
Quantum Architecture Search for
Quantum Monte Carlo Integration via

Conditional Parameterized Circuits
with Application to Finance

Mark-Oliver Wolf
Department of Financial Mathematics

Fraunhofer ITWM
Kaiserslautern, Germany

mark-oliver.wolf@itwm.fraunhofer.de
0000-0002-3698-9266

Tom Ewen
Department of Financial Mathematics

Fraunhofer ITWM
Kaiserslautern, Germany

tom.ewen@itwm.fraunhofer.de

Ivica Turkalj
Department of Financial Mathematics

Fraunhofer ITWM
Kaiserslautern, Germany

ivica.turkalj@itwm.fraunhofer.de

Abstract—Classical Monte Carlo algorithms can theoretically
be sped up on a quantum computer by employing amplitude esti-
mation (AE). To realize this, an efficient implementation of state-
dependent functions is crucial. We develop a straightforward
approach based on pretraining parameterized quantum circuits,
and show how they can be transformed into their conditional
variant, making them usable as a subroutine in an AE algorithm.
To identify a suitable circuit, we propose a genetic optimization
approach that combines variable ansatzes and data encoding. We
apply our algorithm to the problem of pricing financial deriva-
tives. At the expense of a costly pretraining process, this results in
a quantum circuit implementing the derivatives’ payoff function
more efficiently than previously existing quantum algorithms. In
particular, we compare the performance for European vanilla
and basket options.

Index Terms—quantum computing, quantum finance, quantum
monte carlo integration, quantum machine learning, quantum
amplitude estimation

I. INTRODUCTION

The potential for revenue and market disruption of quantum
computing is enormous for the financial sector, with estimates
going as high as $5 billion [1]. Showing a practical quantum
advantage is crucial to attain these estimates. In gate-based
quantum computing, we are currently in the era of Noisy
Intermediate Scale-Quantum (NISQ) devices [2]. These are
quantum devices with high error rates, therefore requiring
potential quantum circuits to be extremely efficient in their
resources such that the needed error mitigation schemes may
be applied [3].

In finance, the pricing and risk management of assets, such
as stocks, bonds, commodities, currencies and their derivatives
is used for a variety of applications and regulations. Depending
on the studied instrument, computing the necessary values on
classical computers is complex and time consuming. There

This work was supported by the project AnQuC-3 of the Competence
Center Quantum Computing Rhineland-Palatinate (Germany).

have been a variety of publications studying how the applica-
tion of quantum computers may speed this up tremendously
[4], [5]. A promising approach is the substitution of integration
using classical Monte Carlo algorithms with its quantum
counterpart, generally referred to as quantum Monte Carlo
integration (QMCI) [6]. A variety of QMCI methods use a
quantum algorithm called Amplitude Estimation (AE) [7],
leading to a quadratic speed-up of the rate of convergence in
the number of simulations [8], [9]. One crucial aspect of these
simulations is the implementation of the respective functional
dependencies on the quantum device [10]. Similar to classical
simulations, these functions have to be applied multiple times
in the estimation algorithm.

In this work, we present a novel method to substantially
reduce the required quantum resources for this function im-
plementation, at the cost of a computationally expensive pre-
training on a classical device. Employing methods from the
thriving area of quantum machine learning (QML) [11], we au-
tomatically generate the structure for a parameterized quantum
circuit to implement payoffs of a financial derivative. Further,
we introduce a technique based on substituting encoding
circuits by controlled unitaries. We use the trained circuits with
a varying number of qubits, which for example can be used
for increasingly fine discretizations of the payoff function.
This has two main advantages. First, one does not have to
design a suitable circuit by hand, which, depending on the
payoff, may not be trivial. Second, the resulting overhead
for reusing a parameterized circuit scales only linearly with
the number of qubits n used for the discretization, while
implementing a function that can map 2n different states to
their respective values. Hence, easing the cost of simulations
on a quantum computer. Interestingly, this approach evades
the typical problem of data loading efficiency that is present
in various QML applications [12]. Instead, we encode specific
values as efficiently controlled operators. The result is a pre-
trained circuit that can be thought of as a conditional variant

ar
X

iv
:2

30
4.

08
79

3v
2

 [
qu

an
t-

ph
]

 1
8

Se
p

20
23

of the initial parameterized quantum circuit.
The article is structured as follows. The theoretical foun-

dation of our algorithm is presented in Section II. We prove
that the desired equality of expectations directly follows from
an equality of individual encodings. This enables us to find
an efficient conditional variant for circuits that use a specific
rotational encoding. In Section III, we focus on finding a
suitable, unconditonal circuit which we may later use to
construct its conditional variant. Thereby, we present a genetic
approach to automated circuit design, using prior results from
Variable Ansatzes (VAns) [13] present in Variational Quantum
Eigensolvers (VQE). This genetic approach is tailored for cur-
rent NISQ devices and can be set to specifically use hardware-
native quantum gates. In Section IV, we apply and compare
the conditional parameterized quantum circuit to current state-
of-the-art quantum algorithms for the pricing of financial
derivatives, namely European vanilla options, as well as basket
options with a fixed and variable weight. Surprisingly, the
variable weight basket option only encodes the weight a single
time at the start of the circuit. We conclude with a short
summary and prospective future research in Section V.

II. CONDITIONAL PARAMETERIZED QUANTUM CIRCUITS

We give a short overview why AE has the potential for a
speed up compared to classical Monte-Carlo methods. Gen-
erally, they are used to calculate a variety of statistics for a
given random variable X , respectively functionals f(X). In
quantitative finance, we are often interested in the expectation
of f(X). Unfortunately, knowing the distribution of X and the
function f does not lead to us necessarily knowing anything
about the distribution of f(X). Especially, E [f(X)] is in
general not the same as f (E [X]). For many applications, there
is no closed formula known for this expectation, so we have
to estimate it by

E [f(X)] ≈ 1

M

M∑
i=1

f(Xi), (1)

where M is the number of realizations Xi of X . This sample
mean estimator on the right-hand side converges with a rate
of O(1/

√
N) by the Central Limit Theorem. For AE, we have

to find a unitary operator A that constructs a quantum state
with

A |0⟩c |0⟩ = a |φ0⟩c |0⟩+ b |φ1⟩c |1⟩ ,

for which we can now estimate the needed probability |b|2 with
a convergence of O(1/N) w.r.t. the applications of A. In our
notation, the index c indicates the corresponding qubit register.
By discretizing the range of X , we can find an operator [9],
[14] such that

|b|2 ≈
∑
ω∈Ω

pωf(Xω) = E [f(X)] , (2)

where Ω is a discretized state space of X with probabilities
pω and Xω = X(ω). This results in a theoretical speed up
compared to classical algorithms.

