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Abstract—Quantum machine learning has received significant
interest in recent years, with theoretical studies showing that
quantum variants of classical machine learning algorithms can
provide good generalization from small training data sizes.
However, there are notably no strong theoretical insights about
what makes a quantum circuit design better than another, and
comparative studies between quantum equivalents have not been
done for every type of classical layers or techniques crucial
for classical machine learning. Particularly, the pooling layer
within convolutional neural networks is a fundamental operation
left to explore. Pooling mechanisms significantly improve the
performance of classical machine learning algorithms by playing
a key role in reducing input dimensionality and extracting clean
features from the input data. In this work, an in-depth study
of pooling techniques in hybrid quantum-classical convolutional
neural networks (QCCNNs) for classifying 2D medical images
is performed. The performance of four different quantum and
hybrid pooling techniques is studied: mid-circuit measurements,
ancilla qubits with controlled gates, modular quantum pooling
blocks and qubit selection with classical postprocessing. We find
similar or better performance in comparison to an equivalent
classical model and QCCNN without pooling and conclude that
it is promising to study architectural choices in QCCNNs in more
depth for future applications.

Index Terms—quantum machine learning, quantum pooling
layers, quantum convolutional neural networks, medical imaging

I. INTRODUCTION

The recent years have seen an increased interest in quantum
machine learning (QML) ([1]; [2]; [3]). QML is a discipline at
the intersection of machine learning and quantum computing
(QC), where in context of this paper we are interested in
quantum-enhanced machine learning algorithms processing
classical data like images. However, the practical benefits
of these algorithms remain unclear. A common approach
to implement QML algorithms is via variational quantum
circuits (VQCs) [4], which consist of a circuit architecture
with parametrized gates.

Current Noisy Intermediate-Scale quantum (NISQ) comput-
ers feature a limited number of O(100) qubits, with limited
connectivity and limited gate fidelities. Therefore, hybrid QML
algorithms able to deal with shallow quantum circuit sizes and
only requiring a small number of qubits are most promising for
near-term applications of QC. In these hybrid algorithms, an
iterative interaction between classical computers and QC oc-

curs. As QC will likely be combined with classical computers
as additional quantum processing unit (QPU), the QPU should
ideally only be used for the parts of a calculation which are
significantly accelerated by the use of QC or are not possible
to calculate on classical computers. For example, a quantum
computer may be used for the execution of variational parts of
the QML algorithm, while a classical computer may calculate
the parameter values of the variational part by minimizing a
cost function.

Hybrid variants have been proposed for many well-
established algorithms of classical machine learning, including
convolutional neural networks (CNNs). CNNs are widely
applied in computer vision tasks, such as image classification.
They consist of convolutional layers, with which the char-
acteristic features in the images are extracted, followed by
fully connected layers used for classification. Commonly, a
convolutional layer is followed by a pooling layer, where the
extracted feature maps are down-scaled to a smaller data size.
Thereby the feature maps become more robust to translations
of the input and overfitting can be prevented. In principle, the
whole CNN model can be translated to a quantum algorithm,
but the size of the resulting quantum algorithm is likely to re-
quire quantum hardware beyond the presently available NISQ
devices. If instead just certain parts of a CNN are moved to
QPU, the resulting algorithm can already be NISQ-compatible.
Particularly, mapping the convolutional or the pooling layers
to a quantum variant represents a promising approach in
terms of the number of available qubits in NISQ-devices, as
these layers process the data sequentially in smaller slices,
in contrast to the linear layers, which operate on all features
simultaneously. While the usage of quantum convolutional
layers was extensively studied in recent research, the effect
of quantum pooling layers is yet relatively unexplored.

