup

[4]. The technology is structurally different from classical

computing and relies on the effects of quantum mechanics

to process information. Instead of representing information

through a binary encoding, quantum computing relies on the

superposition of states for encoding. The states have a physical

representation depending on the underlying hardware and

are typically different energy levels in a quantum-mechanical

system. Superposition means that the state is composed from

a complex-valued superposition of base states. Information

can be changed on the quantum computer through operations

called gates and can be retrieved for further classical process-

ing and interpretation with a measurement.

The two approaches, quantum computing and sampling

from the unknown, can be combined to shed light on distribu-

tions within quantum-mechanical systems that are otherwise

difficult to calculate or to model classically. In the context

of sampling, this means obtaining a sample via classical

simulation is difficult, but drawing a sample via a quantum

computer is easy. Many of the physical systems that one is

interested in form a high-dimensional space whose structure

is difficult to model. Even simple composite two-state systems

suffer from a combinatorial explosion in their complete state

representation, where the number of dimensions scales as

O(2n), with n the number of qubits. Since the system size

of a quantum computer scales in the same way, a quantum

computer is an appropriate tool to simulate these systems. This

is reflected in the approaches discussed in this paper, drawing

inspiration from physical systems.

Classical distributions can also be modeled on a quantum

computer, taking advantage of the larger representation space

in order to represent more complex distributions and then draw

samples from them. The expressiveness of these systems can

be higher than an equivalent classical formulation, again due

to the larger available state space.

The topic of quantum-based sampling has received signif-

icant attention over the past few years, with experimental

breakthroughs in the size of the experiments [5].

In this work we introduce the state of the art of quantum

sampling techniques and applications and provide an overview

of their technical feasibility, current technical state and appli-
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Fig. 1. Visualization of a sampling process to determine the value of π
via a sampling process. Black dots represent random (x, y) positions. If the
distance to the origin is smaller or equal to 1 (red area), it is counted towards
the red bin, otherwise it is only counted towards the total number of samples.
The fraction of the count of elements in the red bin to the total number of
samples multiplied by 4 approximates π.

cability as a solution to other problems. We present the topic as

a self-contained as possible to allow a fast translation towards

a solution.

In the remainder of the paper we provide a background on

sampling as an explicit approach on classical and quantum

systems. In section III we introduce all current approaches to

quantum-based sampling, including their mathematical basis,

technological readiness, open questions and applicability as a

solution path. Lastly we provide a discussion of the presented

methods.

II. BACKGROUND ON SAMPLING TECHNIQUES

A sampling algorithm can be imagined as a machine that

transforms uniform random bits into non-uniformly distributed

random bits [6] In the context of sampling from a population,

it means taking independent and identical samples from the

distribution. This simple structure is a starting point into ques-

tions of statistics, probability modeling, conditional inference

and much more. The sampling algorithm that transforms the

bit strings is often opaque to the questions, if known at all.

A. Sampling on a classical system

A sampling algorithm turns a source of uniform randomness

into a non-uniform one. Running the algorithm many times

generates a statistical sample with meaningful insights into

the underlying problem. A classic example is sampling π by

generating uniform random x, y positions in the unit square.

Here, the sampling algorithm takes uniform randomness –

the position – and assigns a new value based on the points’

distance from the origin. After generating many points, the

fraction of points within unit distance of the origin provide an

estimate of the value of π. This is visualized in Figure 1.

B. Sampling on quantum circuits

A quantum computer can similarly be used for a) per-

forming calculations and b) providing a translation between

uniform randomness and a biased distribution. The necessary

randomness is however not easy to control, despite the fact that

a quantum computer is fundamentally a probabilistic machine

[4]. The obvious quantum circuit for generating randomness,

applying a Hadamard gate to each available qubit in the |0〉
state, results in uniform independent random qubits when

measuring in the same 〈0| basis. In order to represent any

uniformly random state of the Hilbert space, one needs an

exponentially deep circuit in the number of qubits [7]. This is

in stark contrast to the classical world, where the randomness

of a bit string is fundamentally the same as the randomness of

an equivalently sized group of individually sampled bits [8].

Suitable construction of the quantum circuit can also gen-

erate an appropriate sampling statistic without a source of

randomness. This makes use of the probabilistic nature of

a quantum computer, where a measured mixed state returns

a probabilistic value based on the measurement basis. Mixed

states form a statistical ensemble that can be expressed through

a density matrix ρ [4].

For this discussion, we assume a perfect quantum computer

without extrinsic noise. The noise of current imperfect quan-

tum computers is an unwanted source of randomness and will

in most cases bias the desired calculation.