Equation (2) can be realized by loading a distribution,
implemented by the unitary P , on a control (or state) register
of n qubits |0⟩c and applying a function f , implemented by
the unitary F , using an additional target qubit |0⟩t depending
on this control register:

F (P ⊗ I1) |0⟩c |0⟩t = |φ0⟩c |0⟩t +
2n−1∑
k=0

√
pk |k⟩c

√
f(k) |1⟩t .

(3)

In our notation, |k⟩ for k ∈ N always refers to the computa-
tional basis state of the respective binary representation, and
|φ⟩ without additional comments are arbitrary quantum states.
It is easier to find a quantum circuit for P for sufficiently
smooth distributions [15]. But in general, the problem is
nontrivial and referred to as Quantum State Preparation [16].

However, implementing the unitary F depends on the task
at hand, and might introduce significant circuit depth, even if
the underlying distribution is simple enough. In the following,
we present a novel approach to accomplish this with smaller
circuits.

A. Parameterized Quantum Circuits

One way to grasp hard-to-implement functions is to use
parameterized quantum circuits (PQC) as function approxi-
mators. It has been shown that a sufficiently regular function
can be approximated with arbitrary accuracy by a certain type
of PQC. These results are based on the representation of a
PQC and its expected measurement result by truncated Fourier
series [17], [18]. To achieve a good approximation quality,
PQCs with high depth are needed, making it problematic to run
them on NISQ devices. Therefore, we also consider genetic
algorithms, which can be designed to result in shallower PQCs.

A widely used form of PQCs, which we also consider in
this paper, is given by

U(x,θ) :=

L∏
l=1

Sl(x)Wl(θ
l), (4)

where x = (x1, . . . , xK) ∈ RK is a feature vector and for
each l = 1, . . . , L we have that θl = (θ1, . . . , θQl

) ∈ RQl is
a vector of parameters and

Sl(x) :=

K∏
k=1

Tl,k · e−ixkHl,k , Wl(θ
l) :=

Ql∏
q=1

Vl,q · e−iθqGl,q

(5)

are quantum circuits that we denote as encoding and param-
eterized blocks, respectively. Here, Tl,k, Vl,q are unitary and
Hl,k, Gl,q are hermitian matrices. We use θ := θ1 · · ·θL ∈
RQ to abbreviate the concatenation of all parameters, where
Q := Q1 + . . .+QL.

We define the quantum model for U(x,θ) to be the function

fU : RK × RQ −→ R,
(x,θ) 7−→ ⟨0|U(x,θ)†MU(x,θ) |0⟩ ,

where M is some observable. In QML, a typical choice is the
σZ observable on one or more qubits, which we use as well
if nothing else is specified.

For a given set of feature vectors X = {x1, . . . ,xJ} ⊂ RK

and corresponding labels Y = {y1, . . . , yJ} ⊂ R, the quantum
model fU is trained by minimizing over θ while averaging the
distance between the quantum model of the data point and the
corresponding labels over X ,

argmin
θ∈RQ

∣∣fU (xj ,θ)− yj
∣∣2 .

We refer to the whole process of constructing U(x,θ)
and finding a minimizing set of parameters as a Variational
Quantum Algorithm (VQA) [19], [20].

B. Conditional Variant to Implement State-Dependency

We are now introducing the main theoretical concept of this
article, the conditional parameterized quantum circuit (CPQC).
As mentioned in the introduction, one benefit of the CPQC
approach is that one can calculate the weighted average of a
function (approximated by a PQC) by evaluating a circuit on a
suitable superposition of computational basis states. Here, we
describe the idea in a more general context, where different
distributions are loaded into different, not necessarily same
sized, registers simultaneously.

Let X = {x1, . . . ,x2n} ⊂ RK be a data set. For each
dimension k of the feature vector, we assume a quantum
register with nk qubits. It should be emphasized again that we
do not need these registers to be the same size. This means that
if they are used for implementing discretizations of random
variables, the chosen resolutions are allowed to differ. These
registers are indexed by r1, . . . , rK and called control registers.
We denote with n =

∑K
k=1 nk the total number of qubits used

for the (entire) control register. Associated with each control
register is a distribution Pk with |pk1

|2, . . . , |pk2nk
|2, pk ∈ C

denoting the probabilities of the corresponding basis states.
Further, we assume there to be an additional target register
consisting of m qubits, indexed by t.

Let U be a unitary acting on the target register and let
c = {i1, . . . , ik} ⊆ {1, . . . , n} be a subset indicating a choice
of qubits. As usual [21], the controlled operation Λ(c, U) is
defined by its action on the computational basis,

Λ(c, U) |b1 . . . bn⟩c |j⟩t := |b1 . . . bn⟩c U
bi1 ···bik |j⟩t ,

where b1, . . . , bn ∈ {0, 1} and j = 0, . . . , 2m−1. In other
words, the unitary U is applied exactly if all bi = 1 for qubits
i ∈ c, otherwise we apply the identity. We use the notation
Λ(r)(c, U) for the control operation acting on n +m qubits,
to indicate that the control qubits c are taken from the register
r and that Λ(r)(c, U) acts trivially on all remaining registers.
For some index set D, we call a product of control operations,

Λ :=

K∏
k=1

∏
d∈D

Λ(rk)(cd, Ud)

a control circuit.
We now define the main concept of this paper.

Definition 1. (Conditional PQC)
Let U := U(x,θ) =

∏L
l=1 Sl(x)Wl(θ

l) be a PQC. A
conditional parameterized quantum circuit (CPQC) associated
to U is a unitary of the form

Cn(U) :=

L∏
l=1

Λl · (In ⊗Wl(θ
l)),

where Λl is a control circuit for each l = 1, . . . , L.

The idea is that every entry of a feature vector x enters
the CPQC through its designated control register via basis
encoding. To make this idea more precise, we presume a
mapping b : R −→ {0, 1}n that specifies a translation of
entries of a feature vector into basis states.