In this work, we test the suitability of quantum pooling
operations for a medical imaging task. In particular, we
analyze 2D ultrasound images of the breast to identify ma-
lign lesions. For this classification task, we investigate four
different techniques for performing a quantum and hybrid
quantum-classical pooling operation, namely the use of 1) mid-
circuit measurements, 2) auxiliary qubits with controlled gate
operations, 3) modular quantum pooling blocks, and lastly
4) qubit selection with a non-linear classical postprocessing
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function. We compare their performance with the one of a
quantum convolutional operation as well as a fully classical
approach.

Our contributions are thus threefolds:
• We design and compare 4 different quantum pooling

architectures for hybrid quantum-classical convolutional
neural networks with respect to the training and validation
performance on ultrasound images to identify malign
lesions of the breast.

• We further contrast these architectures with both a classi-
cal convolutional neural network and a quantum-classical
convolutional neural network without pooling containing
a similar number of trainable parameters.

• We seek to provide an explanation for the performance of
our developed models using a quantum relevant metric.

The paper is structured as follows. We present the related
work in section II. We introduce the chosen dataset as well
as the background information relevant to all designed hybrid
quantum-classical convolutional neural networks and to the
classical convolutional neural network in section III. We
define all tested quantum pooling architectures in section IV
and present and interpret their performance. We introduce a
quantum metric in section V, the effective dimension, and
investigate its correlation with training performance, before
coming to conclusion in section VI.

II. RELATED WORK

The works in ([5],[6],[7],[8],[9],[10]) studied the possibility
of moving all components of a CNN on a QC. Since this
is generally not feasible with current NISQ-devices, hybrid
quantum-classical CNNs (QCCNNs) have been introduced,
in which only parts of a CNN are executed on a quantum
computer. In ([11], [12], [13]) the first classical convolutional
layer is replaced by either an untrainable or trainable quan-
tum convolutional layer. Using this architecture, ([11],[12])
achieved a good performance on the MNIST dataset [14]. We
have extended that work in [15], where we have proposed
different architectures, also using different encoding schemes
and variants of VQCs, on multiple medical datasets. In par-
ticular, we also compared their performance to fully classical
CNNs and thereby demonstrated a good performance of hybrid
QCCNNs.

QCCNN architectures may profit from the inclusion of
pooling layers, since those lead to a dimension reduction of
the feature maps, and consequently reduce the number of pa-
rameters to learn, potentially preventing overfitting. Different
proposals have been made in this direction. In ([5], [7], [16])
the quantum pooling operation is achieved through mid-circuit
measurements, which means that measurements are performed
for only a subset of the qubits in the quantum circuit. Depend-
ing on their results, different unitary operations are applied
on the adjacent qubits. In general, mid-circuit measurements
represent a promising method for quantum applications, where
a reduction of the data is necessary. For example, the work in
[17] explores their usage for error mitigation. In [8] quantum
pooling layers are realized by abandoning a subset of qubits in

the quantum circuit, i.e. their quantum states are not measured
and further processed in the algorithm. Similarly, in [18]
quantum pooling is achieved through parametrized two-qubit
operations, after which the state of one of the two qubits is
ignored.

The aforementioned work on pooling layers were all pro-
posed for full quantum variants of CNNs. Inspired by some
of these ideas, we investigate further techniques to realize and
compare quantum poolings in hybrid QCCNNs. For this, we
build upon our preceding studies in [15], where we studied the
effect of replacing a classical convolutional layer by a quantum
variant in medical image classification tasks.

III. BACKGROUND

In this section, we will explain the dataset used in our
studies and the necessary background information related to
our experiments. This includes the design of both the classical
CNN and the hybrid variants. For the latter, we focus here
only on the quantum convolutional layer as well as on aspects
common to all tested QCCNNs in this work. The pooling
architectures are discussed in detail in section IV.