III. EXAMPLES OF SAMPLING PROBLEMS

We provide a thorough coverage of different quantum com-

puting approaches to sampling problems. We provide a self-

contained background on the mathematical basis. Technical

feasibility on current hardware is explored as well, especially

for the cases where an implementation has already been

achieved. We also highlight the applicability as a solution path

to other areas of science and take note of open questions for

future work.

We start with Gaussian Boson Sampling, an experiment

on current hardware that explicitly samples on an unknown

distribution and is very time-consuming to model classi-

cally. Quantum-Enhanced Markov Chain Monte-Carlo ex-

pands the classical MCMC structure to quantum computers

with promises of significant speed-up when investigating quan-

tum systems. Variational Monte Carlo is especially applicable

to material science and chemistry. Quantum Boltzmann Ma-

chines are a sampling-based machine learning model that take

advantage of the quantum computing structure for faster and

easier sampling from arbitrary distributions. Lastly, quantum

Bayesian Networks are a direct translation of classical models

for chained probabilities. There are indications that the quan-

tum version has significantly higher expressive power.

A. Gaussian Boson Sampling

Boson Sampling is a simplified, non-universal model

of quantum computation first introduced by Aaronson and

Arkipov [9] in which n Bosons, originally in an input

arrangement k, are scattered by a passive, linear unitary



transformation U into m ≫ n output modes. The Boson

Sampling problem consists of producing a fair sample of

the output probability distribution P (l|k, U), where l is the

output arrangement [10], [11]. Aaronson and Arkipov argue

that the existence of an efficient classical algorithm which

accomplishes this given a random transformation U implies

the ability to estimate the permanent of an arbitrary complex

valued matrix, a problem lying in the class #P [9]. This means

that the problem is in fact hard for classical computers to

solve and provides an argument for the superiority of quantum

computers over classical ones, as the Boson Sampling problem

can be solved efficiently by the former, as well as evidence

against the Church-Turing thesis [11].

The primary hurdle in implementing Boson Sampling exper-

imentally lies in the fact that currently available single photon

sources are spontaneous, meaning that the cost of producing

an input state with exactly n photons grows exponentially

in n. To combat this issue, Lund et al. [11] suggest using

Gaussian states, which can be produced deterministically with

high purity. They describe a Gaussian Boson Sampler, a

quantum optical processor consisting of 2-mode squeezed

input states and a non-adaptive linear optical network, which

produces photon number counting statistics as its output. They

argue that in one particular case, namely in the context of

the generalized Boson Sampling problem, such a device can

efficiently sample distributions which are hard to sample for

classical counterparts. Furthermore, Lund et al. contend that

approximate Boson Sampling is also a hard problem, even in

the generalized case [11].

In [12], Hamilton et al. formally introduce Gaussian Boson

Sampling (GBS), which, unlike previous protocols involving

Gaussian states, takes full advantage of the Gaussian nature

of the states. In the GBS setup, Single Mode Squeezed States

(SMSS) enter a linear interferometer, and the output patterns

are sampled in the photon number basis. They show that the

probability of measuring a specific output distribution of a

Gaussian input state is related to the hafnian, a matrix function

more general than the permanent which resides in the #P
complexity class [12], [13]. With this result, Hamilton et al.

prove that the GBS protocol resides in #P along with the

approximate sampling problem. This protocol differs above

all due to the fact that the sampling matrix describes not only

the action of the interferometer, but also the shape of the

Gaussian input state. This implies that a coherent superposition

of all n-photon patterns from the input can be used and no

exact input pattern must be heralded as in other protocols. As

such, GBS increases photon generation probability relative to

standard boson sampling protocols which use single photon

Fock states [10]. Furthermore, GBS reduces the size of the

sampling space by a factor of
(

N2

N

)

compared to Scattershot

Boson sampling, thereby significantly advancing experimental

possibilities. While the classification of the Boson Sampling

problem with Gaussian states has not definitively been as-

signed a complexity class, it has been shown that the special

case of sampling from a multimode thermal state resides in

BPPNP [12]. In [13], Kruse et al. built upon the work of

Hamilton by adjusting the protocol to account for displaced

squeezed states and higher-order photon number contributions.

Since the conception of GBS, a number of experimental

implementations have advanced the study of the protocol.

Most notably, Zhong et al. [14] used a photonic quantum

computer, Jiuzhang, to execute the GBS protocol with 50

indistinguishable single-mode squeezed states and a 100-mode

ultralow-loss interferometer with full connectivity and sampled

the output using 100 high-efficiency single-photon detectors.