For each k = 1, . . . ,K, the distribution Pk is loaded into
the control register rk via a unitary Pk defined through the
relation

Pk |0⟩rk =

2nk−1∑
i=0

√
pki

∣∣b(xk
i)
〉
rk

.

The unitary P := P1 ⊗ · · · ⊗ PK can then be interpreted as
loading the joint distribution of independent random variables
into the whole n-qubit control register.

Similar to PQCs, we define a quantum model for a CPQC
to be the function fCn(U),P defined by

θ 7−→ ⟨0| (P ⊗ Im)†Cn(U)†MCn(U)(P ⊗ Im) |0⟩ .

The observable M is always chosen as In ⊗M , if M is the
observable of the associated PQC.

Remark 2. (Advantages of CPQC)
The ensuing question is how to construct Cn(U) such that

2n−1∑
i=0

pifU (x
i,θ) = fCn(U),P (θ), (6)

where the coefficients pi are the values of the probability mass
function of the joint distribution. Equation (6) states that, using
Cn(U), the classically expensive approximation in (1) can be
performed on a quantum computer by applying the same PQC
U , without changing the ansatz when the amount of data points
increases.

The following proposition gives a sufficient condition for
the satisfiability of the above equality.

Proposition 3. (Equality of encodings)
Let U be a PQC and Cn(U) a corresponding CPQC. Then
(6) is satisfied, if

(In ⊗ Sl(x))
⊗
k

|b(xk)⟩rk |φ⟩t = Λl

⊗
k

|b(xk)⟩rk |φ⟩t

for all x ∈ X and all |φ⟩t in the space of the target register.

Observe that the circuit on the left-hand side depends on
x, whereas the circuit on the right-hand side does not. The
condition in the proposition means that one replaces the
encoding circuits Sl(x) by control circuits Λl that receive their

input via the control register. Both encoding procedures are
chosen to produce the same quantum state for the same com-
putational basis states. Proposition 3 ensures that this equality
of basis states translates to the case of the control register
being in a superposition, without possible phase kickbacks
leading to additional error terms due to the repeated controlling
procedure. The proof is based on the linearity of the expected
value and can be carried out using standard rules for the
kronecker product. It is given in the appendix.

In the next section, we illustrate the above proposition by
concrete examples.

C. Efficient CPQCs

For brevity, we only consider examples of one-dimensional
features in this section, i.e., K = 1.

Example 4.
The following example shows how it is always possible to
construct a CPQC in a trivial way that reproduces the result
of a given PQC.

Let X = {x1, . . . , x2n} be our data. For each x ∈ X ,
let c(x) ⊆ {1, . . . , n} be the set of indices representing the
positions of 1 in b(x). Let U(x,θ) =

∏L
l=1 Sl(x)Wl(θ

l) be
a PQC. For each l = 1, . . . , L, we define a control circuit as
follows:

Λl(n) :=
∏
x∈X

Λ(c(x), Sl(x)).

This circuit fulfills the requirement of Proposition 3. Note
however, that for arbitrary data X and encoding blocks Sl(x)
constructing Λl(n) needs Ω(2n+1) elementary (CNOT and
one-qubit one-parameter rotational) gates [22].

We see that a concept of efficiency is needed to find a
distinction of bad and good control circuits Λ. Hence, we
introduce the following definition.

Definition 5. (Efficiency)
Let U be a PQC. Assume we have a procedure that generates
a CPQC, Cn(U), for every n ∈ N. We call this construction
efficient, if the minimum number of elementary gates needed
to construct Cn(U) scales linearly with n, i.e., is in O(n).

We proceed with a small example showcasing an efficient
CPQC construction, and afterwards generalize the concept for
arbitrarily sized control registers and PQCs that have direct
encodings via rotational gates.

Example 6.
We choose n = 3 control qubits and m = 1 target qubit. Let
X and b : X −→ {0, 1}3 be given by the following table:

Index i 0 1 2 3 4 5 6 7
xi ∈ X 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
b(xi) 000 001 010 011 100 101 110 111

The PQC consists of one layer only and the encoding circuit
used is S1(x) = RY(x). The parameterized circuits W (θ) and
the control circuits Λl used to construct the CPQC are shown

W2(θ
2) RY(x) W1(θ

1)

(a) PQC

•
•

•
W2(θ

2) RY(0.1) RY(0.2) RY(0.4) W1(θ
1)

(b) CPQC

Fig. 1: The circuit construction for Example 6. (a) The given
PQC U with direct encoding of x as a Y-rotational gate.
(b) The corresponding CPQC implementing the eight possible
values of X depicted in the table as controlled Y rotations.

in Fig. 1. It is evident that, with the data and encoding chosen
as above, the requirement of Proposition 3 is satisfied.

Example 7.
The previous example can be generalized to arbitrarily fine dis-
cretizations. Let n ∈ N be an arbitrary number of qubits used
for the control register. Let our data X = {x1, . . . , x2n−1} be
given by the discretization xk = 2π

2n k. Each xk is encoded in
the control register by the bit-representation of the integer k.
Our PQC, U(x,θ) =

∏L
l=1 Sl(x)Wl(θ

l), can have arbitrary
many layers, with each layer having an encoding circuit of
the form Sl(x) = Rα(x), α ∈ {X,Y,Z}. The parameterzied
blocks Wl(θ

l) can be chosen arbitrarily. In this setup, each
encoding circuit Sl(x) can be substituted by a control circuit
Λl(n) acting on n+ 1 qubits,

Λl(n) =

n−1∏
c=0

Λ(c,Rα),

such that the requirements of the Proposition 3 are satisfied.
Note that the construction of Λl(n) uses n factors; each
factor can be constructed by two single qubit operations and
two CNOTs. Thus, this construction scales like O(n) and is
efficient in the sense of Definition 5.

III. IMPLEMENTATION OF GENETIC PQCS

VQAs show a lot of potential for enabling noisy
intermediate-scale quantum devices to solve practical tasks.
As discussed in recent literature, choosing a suitable PQC is
not a trivial task and has a huge influence on the performance
of VQAs [23]. There are two important requirements while
choosing the ansatz; it needs to be expressive enough to model
the problem at hand and it needs to be as shallow as possible.
Unfortunately, these two goals often contradict.

