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Abstract—Many relevant problems in industrial settings re-
sult in NP-hard optimization problems, such as the Capaci-
tated Vehicle Routing Problem (CVRP) or its reduced variant,
the Travelling Salesperson Problem (TSP). Even with today’s
most powerful classical algorithms, the CVRP is challenging
to solve classically. Quantum computing may offer a way to
improve the time to solution, although the question remains
open as to whether Noisy Intermediate-Scale Quantum (NISQ)
devices can achieve a practical advantage compared to classical
heuristics. The most prominent algorithms proposed to solve
combinatorial optimization problems in the NISQ era are the
Quantum Approximate Optimization Algorithm (QAOA) and the
more general Variational Quantum Eigensolver (VQE). However,
implementing them in a way that reliably provides high-quality
solutions is challenging, even for toy examples. In this work,
we discuss decomposition and formulation aspects of the CVRP
and propose an application-driven way to measure solution
quality. Considering current hardware constraints, we reduce
the CVRP to a clustering phase and a set of TSPs. For the
TSP, we extensively test both QAOA and VQE and investigate
the influence of various hyperparameters, such as the classical
optimizer choice and strength of constraint penalization. Results
of QAOA are generally of limited quality because the algorithm
does not reach the energy threshold for feasible TSP solutions,
even when considering various extensions such as recursive and
constraint-preserving mixer QAOA. On the other hand, the VQE
reaches the energy threshold and shows a better performance.
Our work outlines the obstacles to quantum-assisted solutions
for real-world optimization problems and proposes perspectives
on how to overcome them.

I. INTRODUCTION

Transportation and logistics are becoming increasingly in-
telligent with the aid of the Internet of Things (IoT), which
plays a pivotal role in achieving a smart industry pursuing
digitalization and decarbonization. Waste management is an
area with high potential for improvement in effectiveness and
efficiency. For instance, in large cities, overflowing waste
containers are a common problem. Trucks follow fixed routes
regardless how full the containers are. To improve these routes,
containers can be equipped with sensors providing real-time
information on their filling level. Then, optimal routes can be
calculated dynamically to only visit full containers and make
the most of the truck’s capacity. However, efficient planning
of vehicle routes is essential to take advantage of these op-

portunities. The route planning for waste collection translates
to a Capacitated Vehicle Routing Problem (CVRP), which is
NP-hard. Therefore, industry-sized problems with hundreds to
thousands of nodes can only be solved heuristically.

Quantum computing (QC) offers exciting possibilities to
perform certain computational tasks better than classical
solvers and may be able to speed up challenging optimization
problems like route planning. Powerful algorithms, such as
Shor’s factorization [1] or Grover’s search [2] have a proven
advantage over their classical counterparts, but require fault-
tolerant quantum computers. The current quantum hardware,
however, is prone to errors and limited in the number of
qubits and connectivity, which sparked interest in variational
quantum algorithms for these Noisy Intermediate-Scale Quan-
tum (NISQ) devices [3]. They use a combination of rela-
tively shallow parameterized quantum circuits and classical
optimizers to improve the noise resilience. As a result, these
algorithms do not require fully error-corrected qubits and can
be used even with relatively few physical qubits. While the
capabilities of variational quantum algorithms are not fully
understood yet, they have the potential to harness the power of
quantum computing even in the current NISQ era. Countless
proposals have been put forth, mainly centered around the
Quantum Approximate Optimization Algorithm (QAOA) [4]
and the Variational Quantum Eigensolver (VQE) [5]. However,
their practical application to industry-relevant optimization
problems poses challenges such as finding useful mathemati-
cal formulations, setting good hyperparameters of variational
algorithms, or measuring the solution quality. For example,
a challenge commonly faced when training parameters of
a variational quantum algorithm are barren plateaus in the
energy landscape [6]. Also, not all optimization problems
might be well-suited for QC. An individual analysis of each
application is required.