Jiuzhang has a 76-photon coincidence, with an output state

space dimension of 1030 and outpaced classical state-of-the-

art simulation on supercomputers by a factor of 1014.

Significant progress has also been achieved in the classical

simulation of GBS. Bulmer et al. [15] present a classical GBS

simulation method using threshold detectors, which demon-

strates a nine-orders of magnitude speedup over previous

classical algorithms that employ photon number–resolving

detectors. The novel GBS simulation using threshold detectors

was applied to two separate sampling algorithms, a probability

chain rule method and Metropolis independence sampling,

and was able to simulate the GBS protocol with up to 92

photons and 100 modes, reducing computation time from 600

million years to a matter of months, a nine-orders of magnitude

improvement. However, such an approach only proves useful

for verification purposes, as state-of-the-art GBS setups, such

as Jiuzhang, require only minutes for the same computation.

B. Quantum-Enhanced Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a statistical ap-

proach for generating random samples from a target probabil-

ity distribution. The basic idea of Markov Chains is to start

from an initial state and repeatedly jump to new states ac-

cording to a transition rule. This allows for a computationally

inexpensive estimation of various statistics (e.g., mean, vari-

ance) of the target distribution. In various parts of physics, they

are widely used to estimate observables of statistical systems

whose probability distributions are inaccessible through direct

computation [16]. Furthermore, they are used for sampling

from Boltzmann distributions [17] (see also Sec. III-D) and

for combinatorial optimization using the simulated annealing

heuristic [18].

Sampling from the Boltzmann distribution of a classical

Ising spin-glass at low temperatures is known to be a hard

problem [19] The probability of a certain classical spin string

s = {±1}N is given by

p(s) =
1

Z
e−βE(s), (1)

where β is the reciprocal temperature given by β−1 = kBT ,

with kB being the Boltzmann factor. The energy of the general

Ising system [20] is given by

E(s) = −
∑

i<j

Jijsisj −
∑

hisi. (2)

The partition function Z is defined as the sum over the Boltz-

mann factors Z =
∑

{s} e
−βE(s). Although the Boltzmann
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Fig. 2. Visualization of different candidate proposal techniques. The local one
does achieve relatively good acceptance rates while not exploring the state
space. Uniform updating tries to explore the state space but struggles with
acceptance since the proposed state has most likely high energy. However,
the discussed quantum proposal routine samples states that are far away in
the state space while having comparable energy, thus, also leading to high
acceptance rates.

factors are easy to compute independently, the partition func-

tion is not, because of the exponential number of summands.

Without specific domain knowledge and advanced analytical

methods, the calculation is intractable.
The Metropolis-Hastings algorithm is an MCMC method

to sample from many distributions, like this Boltzmann dis-

tribution. Essentially, we start at a random spin configuration

and then propose update steps. These are accepted or rejected

according to the transition probabilities [21], [22]. The accep-

tance probability of a proposed update s → s
′ is given by

A(s, s′) = min

{

1,
p(s′)Q(s|s′)

p(s)Q(s′|s)

}

, (3)

with Q(s|s′) being the transition probability of the system

moving from s to s
′. These transition probabilities are cho-

sen such that the samples from this procedure resemble the

demanded probability distribution.
Commonly, the transition probabilities are chosen symmet-

rically, meaning that the probability is the same no matter if

the state is moving from s → s
′ or the other way round. In the

acceptance probability (3) the expression then reduces to just

a fraction of the state probabilities. Furthermore, note that due

to that ratio, we never need to calculate the partition function

explicitly. A metric to measure how well the Markov chain

samples through the probability distribution is the acceptance

ratio α, i.e., the number of accepted proposals compared to

the number of all trials. Theoretical investigations suggest an

optimal value of α = 0.243 for random walk problems [23].

However, most importantly, the acceptance ratio should not

drop close to zero in order to maintain a good sampling quality.

Small acceptance rates are an indication that the chain gets

stuck in a trench in the energy landscape.
Typically, update-proposal strategies comprise

• Local Spin flips: Here, just a random spin is chosen to

be flipped. In many scenarios, mainly where the energy

landscape is very rugged, single spin flips cannot get the

chain out of deep trenches, also depicted in Fig. 2. Since

only a limited number of proposals are available, if all

of them are unlikely to be accepted due to higher energy,

the chain gets stuck, and the acceptance rate drops.

• Uniform updates: Now, update candidates s
′ are chosen

randomly. In higher temperature simulations, this strategy

works fine and is able to traverse the whole state space

relatively quickly, which means fast convergence of the

Markov chain. However, the acceptance rate drops rapidly

as the temperature decreases [24], see Fig. 2.