A. Dataset

Work by [19] has shown that certain QML algorithms like
the quantum-variant of CNNs are capable to generalize well
even when little training data is available. In medical imaging,
the acquisition of large high-quality datasets is often expensive
and difficult because it requires careful expert annotation. Ad-
ditional challenges come from high imaging costs and privacy
concerns. Therefore, medical datasets are usually relatively
small [20], common dataset sizes are of the order of 100 to
1000 images. To ensure an accurate and reliable performance
of artificial intelligence (AI) algorithms in medical imaging,
one thus needs to find an efficient way to process such small
and complex imaging data [21]. Therefore, medical imaging
is an interesting area to be explored with QML.

In this work, the performance of all developed QCCNN
models is explored on the BreastMNIST dataset from the
MedMNIST collection [22][23]. This dataset is characterized
by a considerably low number of training samples as is
typically the case in medical imaging tasks and consists of 546
training and 78 validation images of breast ultrasounds images,
which are preprocessed as described in [23] and downsampled
to a 28 × 28 resolution. The task is a binary classification
between non-malignant - a combination of benign and normal
states - and malignant lesions.

B. Classical CNN and QCCNNs in this work

As classical baseline, we use the architecture presented in
our previous work in [15]. This consists of a convolutional
layer with four filters of size 2 × 2, directly followed by a
fully connected layer.

In the QCCNNs, the convolutional layer is replaced by
either a quantum convolution or by a combined quantum
convolution + pooling operation to represent filters of size
2× 2 moving over the image, as shown in figure 1. The fully



connected layer remains classical. Across all investigations
conducted in the present study, a similar number of trainable
parameters between the CNN and the QCCNNs is obtained
with these architectures, making the comparison between fully
classical and hybrid quantum-classical variants possible.

The quantum convolutional (+ pooling) layers consist of
an encoding layer followed by a VQC and a measurement.
The VQC is trainable and consists of a collection of trainable
rotation gates and entangling two-qubit operations. For all
QCCNNs designed in this work, the same encoding and
measurement technique is employed:

• Encoding: We use the so-called higher order encoding
[24] first introduced in [25], as it is expected to work best
thanks to its entangling capabilities. The qubits initially
in state 0 are transformed using a Hadamard gate and
a Z-axis rotation RZ (π ∗ xn), where xn denotes the
n-th input. An entangling operation RZZ (φij) is then
applied to every possible qubit pair i and j. This operation
consists of a CNOT gate, a rotation RZ (φij), and another
CNOT gate. The rotation RZ (φij) is applied on the j-th
qubit and we use φij = π ∗ xi ∗ xj . The input data being
normalized between −1 and 1, the rotation gates in the
encoding are operating between −π and π.

• Measurement: The expectation value of the Pauli-Z oper-
ator is computed for the desired qubits and the values are
stored in individual feature maps, following the strategy
of [12]. With a convolutional filter size of 2 × 2 and
the encoding mapping one input value to one qubit, we
therefore use 4 qubits and hence produce 4 feature maps
in this architecture.

For the VQC in the quantum convolutional layer, a basic
entangling layer is chosen as baseline for comparison with the
QCCNNs with quantum pooling, as it is the best performing
variant for this use case in our previous work [15]. In this
instance, each qubit i is rotated by a trainable angle θi around
the X-axis before applying a sequence of CNOT entangling
gates on adjacent qubit pairs.

Experiments are performed using PyTorch [26] and the
quantum circuits are simulated with Pennylane [27] while
neglecting any noise effects. All networks, both classical and
hybrid, are trained for 20 epochs with the Adam optimizer, a
learning rate of 0.001 and a batch size of 8. A total of three
runs, differing between each other in the initial parameters in
the network, are executed per architecture to produce variance
bands. No extensive hyperparameter tuning was done in this
study due to the prohibitively long training times of QCCNNs.

IV. QCCNNS WITH A QUANTUM POOLING LAYER

In the QCCNNs with a quantum pooling layer, the quantum
convolution + pooling layer consists of data encoding with the
higher order encoding described in section III-B, followed by
one of the quantum pooling circuits detailed below. Only one
qubit out of the four is then measured, as seen on figure 1.
The quantum pooling layer is followed by a fully connected
layer.