An idea, that recently came up in different variations, is
algorithmically adapting the ansatz to the problem at hand.
Some of the developed algorithms are ADAPT-VQE [24],
Rotoselect and Rotosolve [25], Quantum Circuit Evolution
of Augmenting Topologies (QCEAT) [26] and the already
mentioned Variable Ansatzes (VAns) [13]. Especially under
the term Quantum Architecture Search (QAS) some recent

research has been published [23], [27], [28]. These works
mainly focus on the VQE. This means that the goal is to
prepare one specific state, while we on the contrary want
to learn functions. The additional difficulty is integrating the
dependency on the input data, also called the encoding, into
an adaptive scheme.

In this section we will extend on the ideas of VAns.

A. Variable Ansatz Algorithm

The general idea is to iteratively alternate between adding
randomly selected parameterized or encoding blocks, as de-
fined in (5), and removing noncontributing gates.

More formally the algorithm consists of:
• Training data consisting of inputs X = {x1, . . . , xJ} and

corresponding true values Y = {y1, . . . , yJ}. Usually the
yi are real numbers and the xi are either real values or
real vectors.

• An initial parameterized circuit U0(x, θ0), that depends
on the input x and a parameter vector θ0 of suitable size.

• A cost function C(X ,Y, U, θ) that gives some measure
of prediction error. For example, the mean squared error
between the prediction and the true values.

• A classical optimizer Υ that minimizes the costs. Ideally
Υ(X ,Y, U) = minθ C(X ,Y, U, θ).

• A set of blocks that we can add to the circuit.
• A decision function g(c, ĉ) that gives an acceptance

probability given the old and the new costs.
• A reduction function ρ(U) that removes noncontributing

gates.
• The number of iterations ni.

Algorithm 1 Structure Learning

c0 = Υ(X ,Y, U0).
for i = 1, . . . , ni do

Sample block to add, qubits on which it operates, position
in the circuit.
Construct new circuit Ûi.
Set ĉi = Υ(X ,Y, Ûi).
Sample Z uniformly distributed between 0 and 1.
if Z ≤ g(ci−1, ĉi) then
Ui = ρ(Ûi).
ci = Υ(X ,Y, Ui).

else
Ui = Ui−1.
ci = ci−1.

end if
end for

A qualitative demonstration of how the circuit changes
during one step of this algorithm is given in Fig. 2.

In the initial proposal for that algorithm [13], the set
of possible blocks only consisted of parameterized unitaries
U(θ), for which there exists a θ∗ such that U(θ∗) is the
identity. This ensures that adding these blocks to the circuit,
while adding θ∗ to the parameter vector, does not change the

W1
W3

W2
S1 W4

→ W1 S2
W3

W2
S1

Fig. 2: Schematic visualization of one step of Algorithm 1,
the block S2 gets added while the block W4 got removed.

circuit and, thus, does not increase the cost. If then gradient
descent is used to optimize the new set of parameters, there
is a chance for a reduction of cost. In conclusion, the cost is,
not necessarily strictly, decreasing in each step.

For the parameter optimization of one PQC we use gradient
based optimizers from the pennylane framework [29]. For
the results of this work the gradients where calculated by
automatic differentiation, which implies the use of noiseless
simulators.

This algorithm allows for some modifications that will
benefit the special requirements of our use case. There are
three main points we can modify.

Blocks to add: While the original paper only focused
on parameterized blocks that are used for training, we also
allow encoding blocks. They violate the requirement to be the
identity with the right parameters, but will greatly improve the
capability of approximating arbitrary functions. For datasets
with more than one input feature, the set of blocks to sample
from contains individual encoding blocks for every input
feature. This can also be interpreted as a form of feature
selection.

Gate Removal: By allowing a very slight increase in the
cost, we can often leave out many gates. As NISQ devices
produce some error themselves, a slight increase in prediction
error can be a good tradeoff for a simpler circuit. By further
preventing some of the gates to be removed during the
iterations, we try to keep the search space as big as possible.
Examples for gates we do not remove are the last entanglement
a qubit has with a measured one or the last parameterized gate
on a qubit.

Hardware Awareness: This approach also allows us to
take the hardware into account, which the circuit should be
executed on. For example, we can only allow blocks of native
gates and only entangle qubits that have a physical connection.
Additionally we can adapt the algorithm to limitations of NISQ
devices by modifying the cost function to also take the depth
of the circuit and the number of CNOT gates into account.

B. Genetic Optimization

In this section we propose to adapt techniques from classical
genetic optimization, in order to improve the optimization of
the circuit structure laid out in Algorithm 1.

Genetic optimization keeps track of a population of possible
solutions and applies three concepts on this population [30]:

• Mutation: Randomly modify one possible solution.
• Crossover: Combine different solutions to form a new

one.

• Selection: Deciding which solutions will be used in the
next generation.

In our approach, the crossover step is problematic, as it is
not clear if and why the combination of two parameterized
circuits should perform better than the individual ones. Thus,
we focus on mutation and selection. In addition to the inputs
from Algorithm 1, we need a number of generations ng and
the size of the population np.

Algorithm 2 Genetic Structure Learning

Initialize circuits U0 = (U j
0)j=1,...,np

.
for i = 1,. . . , ng do

Mutation: Apply Algorithm 1 to all elements of Ui−1

and store cost of each circuit ci−1.
Selection: Sample new generation Ui by sampling np

times from Ui−1 where the probability to choose U j
i−1

is given by wj =
1

c2j
∑np

k=1
1

c2
k

.

end for
Choose the best circuit from Ung as output.

C. Structure Learning for CPQCs
For the application part we want to take circuits generated

by Algorithms 1 and 2 and build controlled versions of them.
Here we will demonstrate which choices we make in these
algorithms to be able to do just that. At first, we require that the
initial circuit is of the form (4). As this form is very general,
this is not a real restriction. Further, we only allow blocks of
the structure (5) to be added. In every step we only add one
encoding or parameterized block, but this can still be treated
as one layer, as the identity is a valid example for both kinds
of blocks. We restrict the encoding blocks to simple rotations,
i.e., the Tl,k are chosen as the identity and Hl,k is as one of
σx/2, σy/2 or σz/2. At last, we have to make sure to not break
the structure by removing individual gates in the reduction
step. By increasing the number of layers, we can write every
individual gate as one layer. Thus, removing a single gate, i.e.,
one layer, we keep the structure from (4). This enables us to
use the encoding scheme described in Section II.