This work aims to study the application of quantum-
enhanced algorithms to an optimization problem motivated
by the real world, the CVRP, and to highlight the challenges
it poses for QC. We assess the viability of formulation,
decomposition, and algorithmic options for NISQ hardware
with regards to problem-specific performance measures. To
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facilitate the numerical experiments, it is necessary to reduce
the CVRP to its simpler variant, the Travelling Salesperson
Problem (TSP) which arises from the CVRP as a subproblem
after an initial clustering step. Many real-world TSP instances
can be solved efficiently by classical solvers like Concorde [7],
[8], however, a solution to the CVRP remains hard to compute
in practice. In this paper, conclusions for quantum-assisted
solutions are drawn for both, the TSP as well as the CVRP.
We test QAOA and VQE extensively for the TSP and analyze
the influence of various hyperparameters like the classical
optimizer choice and strength of constraint penalization. We
pinpoint what makes TSP hard for QC and work towards
separating fundamental problems from the challenge of finding
good hyperparameters. Furthermore, we define a performance
metric suited to the particular problem which can serve as
template for other optimization problems and puts the focus on
the solution quality from an application perspective. Obtaining
useful results with the QAOA and its variants proves to be
difficult even for simple TSPs. We conjecture that the bad
results of QAOA are caused by the fact that it does not reach
the energy threshold required for feasible TSP solutions that
can be found in VQE simulations. Common extensions of
QAOA, like recursive QAOA [9] or the constraint preserving
mixer QAOA [10] do not yield better results. The VQE, on
the other hand, converges better and finds good solutions for
all tested instances.

In Section II we introduce the basic concepts in quantum
optimization used throughout the paper. In Section III we
derive QUBO formulations for the CVRP and the subprob-
lems arising from its two-phase solution (Clustering and the
TSP) and define an application-specific performance metric.
Section IV contains the main results of this paper, where the
TSP is solved with QAOA, VQE and several extensions. We
discuss the results in Section V and suggest future research
directions in Section VI.

II. PRELIMINARIES

A. Quadratic Unconstrained Binary Optimization
Many discrete optimization problems can be formulated

in terms of a Quadratic Unconstrained Binary Optimization
(QUBO) problem. It is a convenient input format for quan-
tum optimization algorithms, stated as minimization problem
minx f(x) with binary decision variables x ∈ {0, 1}n, and
a quadratic cost function f(x) = xTQx for a square matrix
Q ∈ Rn×n, the QUBO matrix. Thus, a QUBO problem is
defined by

min
x∈{0,1}n

xTQx. (1)

Any QUBO can be mapped directly to an Ising model and
vice versa [11] which is why it is extensively used in QC.
This transformation is sketched in Section III-C for the TSP.

B. Variational Quantum Algorithms
Variational quantum computing [12] is a proposal to make

use of imperfect NISQ era devices. It combines shallow pa-
rameterized quantum circuits with classical optimizers, aiming

to find a combination of parameters such that the circuit
prepares a quantum state representing the solution of a given
problem. The main application areas are simulation (e.g.
in quantum chemistry), machine learning and mathematical
optimization. The latter starts with expressing the cost function
C(x) as a quantum expectation value:

C(x) = 〈ψ(x)|HP |ψ(x)〉 (2)

The state |ψ(x〉) is prepared by a quantum circuit (the ansatz)
depending on parameters θ. Mathematically, this changes the
optimization variables to θ.

|ψ(θ)〉 = U(θ) |+〉
C(θ) = 〈+|U†(θ)HPU(θ)|+〉

(3)

Once the ansatz is chosen, a classical optimizer tries to find
the optimal parameters θ that minimize C(θ) by repeatedly
evaluating the expectation value in (3).

QAOA is a particular ansatz, originally proposed in [4], that
can be regarded as the trotterized version of adiabatic quantum
computing. Given the optimization problem encoded into an
Ising Hamiltonian HP , the ansatz is then given by

U(β,γ) =

p∏
k=1

e−iβkHM e−iγkHP . (4)

The number of alternating layers p is commonly called depth.
HM is the mixer Hamiltonian, corresponding to the driver in
adiabatic quantum computing, Its standard choice is HM =∑
j σ

x
j .

Starting from this simple variational protocol, numerous
improvements have been proposed such as warm-start [13]
and recursive variants [9].

VQE [5] is a more general variational quantum algorithm
allowing for an arbitrary ansatz. Its advantage over QAOA
for optimization problems lies in the availability of hardware-
efficient ansätze that are designed specifically to respect the
native gate set and connectivity of the quantum hardware. The
ansatz in (3) is

U(θ) =

p+c∏
k=1

Uk(θ),
(5)

where the circuit may contain c non-parameterized gates and
p parameterized ones of the form e−iθHk . Usually, p is much
larger compared to QAOA, but each operator Uk typically only
involves one or two qubits.