This quantum convolution + pooling operation yields one
value as opposed to the quantum convolution where four
values are returned. To achieve a fair comparison with the
classical CNN and the QCCNN baseline described in section
III-B, we therefore use four quantum kernels in parallel to form
the quantum pooling architecture. This allows to maintain the
same parameter count in the classical layers in all possible
configurations. Moreover, this offers the advantage that four
quantum kernels in parallel may allow to extract different
features of the image. It is worth noting that the quantum
pooling operation itself may be trainable. This is the case
in pooling methods which comprise rotation gates, such as
the pooling with mid-circuit measurements or the modular
quantum pooling blocks.

A. Mid-circuit measurement

Mid-circuit measurements allow for the introduction of
additional parameters while reducing circuit depth, offering
a favorable trade-off between parameter count and circuit
complexity. In the present study, mid-circuit measurements are
used to control multiple qubits simultaneously - equivalent to
a multi-qubit controlled gate. This is particularly advantageous
because implementing multi-qubit controlled gates in practice
can be challenging due to current hardware limitations. As
such, this technique offers a more efficient and practical al-
ternative to multi-qubit controlled gates with several hardware
devices being able to perform mid-circuit measurements [28].

Mid-circuit measurements are used to implement alternative
paths depending on the measured outcome. Given four qubits
q0, q1, q2, and q3, qubit q0 is measured and the rotation
gates Rθ0 , Rθ1 , and Rθ2 are applied to qubits q1, q2, and
q3 respectively if the measurement outcome of qubit q0 is
1. Similarly, qubit q1 is subsequently measured and if the
measurement yields 1, the rotations gates Rθ3 and Rθ4 are
applied to qubits q2 and q3. Finally, a CNOT gate between
q2 and q3 is applied, q2 is measured and the rotation Rθ5
is applied to qubit q3 if the measurement yields 1. The last
qubit q3 is measured and its value is fed to the classical
fully-connected layer. The corresponding circuit is represented
in figure 2a. Two different options using rotation gates with
trainable angles RX and RY are tested within this pooling
method.

The training and validation accuracy curves are presented in
figure 3 and directly compared with the classical CNN baseline
and the QCCNN baseline without pooling. We first remark
that the training accuracy of the hybrid quantum-classical
variants all surpass the classical model. When generalizing
on the validation set, the architecture with RX mid-circuit
measurements clearly performs better than the architecture
with RY mid-circuit measurements. It also surpasses the
two baselines in maximum validation accuracy, although the
overlapping variance bands prevent us to conclude on its
superiority.

Additional experiments were run with a bigger learning rate
of 0.01, that are not shown in the results curves for sake
of comparison. With this learning rate, although overfitting
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Fig. 1: Architecture sketch of the CNN and QCCNNs with quantum convolutional layers with and without pooling.

occurs very fast, RX mid-circuit measurements is the only
method presented within this paper where the training data
was perfectly learnt with a training accuracy reaching 1.0
(validation accuracy of 88.47%). These results show that
pooling methods with mid-circuits measurements have a high
potential in extracting relevant features for the training of
QCCNNs.

B. Ancilla qubit and controlled gates

Models with no inductive bias are likely to have trainability
and generalization issues, therefore group-invariant quantum
machine learning models have been proposed and one of their
fundamental component is the use of controlled gates and
ancillary qubits [29]. We draw upon these models and use a
standard structure when using an ancilla qubit, i.e., Hadamard-
controlled gates-Hadamard, where in this work the controlled
gates are either CY or CZ.