IV. APPLICATION TO OPTION PRICING

We apply the presented methodology to the problem of
derivative pricing in finance and compare our method to
current state-of-the-art quantum algorithms. Assume that in
general we have underlying securities X with some distribu-
tion P under a fitting probability measure Q, and an option
payoff f(X). Assume xk ∈ [0, 2π) is a scaled discretization of
X with k ∈ {0, . . . , 2n − 1}, and b(xk) its bit representation.
Recall, that we assume the operator P implementing the dis-
tribution to be given. We present an efficient implementation
of the operator F to construct the needed quantum state (c.f.,
(3))

|φ0⟩c |0⟩t +
2n−1∑
k=0

√
pk |b(xk)⟩c

√
f(xk) |1⟩t ,

70 80 90 100 110 120 130
Asset Price

0

5

10

15

20

25

30

Pa
yo

ff

Prediction PQC
Truth
Prediction CPQC

Fig. 3: Function approximation by a PQC that was found by
Algorithm 2 and its CPQC version. The function approximated
is the payoff of an European Call with a Strike of 100.

where |φ0⟩ is an arbitrary state.

A. European Vanilla Options

When pricing European vanilla options, we have a single
underlying security X = X(1) with a fixed maturity T we
are omitting in the notation for simplicity. Then, the payoff
of a call option f+ or put option f− with a fixed strike K is
defined as

f±(X) := max (±(X −K), 0) .

The option price can be calculated by discounting the expected
payoff [31]. We assume this discounting to be constant and
applied in post-processing on a classical device. We denote
with capital Xk, k = 0, . . . , 2n − 1 the discretized version of
X .

Quantum arithmetic: We compare our method to the
implementation by IBM’s qiskit finance module [32], based on
the current state-of-the-art method introduced by References
[9], [14]. They priced a vanilla option by using a quantum
comparator circuit that flips an ancilla qubit initially in state
|0⟩ to the state |1⟩ if Xi > K, using O(n) gates. Afterwards,
introducing a scaling factor c̃ they use the approximation
sin2(y+π/4) ≈ y+1/2 for small |y| to efficiently implement
the ±(X − K) by linearly many Y-rotational gates, each
controlled by only two qubits, on a second ancilla qubit. For
the European call option, the resulting probability to measure
this second ancilla qubit in state |1⟩ is given by

1

2
− c̃+

2c̃

maxi Xi −K

∑
Xi≥K

pi(Xi −K),

where the option price can be recovered by rescaling. The
entire quantum arithmetic implementation scales as O(n) in
the qubit register size n, i.e., in O(log(N)) for N = 2n

discretization points of the underlying.

|0⟩ RZ (x)

|0⟩
√
X RZ (x) RZ (x)

√
X RZ (x)

√
X

√
X RZ (θ0)

√
X X RZ (x)

√
X • • RZ (x) • RX (θ1) RY (θ2) • • •

|0⟩ RY (θ3) • • RZ (x) RX (θ4) RY (θ5) RZ (θ6) RX (x) RY (θ7) •

Fig. 4: The trained PQC for the payoff of a European call option generated by Algorithm 2. θ = [0.93963, 2.51976, -0.30702,
-0.22985, -0.302, -0.09293, 0.15291, 0.05979]

5 10 15 20 25
Control Qubits n

0

200

400

600

800

1000

1200

1400

G
at

es

bitwise CNOT
bitwise depth
CPQC CNOT
CPQC depth

Fig. 5: Total CNOT count and depth comparison of the
quantum arithmetic approach by IBM and our CPQC method
explained in Section IV-A. Counts were computed with respect
to the CNOT and U(θ, φ, λ) gate decomposition.

CPQC: We used Algorithm 2 to generate the circuit seen
in Fig. 4, with the corresponding CPQC being shown in
Fig. A.2. The resulting function approximation is demonstrated
in Fig. 3. Since a PQC can be represented as a truncated
Fourier series, where the frequencies included depend on the
extent of data reuploading [17], we observe a smoothing of
the learned function at the one non differentiable point. The
genetic algorithm simulated 20 generations with a population
size of 48. Each generation did 20 iterations of structure opti-
mization. The parameter optimization was done by Pennylanes
Root mean squared propagation optimizer. A new step was
accepted if the costs decreased; whereas if the costs increased
the probability to accept the new structure was calculated
as exp(−5(cnew − cold)/cold). A gate was removed if the
removal lead to an increase in cost below 1%. The whole
procedure took about 5.5 hours on a dual Intel Xeon Gold
6240R system with 48 cores. We can see a comparison of the
required number of CNOT gates and depth scaling of both
decomposed quantum circuits in Fig. 5. The decomposition is
done with regards to CNOT gates and U(θ, φ, λ) gates.

B. Basket Option - Fixed Weight

A basket option is defined for a vector of underlying
securities X = (X(1), ..., X(K))T , fixed weights www =

2 4 6 8 10 12 14
Control Qubits n

0

1000

2000

3000

4000

5000

6000

G
at

es

bitwise CNOT
bitwise depth
CPQC CNOT
CPQC depth

Fig. 6: Total CNOT count and depth comparison of the
quantum arithmetic approach by IBM and our CPQC method
explained in Section IV-B. We chose two underlying securities
X = (X(1), X(2)), so K = 2 and nk = n/2. The weight
was set to w = (2/3, 1/3), which was implemented for the
quantum arithmetic algorithm for the scaled up integer values
w1 = 2, w2 = 1. Counts were computed with respect to the
CNOT and U(θ, φ, λ) gate decomposition. For n = 14, the
CPQC has a CNOT count of 92 and a depth of 151.

(w1, . . . , wK), wk ∈ [0, 1],
∑

k wk = 1, and a fixed strike K.
Its payoff profile is given by

fBasket(X) := max (wX −K, 0) .

Quantum arithmetic: Again, we compare our approach to
the implementation by IBM qiskit based on Reference [9].
Each underlying X(i) is represented by its discretization on a
separate qubit register ri, in total needing n qubits. The circuit
to implement the payoff is now similar to the vanilla option,
except that an additional operator computing the weighted sum
of the qubit registers is needed before applying the comparator.
This sum is saved into a new set of ancilla qubits of size
log2(

∑
k wk)+1. Then the methodology of the vanilla option

is applied to this new register containing the weighted sum.
Because of this weighted sum operator, the discretization for
all securities has to be the same. It needs O(n log2 n) gates,
which is also the total complexity of the quantum arithmetic
implementation of F .