III. MATHEMATICAL FORMULATION OF THE USE CASE

The optimization problem motivated by the waste manage-
ment logistics is modeled as a CVRP. Formally, the CVRP is
defined on a graph with n nodes and weighted directed edges.
Each node i represents a customer with demand di, where
node 0 represents a depot. The edge weights wij represent
distances for travelling from node i to j. We aim to find
the shortest route for a vehicle with capacity C visiting each
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customer to satisfy their demand. When the vehicle visits a
customer node i, its current capacity is decreased by di. Upon
returning to the depot 0, the capacity is filled up to C again.
If
∑n
i=1 di ≤ C, the CVRP reduces to searching for a tour

among all vertices with least total edge weight, known as the
travelling salesperson problem (TSP). It is described in more
detail in Section III-C. However, in the case

∑n
i=1 di > C,

the optimal tour will split up into cycles intersecting at the
depot node as shown in Figure 1. The TSP and by extension
the harder CVRP are proven to be NP-hard [14].
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Figure 1: An example instance of the capacitated vehicle
routing problem and its optimal path. The number in each node
corresponds to its demand, the edge weights their distances,
and “D” marks the depot. The blue cycle will be used as 6-,
5- and 4-node TSP instances for the numerical experiments.

A. QUBO formulation of the CVRP

In recent years, several QUBO formulations have been
stated for CVRP variants. Irie et al. [15] introduce a time-table
based CVRP formulation defining decision variables which
indicate whether a vehicle arrives at a location within a certain
time interval. Harikrishnakumar et al. [16] allow for CVRPs
with multiple depot nodes. The CVRP formulated in [15] and
[16] considers one vehicle visiting all customers which is able
to return to the depot to fill up its capacity. In this work,
we consider several vehicles with capacity C ∈ N being sent
to visit some customers and return to the depot without the
possibility of recharging at the depot. We optimize the total
length of all paths such that CO2 emissions are minimized.
The CVRP with multiple vehicles is also considered by Feld
et al. [17]. However, our formulation needs fewer terms and
requires slightly less qubits. For this, let the binary variable
xkv,t mark whether vehicle k visits customer v at time step t.
For an ideal tour, we need K∗ vehicles to serve all customers.

In general, we do not know K∗ a priori, thus, we suggest the
number of vehicles to be set to K =

⌈∑
v∈V dv
C

⌉
. Similarly,

T ∗ is unknown and is set as T = n for the worst case of
one vehicle visiting all costumers. The objective function to
be minimized is the total distance given by

Hobj =
∑

v,v′,t,k

wvv′ · xkv,t · xkv′,t+1. (6)

The three constraints (C1) visiting each customer exactly
once, (C2) visiting exactly one customer or the depot for each
time step and each car, and (C3) respecting the capacity of
each vehicle, can be formulated as

(C1) HC1
=

n∑
v=1

(
1−

K∑
k=1

T∑
t=1

xkv,t

)2

!
= 0,

(C2) HC2
=

K∑
k=1

T∑
t=1

(
1−

n∑
v=0

xkv,t

)2

!
= 0,

(C3)

T∑
t=1

n∑
v=1

xkv,t · dv ≤ C ∀k ∈ K.

(7)

In order to ensure that every vehicle starts and ends at the
depot we set xk0,1 = xk0,T = 1 for each k. In general, we might
have chosen a larger number of time steps than necessary
for the optimal solution, i.e. T > T ∗. Whenever a time step
is not needed, the constraint (C2) will force xk0,t = 1 for
all time steps t corresponding to the car k staying at the
depot. Note that this does not contradict constraint (C1) as
the sum over the nodes starts at v = 1. Next, we transform
the inequality in (C3) into an equation by introducing slack
variables ykb ∈ {0, 1} which represent the sum of demands of
customers visited by vehicle k. With a logarithmic encoding,
this requires K · dlog2(C + 1)e additional qubits resulting in
the QUBO term

HC3
=

K∑
k=1

[(
T∑
t=1

n∑
v=1

xkv,t · dv

)

+

dlog(C+1)e−1∑
b=0

2b · ykb

− C
2

.