• Cluster updates: In the phase transition between the mag-

netized and disordered state of the Ising model, generally,

ordered patches emerge in the material. For this reason,

cluster update proposals have been introduced [25], [26].

Being able to explore the state space rather quickly with

high acceptance rates, they only work in critical phases

of the material and similarly lose their advantage as soon

as the temperature falls significantly below the critical

point.

In general, sampling from low-temperature Ising spin glasses

with Markov chains is plagued by slow convergence and,

therefore, long runtimes.

To counteract this problem, Layden et al. [24] suggested

a quantum routine to propose updates. The quantum register

is prepared in the state of the current MCMC chain and

undergoes an arbitrarily chosen unitary evolution. The au-

thors of [24] chose to use a time evolution of the problem

Hamiltonian paired with a mixer Hamiltonian known from the

Quantum Approximate Operator Ansatz (QAOA) [27], [28].

The joint Hamiltonian can be expressed through

Hint = (1 − γ)α
∑

s

E(s) |s〉 〈s| − γ
∑

i

σx
i , (4)

where α is a normalizing factor and γ ∈ [0, 1] controls the

strength of the quantum transitions by increasing the effect of

the mixer.

The output of measuring the state

exp(−iHintt) |s〉 ≈
T
∏

exp(−iHintt/T ) |s〉 (5)

is the proposed spin configuration, where the Hamiltonian

is time-evolved using Trotterization. Important to note is

the symmetry of the transition probability | 〈s|U |s′〉 | =
| 〈s′|U |s〉 | using this approach. Yet, there are still two free

parameters γ and t that need to be set. To circumvent the

need for tuning them, [24] chose to sample the parameters of

each Monte Carlo iteration randomly, decreasing the bias of

a constant setting. The achieved effect, compared to local and

uniform updating, is visualized in Fig. 2.

The authors of [24] have found a significant improvement

in convergence speed when compared to local and uniform

updating procedures. Furthermore, with clever error mitigation

in use, they have also been able to observe a performance

increase when running on quantum hardware. The gain was

not as big as the simulations suggested, nevertheless, faster

convergence than local and uniform updates has been achieved.

Remarkably, the proposed algorithm never miscalculates a

quantity based on quantum imperfections since the precise

values are computed using the Metropolis algorithm. The

quantum routine only produces update proposals, which still



need to be accepted in order to be included to the computation.

The quantum routine only helps with increasing the acceptance

rate and the exploration speed, leading to faster convergence.

How the authors [24] deal with the parameters in the time

evolution surely removes bias but is not the ideal setting. Thus

more effort can be devoted to parameter tuning. Furthermore,

performing a time evolution on a sample is heuristically chosen

and has no physical reason. Thus other quantum proposal

finding methods can be investigated, like a reverse quantum

annealing ansatz or a Quantum Phase Estimation (QPE)-based

method, as already mentioned in [24].

C. Variational Monte Carlo

One of the most demanding challenges in modern physics,

chemistry, and material sciences is the description and simula-

tion of many-body quantum systems and their ground state at

zero or low temperatures [29]. Tensor network methods, like

density matrix renormalization group (DMRG) [30], projected

entangled pair states (PEPS) [31] or multi-scale renormaliza-

tion ansatz (MERA) [32], have proven incredibly valuable

for computing observables for many classes of materials and

chemical systems. Despite their success, especially in one-

dimensional and, with limitations, in two-dimensional ma-

terials [33], tensor networks reach practical computational

boundaries in higher-dimensional lattices and highly entangled

quantum states [32].

On the other hand, Quantum Monte Carlo Methods (QMC)

also emerged as a direct calculation of quantum mechanical

properties through approximation with Monte Carlo sampling.

Due to the infamous sign problem, they struggle to simulate

fermionic and frustrated systems [34]–[37], such as high-

temperature superconductivity [35] or electronic band structure

computations [38]. Both are extremely interesting systems, not

only for theoretical investigation but also for practical use.

Recently, an QC-assisted QMC method has been proposed to

control the effect of sign problem [39]. Notably, it achieves

comparable results to state-of-the-art classical methods.

Variational Monte Carlo (VMC) [29], [40] methods evade

the sign problem by using parametrized wave function ansätze.

In comparison to the previously discussed unbiased ansätze,

VMC is inherently biased [32], as the wave function ansatz

has to be meticulously chosen to fit the problem one wants to

solve. The parameters of the quantum wave function ansatz are

subsequently optimized using an MC evaluation of the energy

of the system.

Given a local Hamiltonian H , i.e., a sum of Hamiltonians

Ha who act only on a subspace of complete system Hilbert

space Ha ⊂ H with dimHa ∈ O(1). We typically consider

nearest-neighbor Hamiltonians, whose local Hamiltonians act

on two spins or qubits.