CPQC: This task shows the main improvement of the
CPQC approach. For a chosen level of approximation, the PQC

has a fixed qubit and gate number. Coupling the PQC with
the control register via the method described in Example 7
only adds a linear amount of gates, resulting in a total gate
complexity for the CPQC of O(n). The genetically trained
PQC and corresponding CPQC for this task are presented in
Fig. A.3 and Fig. A.4, respectively. The PQC approximation,
as well as the fBasket, can be found in Fig. A.1.

With the same procedure used as for the call option, we can
see a comparison of the required number of CNOT gates and
depth scaling of both decomposed quantum circuits in Fig. 6.

C. Basket Option - Variable Weight

Although it substantially increases the difficulty for the
quantum arithmetic implementation, it is straightforward to
include a variable weight for the basket option as an input
feature of our PQC, hence, of the CPQC. By doing so,
one could pre-train a sophisticated PQC for a specific set
of underlyings and a corresponding resolution. This, albeit
possibly needing a larger circuit, has a resulting CPQC that
has a gate scaling linear in the number of state qubits needed
to represent the securities X(i). This CPQC can then either
be used for a variety of different weights (in a range that
was previously used for training), or for computing the prices
of a basket where the weights depend on some different state
register. The result of our genetically trained PQC, depicted in
Fig. A.5, can be seen in Fig. 7. It is straightforward to construct
the CPQC from this PQC as all the encoding blocks are
rotational gates. Of course, the prediction could be improved
by employing a larger PQC at the cost of more depth. At
least for two underlyings, it should be emphasized that the
variable weight w1 is only encoded once in the PQC. It seems
to rotate the payoff function, which the PQC seems to be able
to implement well. These observations might also be useful
for finding circuits, that implement different payoffs, by hand.

Additionally, this implementation of a basket option might
open up the possibility for pricing index options that have a
combination of stocks as the underlying. We leave this for
future research.

V. CONCLUSION

We presented an automated approach to the function imple-
mentation for the quantum alternative of classical Monte Carlo
algorithms based on quantum machine learning. First, laying
the theoretical groundwork to build a conditional variant, we
introduced our own genetic algorithm to find a suitable PQC.
Second, we compared our approach to current quantum algo-
rithms for the task of option pricing, which rely on a quantum
version of bitwise computations. We were able to show that at
the cost of a classical pre-training and a preemptively chosen
approximation level, we generated reusable CPQCs that need
a fraction of the quantum resources compared to the bitwise
algorithms.

Possible future research is the further improvement of the
genetic optimization of the PQC. One possible direction is
taking the hardware into account by using only native gates,

Fig. 7: Result of the circuit from Fig. A.5 in the upper row
compared with the true payoff function fBasket in the lower
row. This circuit takes three inputs, the value of the two assets
and the weight of the first asset. The figure shows the results
three different weights: (a) w1 = 0, (b) w1 ≈ 0.37, and (c)
w1 ≈ 0.74.

only entangling physically connected qubits, weighting ap-
proximation error against hardware noise and also optimizing
for robustness in the presence of noise. Additionally one could
adapt the algorithm to make sure that the inverse of the func-
tion operator F is also efficient, which would be a benefit for
the application of AE. In the same vein, it should be researched
if the application of PQCs translates to shortcuts one could
take for quantum Monte Carlo integration algorithms. This
has previously been done for other approaches, e.g., spin-
echo circuit optimization [10]. The CPQC approach might also
make existing AE techniques that have additional conditions
on their function operator easier to implement [33]. Of course,
a sophisticated ressource estimation for quantum advantage
including the CPQC approach should be made as well, c.f.,
[34].

We are currently investigating the possibility of generalizing
the conditional variant of PQCs for encodings other than sim-
ple rotations, which will probably translate to a slight encoding
error, and more sophisticated control circuits Λ. Nevertheless,
in the current NISQ environment small approximation errors
perish in comparison to noise introduced by quantum gates.
It has to be studied at which level of reduction in gate counts
this additional error is justified.

REFERENCES

[1] I. I. for Business Value. (2019) Exploring quantum computing use
cases for financial services. [Online]. Available: https://www.ibm.com/
downloads/cas/2YPRZPB3

[2] J. Preskill, “Quantum Computing in the NISQ era and beyond,”
Quantum, vol. 2, p. 79, 08 2018. [Online]. Available: https:
//doi.org/10.22331/q-2018-08-06-79

[3] C. Bauckhage, R. Bye, A. Iftikhar, C. Knopf, M. Mustafic, N. Pi-
atkowski, R. Sifa, R. Stahl, and E. Sultanow, “Quantum Machine
Learning - State of the Art and Future Directions,” Federal Office for
Information Security https://www.bsi.bund.de, p. 122, 2022.

https://www.ibm.com/downloads/cas/2YPRZPB3
https://www.ibm.com/downloads/cas/2YPRZPB3
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79

[4] R. Orús, S. Mugel, and E. Lizaso, “Quantum computing for finance:
Overview and prospects,” Reviews in Physics, vol. 4, p. 100028, 11
2019. [Online]. Available: https://doi.org/10.1016/j.revip.2019.100028

[5] D. Herman, C. Googin, X. Liu, A. Galda, I. Safro, Y. Sun, M. Pistoia,
and Y. Alexeev, “A Survey of Quantum Computing for Finance,” 06
2022. [Online]. Available: https://doi.org/10.48550/arXiv.2201.02773

[6] P. Intallura, G. Korpas, S. Chakraborty, V. Kungurtsev, and J. Marecek,
“A Survey of Quantum Alternatives to Randomized Algorithms: Monte
Carlo Integration and Beyond,” 03 2023, arXiv:2303.04945 [quant-ph,
stat]. [Online]. Available: http://arxiv.org/abs/2303.04945

[7] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, “Quantum Amplitude
Amplification and Estimation,” arXiv:quant-ph/0005055, 05 2000.
[Online]. Available: https://doi.org/10.48550/arXiv.quant-ph/0005055

[8] P. Rebentrost, B. Gupt, and T. R. Bromley, “Quantum computational
finance: Monte Carlo pricing of financial derivatives,” Phys. Rev.
A, vol. 98, no. 2, p. 022321, 08 2018. [Online]. Available:
https://doi.org/10.1103/PhysRevA.98.022321

[9] N. Stamatopoulos, D. J. Egger, Y. Sun, C. Zoufal, R. Iten,
N. Shen, and S. Woerner, “Option Pricing using Quantum Computers,”
Quantum, vol. 4, p. 291, 7 2020. [Online]. Available: https:
//doi.org/10.22331/q-2020-07-06-291

[10] A. C. Vazquez and S. Woerner, “Efficient State Preparation for
Quantum Amplitude Estimation,” 05 2020. [Online]. Available:
https://arxiv.org/abs/2005.07711v1

[11] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe,
and S. Lloyd, “Quantum machine learning,” Nature, vol. 549,
no. 7671, pp. 195–202, 09 2017. [Online]. Available: https:
//doi.org/10.1038%2Fnature23474

[12] M. Schuld and F. Petruccione, Machine Learning with Quantum Com-
puters, ser. Quantum Science and Technology. Springer International
Publishing, 2021.