Our experiment involves initializing the system in a state
consisting of four data qubits and one ancilla (control) qubit.
Subsequently, the ancilla qubit is subjected to the Hadamard
gate H . The input data is encoded on the first four qubits and a
basic entangling layer is used. Following this, a series of four
controlled gates is executed, wherein a controlled gate (either
CY or CZ) is utilized with qubit q0 as the control and the
ancilla as the target, followed by a controlled gate with qubit
q1 as the control and the ancilla as the target, and so forth for

qubits q2 and q3. Upon completion of these operations, the
Hadamard gate H is applied to the ancilla qubit. Finally, the
Pauli-Z expectation value of the ancilla qubit is taken as the
output of the circuit. The architecture of the ancilla qubit with
CY controlled gates pooling is shown on figure 2b.

Our results in figure 4 show that the use of CY or CZ
controlled gates does not affect the overall performance of
the QCCNN, as the curves for both variants strictly overlap.
Overall, the ancilla qubit with controlled gates pooling method
seems to have a satisfactory training performance, reaching a
maximum accuracy slightly above the classical CNN. How-
ever, this method does not perform well in validation accuracy,
with a maximum validation accuracy lower than both classical
CNN and QCCNN without pooling baselines.

C. Modular quantum pooling blocks

Taking inspiration from [10], we explore the alternative use
of a combination of modular small quantum convolutional and
pooling operations. The circuit architecture of this quantum
pooling layer is displayed in figures 2c to 2f. The design of
this pooling method incorporates modular blocks acting on
two neighboring qubits (on the first and second qubit and
on the third and fourth qubit). Each of these blocks either
consists of just a quantum pooling operation (Mod-a), or of
a quantum convolutional circuit in addition to a quantum
pooling operation. For the convolutional part, two different
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architectures are investigated, where the first variant is inspired
by tree tensor network ideas (Mod-b), while the second
circuit variant is known to have good entanglement properties
[30] (Mod-c). As a result of the first two pooling blocks, a
dimensionality reduction from four to two qubits occurs. The
other qubits were traced out during the pooling operation.
The remaining two qubits undergo another convolutional and
pooling operation, using the same architecture as in the blocks
used earlier in the circuit. Consequently, the whole quantum
circuit performed a dimensionality reduction from four to
one qubit. The remaining qubit is measured and then fed
into the following classical parts in the network. Due to the
modular design of this circuit architecture, the concept is easily
extendable and adaptable to more complicated scenarios.

We obtain in general very good performance with the
modular pooling, with two methods out of three outperforming
the classical baseline in validation accuracy, namely Mod-a
and Mod-c, and all three methods surpassing the classical
baseline in training accuracy, as seen on figure 5. Particularly,
the modular pooling method with Mod-c presents a substantial
gain in performance compared to the classical baseline, with
a fast and steep convergence early on in the training and clear
and non overlapping error bands with the other models.

D. Qubit selection with classical postprocessing

Inspired by the work of [31], after encoding the data and
using a basic entangling layer, one out of the four qubits from
the 4-qubit system is selected, onto which a classical postpro-
cessing step is applied. This qubit could either remain fixed
throughout the computation or be randomly selected for each
iteration. We choose to measure qubit q2 in our experiments.
With this last pooling method, it can be investigated whether
quantum circuits profit from non-linear activation functions in
the same way as classical algorithms do. The output of all
tested circuits being an expectation value between -1 and 1,
the Sign(x) and Tanh(x) non-linear activation functions are
tested, thereby ensuring that the output of the quantum circuit
remains within the same range. The circuit is shown in figure
2g. The Sign(x) function is defined as

Sign(x) =


−1, x < 0,

0, x = 0,

1, x > 0,

and Tanh(x) is defined as

Tanh(x) =
sinh(x)

cosh(x)
=
ex − e−x

ex + e−x
.

The results of the quantum pooling with these postpro-
cessing functions are shown in figure 6. We find that the
architecture with the Tanh(x) activation is able to generalize
very well and quickly on the validation data, outperforming
both the classical baseline and the QCCNN without pooling at
the third epoch in average validation accuracy. However, one
notes that the variance in validation accuracy does not allow

us to unreservedly decipher between the performance of this
variant and the QCCNN without pooling. The architecture with
the Sign(x) activation function is on the contrary not able to
generalize properly on the validation data and suffers from
remarkably wide variance bands. This probably stems from
the information loss when the Sign(x) function is applied.