(8)

A complete QUBO formulation for the CVRP is thus given
by

HCVRP = Hobj + P1HC1 + P2HC2 + P3HC3 . (9)

This QUBO requires fewer resources (terms and qubits) than
the formulation derived in [17]. Instead of K ·C slack bits, we
use K · dlog2(C + 1)e. However, a large number of decision
variables, n · T · K, remains. For NISQ devices, it is thus
necessary to consider a heuristic two-phase approach splitting
the CVRP into a Clustering Phase (CP) and a TSP [18]. This
method drastically reduces the number of qubits at the cost of
possibly losing optimality. The heuristic works in two steps:
the CP aims to group customers such that the demands within
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a group do not exceed the truck’s capacity and the groups
stay close together. Then, it remains to solve the TSP for each
cluster.

B. The Clustering Phase

The CP is modelled as a multiple Knapsack problem, where
each customer should be assigned to a knapsack such that
the sum of the customers’ demands does not overstep the
knapsack’s capacity C, which is equal to the truck’s capacity
from the CVRP. Additionally, the sum of distances within
each Knapsack is minimized. A QUBO formulation to the
CP is given in [17]. We slightly change this formulation by
introducing a binary encoding for the slack variables.

P1

K∑
k=1

( n∑
v=1

xkv · dv

)
+

dlog(C+1)e−1∑
b=0

2b · ykb

− C
2

+P2

n∑
v=1

(
1−

K∑
k=1

xkv

)2

+ P3

K∑
k=1

 ∑
u,v∈V

Duvx
k
ux

k
v

 ,

(10)

where xkv :=
∑T
t=1 x

k
v,t and xkv = 1, if customer v is packed

in Knapsack k. The slack variables ykb represent the filling
level of each knapsack and K =

⌈∑
v∈V dv
C

⌉
is the number

of knapsacks as defined in Section III-A. A penalty factor
P1 ensures that each knapsack’s filling level takes a value
between 0 and the capacity C. Analogously, P2 requires each
customer to be packed into exactly one knapsack. The last term
in (10) is the sum of all edge weights within a cluster. As the
last term can easily dominate the other summands, especially
for large C, we aim to normalize it. With an approximate
number n

K of customers per cluster, a route within a cluster
visiting each node once contains n

K − 1 edges. Therefore, we
suggest to choose the penalty factor P3 = p · Kn , where p is a
constant. With this normalization, the summand approximately
represents the length of a route in a given cluster.

As described in Section III-B, the CP is similar to a multiple
knapsack problem extended by the minimization of the sum
of all distances within a knapsack. In [19], several quantum
approaches to the multiple Knapsack problem are evaluated
demonstrating a rather bad performance. This aligns with the
performance benchmarks we derived for the CP of the CVRP
when running QAOA and VQE. Therefore, we do not further
investigate the performance of these algorithms for the CP in
this work.

C. The Travelling Salesperson Problem

The TSP can be stated as follows: Given a complete,
undirected and weighted graph, find the shortest cycle that
contains all vertices. In this picture, cities are modeled as
vertices and the distances between them as edge weights of the
graph. A minimal complete description of a problem instance
is therefore given by its (symmetric) adjacency matrix D.

The direct encoding into a QUBO is given in [20]. It
requires (n−1)2 binary decision variables xij , where i labels

the cities and j the position they appear in the path. The
reduction from n2 to (n − 1)2 variables comes with the
elimination of the cyclic permutation symmetry of the TSP
paths. For simplicity, we present the non-reduced n2-variable
cost function:

C({xij}) = s

 n∑
i,i′,j=1

Dii′xijxi′(j+1)

+P

n∑
i=1

1−
n∑
j=1

xij

2

+P

n∑
j=1

(
1−

n∑
i=1

xij

)2
 .