Let |ψΩ〉 =
∑

{x} ψΩ(x) |x〉 be the wave function ansatz,

with the parameters gathered in Ω and x ∈ {−1,+1}N . We

can evaluate the expectation value of a local observable or

Hamiltonian efficiently using MC sampling:

E(Ω) = 〈ψΩ|H |ψΩ〉 (6)

=
∑

a

∑

{x},{x′}

ψ∗
Ω(x)ψΩ(x

′) 〈x|Ha |x
′〉 (7)

=
∑

{x}

|ψΩ(x)|
2Eloc

Ω (x) ≈
1

NMC

NMC
∑

i

Eloc
Ω (xi), (8)

where xi is sampled from the probability distribution

|ψΩ(x)|
2. This is only possible if Eloc

Ω (x) is efficiently com-

putable on classical computers,

Eloc =
∑

a

∑

x′

ψΩ(x
′)

ψΩ(x)
〈x|Ha |x

′〉 =
∑

a

〈x|Ha |ψΩ〉

ψΩ(x)
. (9)

Typically, this is the case for a sufficiently well-behaved ansatz

ψΩ [29].

Usually, the samples are drawn from an MCMC simulation,

but this simulation is prone to similar issues as previously dis-

cussed in Sec. III-B. However, as the probability distribution

is of an entangled quantum state and not of a classical Ising

spin-glass, we cannot utilize the previously presented method

for enhancing the MCMC. Instead, we propose to prepare the

quantum state directly on the QC and measure in the z-basis,

similar to [38]. This automatically produces samples that are

distributed according to |ψΩ(x)|
2. However, for this approach

to be viable, we need a circuit UΩ comprised of a polynomial

number of gates, such that UΩ |0〉 = |ψΩ〉.
Furthermore, in order to train the parameters of the wave

function ansatz, we need an efficient method of computing the

gradient with respect to the parameters. The gradient must be

representable as a set of local Hermitian operators Oλ, where

Oλ(x) =
∂

∂Ωλ

logψΩ(x) (10)

From that follows the energy gradient instantly, following [41]:

∂E(Ω)

∂Ωλ

= 〈O†
λH〉 − 〈O†

λ〉〈H〉. (11)

Finally, gradient-descent-based optimization can be pursued

after the gradient has been approximated with MC using the

same samples that already have been obtained for computing

the energy [41].

Typically, physically motivated wave function ansätze are

used [40]–[42], but recently efforts have been made to unbias

the ansatz through universal function approximators, also

known as neural networks [29], [43], [44]. As neural networks

are well known for various other applications, they are a fitting

choice, especially since classical computational acceleration is

possible.

At this point, it makes sense to draw a dividing line to

the well-known Variational Quantum Eigensolver (VQE) [45],

[46], which is likewise used to find the ground state of quan-

tum many-body systems. Both methods rely on parametrized

circuits, which aim to encode a physical quantum state. VQE

computes the energy directly on the Quantum Device and has

to perform multiple measurements to obtain the gradient with



respect to the parameters [46]. On the other hand, the VMC

ansatz is only used for sampling, energy and gradients can

are computed classically. Furthermore, one can use higher

order methods, like Stochastic Reconfiguration [42] for faster

training, which are otherwise only possible with far more

circuit evaluations [47]. However, these benefits come with

the drawback that the ansatz wave functions are required to

be efficiently prepared on the QC and simultaneously be effi-

ciently evaluated on classical computers. Restricted Boltzmann

Machine (RBM) based ansätze could be a fitting candidate, as

they have been used for VMC [29] and polynomial size RBM

wave function construction circuits exist [38].

Finally, it is an open question whether it is beneficial to

restrict variational QC to states that are efficiently produced

with classical computers in order to make use of the mentioned

advantages. Furthermore –– except for the RBM quantum state

further discussed in the next section –– the authors of this

paper are not aware of other suitable ansätze.

D. Quantum Boltzmann Machines

Boltzmann Machines (BM) are generative machine learning

models that have been introduced by Hinton et al. [48].

By turning the interactions in a classical Ising spin-glass

into parameters {J, h}, the Boltzmann distribution of the

parameterized Ising energy becomes a learnable probability

distribution over a discrete domain [49]. The spin variables

si ∈ {−1, 1} are the discrete inputs (and outputs) to the

network, see the left-hand side of Fig. 3, while the learnable

probability distribution has the formula:

p(x) =
1

Z
e−βEJ,h(x). (12)

Here, the inverse temperature β serves as a regularization

parameter, governing the ruggedness of the resulting proba-

bility distribution. Z and EJ,h(x) are defined as described

in Sec. III-B. To learn the probability distribution of a set

of data points, one can tune the parameters using gradient

descent. This makes them applicable in a variety of Machine

Learning (ML) tasks, including unsupervised learning [49],

[50], supervised learning [51] and even reinforcement learning

problems [52]. As such, application areas range from image

recognition and denoising [53] to cybersecurity [54] and

medical diagnostics [55].