E. Review of the best pooling options

A summary plot is provided in figure 7 showing the best
performing configuration for each pooling option. It can be
observed that most pooling architectures beat the classical
CNN baseline in terms of the attained average maximal
training and validation accuracy given a similar number of
trainable parameters. One also notices a faster convergence
for QCCNNs models in terms of validation accuracy as they
achieve their highest validation accuracy sooner than the
classical baseline, except for the mid-circuit measurements
pooling method. These two observations are in line with what
has been previously shown in theory [19]. In some cases
however, it is recommended to exercise some level of caution
when interpreting these results due to the overlapping variance
bands.

When comparing the different pooling methods together, the
QCCNN with Mod-c modular pooling clearly performs best
on the chosen dataset in both training and validation accuracy,
also when taking into account the errors bands. This method
is followed in maximum validation accuracy by the QCCNN
with qubit selection with Tanh(x) classical postprocessing,
and the QCCNN with RX mid-circuit measurements, both op-
tions beating the QCCNN without pooling. Only the QCCNN
with ancilla qubit pooling is performing less well than the
baseline without pooling. In the next section, we attempt to
give some insights on why some of these quantum circuits
perform better than others.

V. EFFECTIVE DIMENSION ANALYSIS

In this final section, we aim to determine whether the per-
formance of a specific VQC - and therefore a pooling method -
could be foreseen using a quantum metric. Candidates for such
a metric that were suggested in the literature are the effective
dimension, the expressibility and the entanglement capability
[30] [24]. However, the last two metrics assume a constant
number of qubits in input and output of the VQC and were
therefore not selected.

A. The effective dimension

The effective dimension (ED) is a complexity measure
motivated by information geometry and designed to estimate
the information capacity of the model. It can be computed
for both classical and quantum neural networks by using the
Fisher Information Matrix (FIM), a metric in statistics used to
evaluate the impact of the variance of the models’ parameters
on its output. The FIM is given by

F (θ) = E
[
∂

∂θ
log p(x, y; θ)

∂

∂θ
log p(x, y; θ)T

]
∈ Rd×d,

(1)
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Fig. 5: Comparison of the performance of modular quantum pooling blocks for hybrid QCCNNs in terms of training and
validation accuracy.

with p(x, y; θ) the conditional distribution describing the
relationship between the input x ∈ Rsin , the output y ∈ Rsout ,
and the parameters θ ∈ Θ, where Θ ⊂ Rd is the Riemannian
space of the model parameters.

If one uses finite sampling, the FIM can be approximated
empirically to

F̃k(θ) =
1

k

k∑
j=1

∂

∂θ
log p(xj , yj ; θ)

∂

∂θ
log p(xj , yj ; θ)

T ,

(2)
where k is the number of independent and identically dis-
tributed (i.i.d) samples (xj , yj) drawn from p(x, y; θ). This
formulation based on [32] was extended by [24] with the
addition of the constant γ ∈ (0, 1] and a log n term to assure
the ED is bounded. The ED is therefore defined as

dγ,n(MΘ) =
log( 1

VΘ

∫
Θ

√
det(idd + γn

2π logn F̂ (θ)) dθ)

log( γn
2π logn )

,

(3)
where n > 1 ∈ N is the number of data samples, VΘ

.
=∫

Θ
dθ is the volume of the parameter space, and F̂ (θ) is the

normalised FIM

F̂ij(θ) = d
VΘ∫

Θ
tr(F (θ)) dθ

Fij(θ). (4)

The resulting ED is normalized by the number of training
parameters for better comparison between the different VQCs.