(11)

Here, s is an overall scaling factor that does not change the
optimum, but may be used to improve numerical stability
and convergence. P scales the penalty associated to the two
constraints of (C1) visiting each city exactly once and (C2)
asserting each position exactly once. In the first sum, the
actual TSP path length, n+ 1 ≡ 1 is assumed. The reduction
to (n − 1)2 variables is straightforward by setting x11 = 1
and x1i = xi1 = 0 ∀i 6= 1. Since all variables are binary,
x2ij = xij and the corresponding QUBO matrix element Qijkl,
the interaction between xij and xkl, is given by

Qijkl = −2sPδikδjl + sP [δik(1− δjl) + δjl(1− δik)]

+sDik[δj(l+1) + δj(l−1)].
(12)

The first addend describes the diagonal terms, the second the
penalty for violating the constraints, and the third the TSP
path length. A constant contribution oQ := 2nsP (the QUBO
offset) has been omitted here such that the QUBO problem
reads

Minimize
∑
i,j,k,l

xijQijklxkl

for xij ∈ {0, 1}∀i, j = 1, . . . , n.

(13)

One can now pass to an Ising formulation with variables zij ∈
{−1, 1} via zij := 2xij − 1, dropping another offset oI =∑
i,j,k,lQijkl − 2sn2P along the way (the latter contribution

arises because z2ij = 1). Promoting the variables to Pauli-Z
operators σijz then yields the Ising Hamiltonian

HP =
∑

(i,j)6=(k,l)

Qijkl
4

σijz σ
kl
z +

∑
i,j,k,l

Qijkl
2

σklz . (14)

The open questions are now how to determine s and P in (12),
and how to judge the quality of a state in the presence of
potentially infeasible states. For the sake of completeness, the
TSP can be cast into different formulations by representing a
path as a permutation of (1, . . . , n) and then encoding these
integer variables into binaries. The formulation used here is
equivalent to one-hot encoding in this protocol.
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1) A performance metric
In order to compare the performance of quantum algorithms

on the TSP, a performance metric akin to the MaxCut approxi-
mation ratio is needed. For the TSP, infeasible solutions do not
correspond to routes and are thus useless. A desirable metric
should yield information about the overlap of an outcome |ψ〉
with the subspace of feasible solutions. For this reason, we
propose an alternate measure consisting of a pair of values.
First, we would like to know

∑
|feasible〉 | 〈feasible|ψ〉 |2. Since

for the TSP the number of feasible solutions grows as a
factorial of the problem size, calculating this quantity will
quickly become costly when scaling the problem size. Instead,
we suggest to consider the feasibility ratio

mfeas :=
# feasible shots

#shots
. (15)

Similarly, when searching for an optimal (and not only
feasible) state, we are interested in the overlap of opti-
mal states with feasible ones

∑
|optimal〉 | 〈optimal|ψfeasible〉 |2,

where |ψfeasible〉 is the projection of |ψ〉 onto feasible states∑
|feasible〉 |feasible〉 〈feasible|ψ〉. However, this sum should be

weighted with the TSP path length to measure the closeness
to the optimal solution. Ultimately, optimality can then be
measured by the TSP length ratio

mlen :=
optimal TSP path length

averaged TSP path length for feas. shots
. (16)

Since the optimal TSP path length is, in general, unknown,
the nominator can be replaced with the best known classical
solution. Finally, an informative measure of the performance
of a quantum algorithm for the TSP is given by the tuple

(mlen,mfeas) . (17)

These indicators are well suited for assessing the quality of a
TSP solution even in the absence of a working amplification
of the solution state. Unlike the energy, they depend on the
penalty only through the optimization process and can thus
be used to compare different penalty values and selection
strategies. Naturally, the ideal value is (1, 1) and the equal
superposition of all basis states corresponds to (c, (n−1)!

2(n−1)2
),

where c = optimal TSP path length
averaged TSP path length for all feas. states depends on the

given instance. This quickly goes to (c, 0) with increasing n.
Note that the TSP length ratio is bounded from below by ratio
corresponding to the longest path l (l < mlen < 1). Further,
there is a potentially high variance in determining the ratios
in a shot-based way, especially when the algorithm fails to
amplify the solution states strongly enough and the circuit
therefore samples from a very flat distribution.

This performance measure can analogously be defined for
the CVRP by simply exchanging the TSP length by the CVRP
length in (16).