[13] M. Bilkis, M. Cerezo, G. Verdon, P. J. Coles, and L. Cincio.
A semi-agnostic ansatz with variable structure for quantum machine
learning. [Online]. Available: https://doi.org/10.48550/arXiv.2103.06712

[14] S. Woerner and D. J. Egger, “Quantum risk analysis,” npj
Quantum Inf, vol. 5, no. 1, feb 2019. [Online]. Available: https:
//doi.org/10.1038%2Fs41534-019-0130-6

[15] L. Grover and T. Rudolph, “Creating superpositions that correspond
to efficiently integrable probability distributions,” 2002. [Online].
Available: https://doi.org/10.48550/arXiv.quant-ph/0208112

[16] I. F. Araujo, D. K. Park, F. Petruccione, and A. J. da Silva,
“A divide-and-conquer algorithm for quantum state preparation,”
Scientific Reports, vol. 11, no. 1, 03 2021. [Online]. Available:
https://doi.org/10.1038%2Fs41598-021-85474-1

[17] M. Schuld, R. Sweke, and J. J. Meyer, “Effect of data encoding on
the expressive power of variational quantum-machine-learning models,”
Phys. Rev. A, vol. 103, p. 032430, Mar 2021. [Online]. Available:
https://doi.org/10.1103/PhysRevA.103.032430

[18] Z. Yu, H. Yao, M. Li, and X. Wang, “Power and limitations
of single-qubit native quantum neural networks,” 2022. [Online].
Available: https://doi.org/10.48550/arXiv.2205.07848

[19] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo,
K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and
P. J. Coles, “Variational quantum algorithms,” Nature Reviews
Physics, vol. 3, pp. 625 – 644, 2020. [Online]. Available: https:
//doi.org/10.1038/s42254-021-00348-9

[20] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J.
Love, A. Aspuru-Guzik, and J. L. O’Brien, “A variational eigenvalue
solver on a photonic quantum processor,” Nature Communications,
vol. 5, no. 1, 7 2014. [Online]. Available: https://doi.org/10.1038/
ncomms5213

[21] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press,
2010.

[22] M. Mottonen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa, “Trans-
formation of quantum states using uniformly controlled rotations,” 2004.
[Online]. Available: https://doi.org/10.48550/arXiv.quant-ph/0407010

[23] Y. Du, T. Huang, S. You, M.-H. Hsieh, and D. Tao, “Quantum circuit
architecture search for variational quantum algorithms,” npj Quantum
Information, vol. 8, no. 1, pp. 1–8, 05 2022. [Online]. Available:
https://doi.org/10.1038/s41534-022-00570-y

[24] H. R. Grimsley, S. E. Economou, E. Barnes, and N. J. Mayhall, “An
adaptive variational algorithm for exact molecular simulations on a

quantum computer,” Nature Communications, vol. 10, no. 1, p. 3007, 07
2019. [Online]. Available: https://doi.org/10.1038/s41467-019-10988-2

[25] M. Ostaszewski, E. Grant, and M. Benedetti, “Structure optimization
for parameterized quantum circuits,” Quantum, vol. 5, p. 391, 01 2021.
[Online]. Available: https://doi.org/10.22331/q-2021-01-28-391

[26] Y. Huang, Q. Li, X. Hou, R. Wu, M.-H. Yung, A. Bayat, and
X. Wang, “Robust resource-efficient quantum variational ansatz through
evolutionary algorithm,” Physical Review A, vol. 105, no. 5, p. 052414,
05 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2202.13714

[27] E.-J. Kuo, Y.-L. L. Fang, and S. Y.-C. Chen, “Quantum architecture
search via deep reinforcement learning,” 2021. [Online]. Available:
https://doi.org/10.48550/arXiv.2104.07715

[28] S.-X. Zhang, C.-Y. Hsieh, S. Zhang, and H. Yao, “Differentiable
quantum architecture search,” Quantum Science and Technology,
vol. 7, no. 4, p. 045023, aug 2022. [Online]. Available: https:
//doi.org/10.1088%2F2058-9565%2Fac87cd

[29] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, and S. Ahmed et
al. PennyLane: Automatic differentiation of hybrid quantum-classical
computations. [Online]. Available: https://doi.org/10.48550/arXiv.1811.
04968

[30] M. Melanie, An Introduction to Genetic Algorithms. The MIT Press,
03 1998.

[31] R. Korn, E. Korn, and G. Kroisandt, Monte Carlo Methods and Models
in Finance and Insurance, M. Dempster, D. B. Madan, and R. Cont,
Eds. Boca Raton, FL: CRC Press, 2010.

[32] Qiskit contributors, “Qiskit: An open-source framework for quantum
computing,” 2023. [Online]. Available: https://doi.org/10.5281/zenodo.
2573505

[33] K. Plekhanov, M. Rosenkranz, M. Fiorentini, and M. Lubasch, “Varia-
tional quantum amplitude estimation,” Quantum, vol. 6, p. 670, 03 2022.
[Online]. Available: https://doi.org/10.22331%2Fq-2022-03-17-670

[34] S. Chakrabarti, R. Krishnakumar, G. Mazzola, N. Stamatopoulos,
S. Woerner, and W. J. Zeng, “A Threshold for Quantum Advantage
in Derivative Pricing,” Quantum, vol. 5, p. 463, 06 2021. [Online].
Available: https://doi.org/10.22331/q-2021-06-01-463

APPENDIX

Prediction Truth

Fig. A.1: Payoff of a European basket call. On the left, the
approximation by the circuit from Fig. A.3, on the right the
true payout. On the X and Y axis are the prices of the two
assets and on the Z axis the payoff.