For training, the Kullback-Leibler-Divergence between the

BM’s distribution and the dataset’s distribution is chosen as the

loss function. In order to obtain the gradients with respect to

the parameters of the Boltzmann Machine, one needs sample

from both these probability distributions [49]. Done classically,

exact sampling from these distributions can become exceed-

ingly time-consuming since one has to compute the partition

function. Similar to Sec. III-B, Metropolis sampling can be

utilized to alleviate this issue. In fact, the BM problem is

exactly the same as the one previously discussed. Although

proposed in [24], no experiments have so far been con-

ducted on applying the quantum-enhanced method described

in Sec. III-B to sampling from a BM.

x0

x1

x2

x3

x4

x5

x6
x7

x8

x9

v0 v1 v2 v3 v4 v5

h0 h1 h2 h3 h4

Fig. 3. Drawing of the Boltzmann Machine (left) and Restricted Boltzmann
Machine (right). Connections between the nodes indicate the Boltzmann
weights Jij , each node itself contains a bias weight hi. In the RBM, the nodes
are split up into two groups: Hidden and visible units. It has no connections
between two visible (hidden) units.

To achieve better classical performance, one typically di-

vides the in- and output units of the BM into two separate

clusters, called visible and hidden units [50], denoted with v

and h, which can be seen in the right-hand drawing of Fig. 3.

When disallowing any connections between units of the same

cluster, the emerging Restricted Boltzmann Machine (RBM)

gains some advantages. First, it is easier to sample using Gibbs

sampling, another MCMC sampling method that updates hid-

den and visible units in an alternating fashion [49], [56].

Furthermore, training using Contrastive Divergence learning

becomes way more efficient [57]. As the naming suggests,

the visible units are the ones exposed to the outside, i.e.,

they need to have the same dimensionality as the input data.

Hidden units, on the other hand, are traced over and only

referenced internally. The probability distribution over visible

units is defined as [49]

p(v) =
1

Z

∑

{h}

e−βEJ,h({v,h}) (13)

where J incorporates the required connectivity restrictions.

Despite the initial drawback of reduced expressive power due

to the limitations in connectivity, one can still adapt the RBM’s

expressiveness by choosing an appropriate number of hidden

units [58]. Nevertheless, hidden units can likewise be added

to fully connected BMs.

Quantum Computing applications for Boltzmann machines

are twofold: first, encoding the Boltzmann probability in

quantum states, and second, creating a modified BM, called

Quantum Boltzmann Machine (QBM), that adds a transverse

field to the BM’s Ising energy function.

In the first approach, we aim to prepare a quantum state

|ψ〉 =
∑

{x} ψ(x) |x〉 on the computer. Wiebe et al. [59]

assembled a circuit for preparing such states for RBMs that

is based on a mean-field approximation with followed im-

portance sampling. They observed a quadratic reduction of

training data access during the optimization process. Further

state preparation methods include an approximate imaginary

time evolution method based ansatz called VarQITE [60], and

Quantum Annealing (QA)-based approaches [61], [62]. The

QA approaches need precise tuning of the inverse temperature

parameter [63]. Otherwise, the final distribution will not be

close to a Boltzmann distribution [61].



Also belonging to the state preparation methods, but with

the alternative purpose of finding the ground state of specific

Hamiltonians are the VMC methods, where we can now close

the circle to Sec. III-D. Here, Xia et al. [38] proposed an

RBM quantum state circuit for electronic structure calcula-

tions. Instead of considering just amplitude information, they,

and related methods [64], [65], additionally include sign or

phase information through a separate network, i.e., |ψ〉 =
∑

{x} s(x)
√

p(x) |x〉. The circuit construction works similarly

to [59], however, no mean-field initialization is present. Yet,

simulations of the RBM approach produce good results on

small molecules, like H2, LiH or H2O, outperforming the

Hartree-Fock outcome. Despite having quadratic space and

depth requirements, the NISQ applicability is criticized be-

cause of a huge constant overhead in circuit construction and

the required ability to perform in-circuit measurements, which

is not necessarily given in NISQ devices [66]. Furthermore,

the expressive power of the sign part is also questioned, but

this is also a known issue in VMC literature [67]–[69], even

with different ansätze for the phase information.
The second approach augments the original Ising Hamil-

tonian with an additional transverse field into the spin-glass

Hamiltonian. The Quantum Boltzmann machine leverages

quantum effects to encode distributions that are believed to

be more expressive than ordinary BMs [70]