B. Metric and model performance

Table I shows the calculated ED of the VQCs for all tested
quantum mechanisms as well as for the established QCCNN
baseline without pooling. Note that we choose to focus on

the VQC architecture in the calculation of the ED, thus the
classical postprocessing function is not included for the qubit
selection with classical postprocessing method.

The ED being a measure of the information capacity of
the model, we expect the training accuracy to be positively
correlated with this metric. However, this is not a conclusion
that can be drawn within this work. Mid-circuit measurements
have a relatively high normalized ED and indeed perform
well in training accuracy. On the other hand, Mod-a modular
pooling also has a good normalized ED but the performance in
training was worse. Among the lowest normalized ED values
is Mod-c, which is in fact the best performing variant. If not
taking into account Mod-b and Mod-c pooling options, we
could in fact observe a positive correlation between ED and
performance of the VQC. We hypothesize that such a relation
might still exist, and that it should be further explored in future
work. It can be for example studied whether the effect of
different optimizers could reveal the potential link between
ED and VQC performance.

VI. CONCLUSION

This work presented four different architectures - mid-
circuit measurements, ancilla qubits with controlled gates,
modular quantum pooling blocks and qubit selection with
classical postprocessing - to realize quantum pooling in hybrid
QCCNNs. For this purpose, the classical convolutional layer
within a classical CNN was replaced by a quantum convolution
and pooling layer. The use of QCCNNs is particularly interest-
ing for situations with little training data, which is typically the
case in classification tasks on medical images. Therefore, we
studied the different proposed architectures on a small dataset
featuring ultrasound images of the breast to classify lesions
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Fig. 6: Comparison of the performance of qubit selection with classical postprocessing pooling methods for hybrid QCCNNs
in terms of training and validation accuracy.
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Fig. 7: Comparison of the best-performing pooling methods for hybrid QCCNNs in terms of training and validation accuracy.

TABLE I: The ED of all trainable architectures reflected against the maximum training and validation accuracies obtained
during training. The higher the ED, the better the VQC with respect to that metric.

VQC Normalized ED Max training accuracy Max validation accuracy
RX mid-circuit measurements 0.909 ± 0.016 92.81 ± 0.37 87.08 ± 1.02
RY mid-circuit measurements 0.906 ± 0.008 87.14 ± 0.44 84.31 ± 0.20
Ancilla qubit with CY controlled gates 0.772 ± 0.041 85.81 ± 0.89 84.17 ± 1.18
Ancilla qubit with CZ controlled gates 0.801 ± 0.042 85.81 ± 0.89 84.17 ± 1.18
Modular pooling Mod-a 0.726 ± 0.006 85.21 ± 0.45 87.08 ± 0.00
Modular pooling Mod-b 0.149 ± 0.003 90.04 ± 0.30 82.92 ± 1.18
Modular pooling Mod-c 0.249 ± 0.016 91.49 ± 0.44 89.17 ± 1.56
Qubit selection for classical postprocessing 0.666 ± 0.048 82.13 ± 0.23 88.47 ± 1.29
Basic entangling layer without pooling 0.933 ± 0.019 89.19 ± 1.05 86.25 ± 1.56



as benign or malign. We find that quantum pooling variants
perform at least similar or even in some cases clearly overcome
the equivalent classical CNN and hybrid QCCNN without
pooling, while using a similar number of trainable parameters.
On the selected dataset, the modular pooling technique beat all
variants on both training and validation sets. The mid-circuit
measurements pooling seems to be particularly promising in
terms of training ability, while the qubit selection with classical
postprocessing exhibits very good generalization ability. These
results, obtained in simulation, are very promising for further
studies of QCCNNs, as those might be suited for presently
available NISQ hardware already, given the small number of
qubits required and the shallow depth of the quantum circuits
involved. The presented pooling techniques are naturally also
relevant in the design choice for fully quantum architectures.
However, to fully exploit the potential benefits, additional
work to produce insights about which circuit architectures will
result in benefits for a given use case should be pursued.
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