Proof of Proposition 3.
For the sake of brevity, we write |b(x)⟩c :=

⊗
k |b(xk)⟩rk .

First, we note that the assumption implies that U and Cn(U)
will generate the same quantum state when some data x ∈ X
is input,

(In ⊗ U) |b(x)⟩c |0⟩t = Cn(U) |b(x)⟩c |0⟩t . (7)

https://doi.org/10.1016/j.revip.2019.100028
https://doi.org/10.48550/arXiv.2201.02773
http://arxiv.org/abs/2303.04945
https://doi.org/10.48550/arXiv.quant-ph/0005055
https://doi.org/10.1103/PhysRevA.98.022321
https://doi.org/10.22331/q-2020-07-06-291
https://doi.org/10.22331/q-2020-07-06-291
https://arxiv.org/abs/2005.07711v1
https://doi.org/10.1038%2Fnature23474
https://doi.org/10.1038%2Fnature23474
https://doi.org/10.48550/arXiv.2103.06712
https://doi.org/10.1038%2Fs41534-019-0130-6
https://doi.org/10.1038%2Fs41534-019-0130-6
https://doi.org/10.48550/arXiv.quant-ph/0208112
https://doi.org/10.1038%2Fs41598-021-85474-1
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.48550/arXiv.2205.07848
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.48550/arXiv.quant-ph/0407010
https://doi.org/10.1038/s41534-022-00570-y
https://doi.org/10.1038/s41467-019-10988-2
https://doi.org/10.22331/q-2021-01-28-391
https://doi.org/10.48550/arXiv.2202.13714
https://doi.org/10.48550/arXiv.2104.07715
https://doi.org/10.1088%2F2058-9565%2Fac87cd
https://doi.org/10.1088%2F2058-9565%2Fac87cd
https://doi.org/10.48550/arXiv.1811.04968
https://doi.org/10.48550/arXiv.1811.04968
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.22331%2Fq-2022-03-17-670
https://doi.org/10.22331/q-2021-06-01-463

Then, for the right hand side of (6), it follows that

fCn(U),P (θ)

=

2n−1∑
i,j=0

√
pi
√
pj ⟨b(xi)|c ⟨0|t Cn(U)†MCn(U) |b(xj)⟩c |0⟩t

(7)
=

2n−1∑
i,j=0

√
pi
√
pj ⟨b(xi)|c ⟨0|t (In ⊗ U)†M(In ⊗ U) |b(xj)⟩c |0⟩t

=

2n−1∑
i=0

pi ⟨0|t U
†MU |0⟩t

=

2n−1∑
i=0

pifU (x
i,θ).

□

|0⟩

P1

• • • • • • • •

|0⟩ • • • • • • • •

|0⟩ • • • • • • • •

|0⟩ RZ (
4π
7) RZ (

2π
7) RZ (

π
7)

|0⟩
√
X RZ (

4π
7) RZ (

2π
7) RZ (

π
7) RZ (

4π
7) RZ (

2π
7) RZ (

π
7)

√
X RZ (

4π
7) RZ (

2π
7) RZ (

π
7)

√
X

√
X RZ (θ0)

√
X X RZ (

4π
7) RZ (

2π
7) RZ (

π
7)

√
X • • RZ (

4π
7) RZ (

2π
7) RZ (

π
7) • RX (θ1) RY (θ2) • • •

|0⟩ RY (θ3) • • RZ (
4π
7) RZ (

2π
7) RZ (

π
7) RX (θ4) RY (θ5) RZ (θ6) RX (4π7) RX (2π7) RX (π7) RY (θ7) •

Fig. A.2: Controlled version of Fig. 4. A three qubit register is used as control.

|0⟩

|0⟩ • RZ (θ8) • •

|0⟩ RY (θ0) RX (x0) RZ (θ1) • RY (θ2) RZ (x0) RZ (x1) • RY (x1) • RZ (θ3) RY (θ4) •

|0⟩ RY (θ5) RZ (x0) RY (θ6) RZ (x1) RY (θ7) •

Fig. A.3: The genetically trained PQC for the payoff of a European basket option with fixed weight generated by Algorithm 1. θ = [1.70789, -1.71191, -1.11194,
-0.72190, -0.74404, 1.40678, 0.67897, 0.17417, -0.16803]

|0⟩
P1

• • •

|0⟩ • • •

|0⟩

P2

• • •

|0⟩ • • •

|0⟩ • • •

|0⟩ RY (θ0)

|0⟩ • RZ (θ9) • •

|0⟩ RY (θ1) RX (2π3) RX (π3) RZ (θ2) • RY (θ3) RZ (
2π
3) RZ (

π
3) RZ (

4π
7) RZ (

2π
7) RZ (

π
7) • RY (4π7) RY (2π7) RY (π7) • RZ (θ4) RY (θ5) •

|0⟩ RY (θ6) RZ (
2π
3) RZ (

π
3) RY (θ7) RZ (

4π
7) RZ (

2π
7) RZ (

π
7) RY (θ8) •

Fig. A.4: The CPQC constructed from the trained PQC Fig. A.3 combined with distribution loading operators P1, P2 for the European basket call with a fixed
weight.

|0⟩ RX (w1) • • RY (θ0) RZ (x1) RY (θ1) • RX (θ2) • RX (θ3) RY (θ4) • • RX (θ5) • •

|0⟩ RY (θ6) RZ (x0)
√
X RZ (θ7)

√
X X RY (θ8) RZ (θ9) RZ (θ10) RZ (x0) RY (θ11) • • RZ (x1) RY (θ12) RZ (x1) RZ (θ13) RZ (θ14) RX (θ15) •

Fig. A.5: Genetically trained PQC for the payoff of a European basket call with variable weight generated by Algorithm 1. θ = [1.34793, 1.39065, 0.56594, 0.40454,
-2.45389, 1.54508, 2.17214, -0.50158, -0.63069, -1.14638, -0.44283, 0.44037, -0.42722, -0.20744, -0.23896, 0.10707]

	Introduction
	Conditional Parameterized Quantum Circuits
	Parameterized Quantum Circuits
	Conditional Variant to Implement State-Dependency
	Efficient CPQCs

	Implementation of Genetic PQCs
	Variable Ansatz Algorithm
	Genetic Optimization
	Structure Learning for CPQCs

	Application to Option Pricing
	European Vanilla Options
	Basket Option - Fixed Weight
	Basket Option - Variable Weight

	Conclusion
	References