H(J, h,Γ) = −
∑

ij

Jijσ
z
i σ

z
j −

∑

i

hiσ
z
i −

∑

i

Γiσ
x
i . (14)

Here, σx
i , σ

z
i denote the Pauli x- and z-operators at qubit

i. In numerical studies, assuming perfect state preparation,

QBMs seem to outperform classical BMs [70]. Nonetheless,

one major advantage of BMs, that is direct access to the

analytical gradient, is unfortunately lost in QBMs due to the

non-commuting terms in the Hamiltonian.
In conclusion, BMs on quantum computers pave interesting

directions. Advanced circuit generation for machine learning,

as well as VMC application, needs further investigation as

current methods are not satisfactory with regards to practical

applicability [66]. For QBMs, it is the question if they can

withstand normal BMs in practical circumstances. A general

performance benefit has to our knowledge so far only been

demonstrated on a few small instances [70], [71].

E. Bayesian networks

Bayesian networks are used to represent chained prob-

abilities [72]. They are used to represent certainty about

knowledge and to model information insecurity. As they can be

used to calculate difficult probability distributions, they have

found wide application across a number of areas, including

agriculture [73], data mining [74], meteorology [75], software

quality control [76] and many other areas with distributed

influence factors.
Mathematically, the expected probability over each edge of

the network is given by

p(x1, . . . , xn) =

n
∏

i=1

p(xi|parents of xi) (15)

q1

q2

q3

q4

q5

|ψ1〉

|ψ2〉

|ψ3〉

|ψ4〉

|ψ5〉

U3

U5

Fig. 4. A Bayesian network and its corresponding quantum circuit. Each
connection in the graph is translated to a control wire. The influence of
each parent node to its children is modeled through unitary gates on the
corresponding qubit. Adapted from [80]

This structure can be modelled through directed acyclic graphs

(DAG), where each probability pi is assigned to a node and the

parental relations are mapped to edges between the nodes. The

directionality of the edges is a consequence of the parent-child

relationship between the probabilities, which also prohibits

cyclic relationships inside the network. Finding the correct

Bayesian network for a given set of data is generally difficult

(NP-complete in the general case [77]), but there are a number

of approximate algorithms and heuristics that improve training

time [78].

These networks can in principle be mapped to a quantum

computer [79], [80]. There is a direct mapping between nodes

and edges of the network and the operators on a quantum

computer [80, fig: 9]. Using k-controlled unitaries, where

the controls to the ith qubit correspond to the edges on

the equivalent graph formulation, a state is prepared such

that |〈xi|U(parents of xi)|xi〉|
2 = p(xi|parents of xi). The

correspondence between the Bayesian network graph and its

the quantum circuit is shown in figure 4.

The approach differs from the ones discussed in section

III-B in that rather than using a learning framework where the

system is changed to approximate some desired solution, the

Bayesian networks are constructed rather schematically as a

translation of a known system or an ansatz expression of the

DAG.

Structurally, these models should be expandable to more

general sequential quantum models. The construction on the

quantum computer may be able to model any sequential

structure. Sequential and ordered structures are ubiquitous

across applications, from biological systems to natural lan-

guage processing.

Quantum natural language processing is already in develop-

ment [81], [82]. Its structure is at first dissimilar to the chained

probability approach presented here but in practice follows

much the same structure of distributed meanings translated to

quantum circuits that are then chained together to form a quan-

tum computation [83]. Bridging between the two approaches

can bring a meaningful contribution in understanding for both

fields.



Biological systems, especially where they model complex

interactions, are another field of application where Bayesian

networks find wide application [84]–[86]. Leveraging the

additional structure of quantum Bayesian networks can lead

to additional insights into the structure of relationships be-

tween different influence factors. This can be used to model

disease vectors [87], disease recognition [88], neuroscientific

discoveries [89] or the analysis of genomes [90].

Beyond static Bayesian networks, dynamic Bayesian net-

works that reflect a change of values and possibly structure

of the Bayesian network [91]–[93] may also be applicable

to quantum ansatz presented here. Their expressive power is

significantly higher and can be suited to the higher dimensional

space of quantum computers.

IV. DISCUSSION

In this paper, we review sampling applications as an im-

portant application area for quantum computing. We start by

defining sampling as a means of approximating complicated

distributions with queries from that distribution, and estab-

lishing the ubiquity of sampling problems across a broad

range of subject areas. We note that a quantum computer

can be used as a sample source and thereby gain insights

into quantum-mechanical processes and distributions. After

introducing a sampling algorithm as a transformation of uni-

formly distributed random bits into bits distributed according

to a non-uniform probability distribution, we then briefly

compare the implementation of random number generation and

sampling algorithms in the classical versus the quantum realm,

establishing that quantum computers need a different approach

due to their larger internal state space.

Subsequently, we describe how the previously covered

properties of quantum computing can be utilized to improve

some well-known solutions approaches to sampling problems.

The first of these solution approaches treats the problem of

Gaussian Boson Sampling, in which a coherent superposition

of input states is to be transformed into a potentially high-

dimensional superposition following a multi-modal probability

distribution, from which a fair sample is to be taken. While the

problem itself has not definitively been assigned a complexity

class, current protocols solving it using a photonic quantum

computer have been proven to be in the “hard” complexity

class #P and can be used to perform a probability chain rule

method or Metropolis independence sampling within minutes,

while their classical simulation takes months.

In the second approach we explain quantum-enhanced

Markov Chain Monte Carlo methods, specifically a

Metropolis-Hastings algorithm, which can be used, e.g.,

for combinatorial optimization or to sample from probability

distributions that are classically hard to access such as the

Boltzmann distribution. The quantum-enhanced version of

this algorithm uses time-evolution for the step of proposing

candidates for a state update, thereby achieving faster

convergence than the classical version of the algorithm.

Whether the tuning of the free parameters could further

improve the performance and how other quantum circuits

would perform in the place of the time-evolution remains an

open research question.

The third approach considers Variational Monte Carlo struc-

tures. Here, parametrized wave function ansätze are used, ei-

ther fitting the physical problem to be solved or represented by

a neural network. Observables and quantities can subsequently

be computed by sampling from the probability distribution

of the wave function, i.e., the absolute square of the wave

function factors. VMC has the drawback that the ansätze need

to be computed both classically and on the quantum devices.

To date, only a single ansatz has been used. Here, of course,

research for new ansätze can be pursued. Yet it is still unclear

whether VMC are preferable to similar approaches such as

VQE.

Similar to the previous approach, we cover Boltzmann

Machines as wave function ansätze and as generative machine

learning models. BMs need sampling from both a model

and a data Boltzmann distribution in order to optimize their

parameters to make the former match the latter as closely

as possible using gradient descent. Here, quantum computers

are employed to model the Boltzmann distribution such that

sampling naturally becomes measuring in the z-basis. We

cover several methods in BM wave function construction,

both using circuit-based constructions and quantum anneal-

ing. A handful of indications that faster training and better

approximation can be achieved have been given. Yet, circuit

construction is not considered NISQ-friendly, despite having

quadratic complexity in space and time requirements. Further-

more, augmenting the Boltzmann Distribution by including

a transverse field Hamiltonian to the Ising Energy has been

discussed. Numerical studies with perfect circuit construction

demonstrate higher expressibility, but a general advantage has

not been proven.

Lastly, we describe Bayesian networks, being directed

acyclic graphs that describe chained sets of probabilities,

where the probability of a child node depends directly on that

of his parents. These networks can be directly mapped to quan-

tum circuits, the probabilities being represented by the qubits

and the edges by the control wires between them that steer

unitaries acting on them. The usage of these quantum Bayesian

networks might provide additional insights into the structure

of relationships be- tween different influence factors and may

be suitable to accommodate the higher expressive power of

dynamic Bayesian networks using higher dimensional space

of quantum computers.

To summarize, what most of these approaches have in

common is that they use the inherent randomness of a quantum

computer expressed by its ability to store basis states in a

superposition that collapses to each of them with a certain

probability when measured, as well as the high dimensionality

of its state spaces, to model complicated, possibly classically

intractable probability distributions, and subsequently sample

from them.

However, for most of these approaches, the hardness in

terms of theoretical complexity is unknown, as well as whether

certain quantum approaches might be working better for them



than others, and, if so, why. In a lot of cases, it is not even clear

why exactly the presented quantum approach outperforms the

comparable classical approach from a theoretical perspective.

Furthermore, many details about how to practically implement

the approaches on near-term quantum computers in an optimal,

efficient manner, i.a. the optimal way to tune quantum-specific

hyperparameters, are not entirely clear yet. By presenting

these open research questions, this paper lays the groundwork

for further exploration regarding the applicability of quantum

computing in sampling applications, as we and our readers,

now more aware of them, can strive to answer them in our

future work.
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