IV. QUANTUM-ASSISTED SOLUTION PATHS FOR THE TSP

We now turn to the solution of the TSP. The algorithms
are tested on instances with 4, 5 and 6 nodes derived from the
blue part in the CVRP (Figure 1). These instances are encoded

−3 0 3

−2

0

2

−8 0 8
−8

0

8
QAOA VQE

θ1

θ2

Figure 2: The loss landscapes for QAOA (left) and VQE
(right) differ drastically. Both are plotted in a plane randomly
oriented in the parameter space of 10 (QAOA) and 27 (VQE)
dimensions. The overall structure of the loss landscape is much
less complicated for VQE, but for large parameter values, high
fluctuations come into play. QAOA clearly has a large area
with near-vanishing gradients with maxima and minima close
by each other.

into 9-, 16- and 25-qubit Hamiltonians such that the resulting
algorithms can be run with a statevector simulator. We exten-
sively test QAOA and VQE as well as the hyperparameters.
Beyond the scaling s and penalty factor P as described in
Section III-C, those include algorithm-specific options such
as the optimizer or the exact ansatz.

VQE and QAOA behave differently due to their loss land-
scapes. Figure 2 compares a 9-qubit QAOA ansatz with depth
5 and a hardware-efficient 9-qubit VQE with 27 parameters. It
shows a plane parameterized by θ1 and θ2 that is randomly ori-
ented in the high-dimensional parameter space. VQE exhibits
a much coarser structure, although high-frequency components
appear for larger parameter values. For QAOA, maxima and
minima lie closely together, surrounded by areas with small
gradients. Taken together, it seems like there is a tradeoff
between the number of dimensions of the parameter landscape
and its complexity for single parameters.

A. QAOA

The QAOA ansatz is fully determined by the problem
Hamiltonian Hp depth p. The algorithm furthermore needs a
classical optimizer and an initial point. The complete selection
of hyperparameters of the algorithm and Hamiltonian formula-
tion is given in Table I. Since finding good parameter selection
strategies is an open research question, especially combined
with an application-specific performance metric, we turn to
discussing the tuning options for these parameters.

1) Scaling Factor Selection
The scaling factor s does not influence the location of the

minimum. However, adjusting s might help the optimizer since
it treats the β and γ parameters on equal grounds [21]. It is
therefore beneficial to equalize their impact on the ansatz.
Ref. [21] tries to achieve this by scaling HP such that
its spectral width aligns with the mixer HM . However, the
approximate period of the e−iγHP operator depends on the
spacing of the eigenvalues. Therefore, we propose the ground
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Table I: Hyperparameter choices for setting up QAOA for the
TSP

Hyperparameter Options Policy
Name Symbol

Penalty Factor P P > Pmin Section IV-A2
Scaling Factor s s > 0 Section IV-A1
QAOA depth p p ∈ N fixed p = 5
Optimizer options provided by Qiskit Testing
Initialization random, linear Testing

state gap strategy instead: equalize the gap between the ground
state and lowest excited state. The smallest excitation of the
σx mixer corresponds to a single spin flip with an energy gap
∆M = 2. For small systems, the ground state gap has a high
variance and leads to larger s overall. With increasing system
size, both strategies approach each other.

Although the scaling factor selection is not the most press-
ing issue, it should not be neglected as it directly influences
the unit in which the distances between the TSP nodes are to
be measured. For toy examples, both the spectral width and
ground state gap strategies roughly amount to normalizing the
distances such that they are of O(1).

2) Penalty Factor Selection
The penalty factor needs to ensure that the lowest energy

state is feasible and thus optimal. It is therefore bounded from
below by a Pmin and unbounded from above. From a practical
standpoint, a certain separation between the optimal state and
infeasible ones is desirable, but the penalty should not be
chosen too high to avoid very rugged loss landscapes getting
in the way of the optimization process. The test instances
are classically solvable and Pmin can be calculated, but it
is unknown for unsolved real-world instances. We therefore
adopt the following protocol: Determine Pmin for a number of
classically accessible instances of increasing size, then derive
a scaling relation to approximate Pmin for larger instances.
The actual penalty should then be chosen slightly larger to
achieve good penalization (e.g., 1.2 ·Pmin). Computing Pmin
for TSP sizes 4 through 9 and 1000 instances each shows that
it does not scale with system size, but remains stable around
Pmin = 57 ± 11 with fewer than 0.1% problematic outliers
above the 3σ interval. Luckily, a sanity check for the feasibility
of obtained solutions is easy.

3) Initialization
The QAOA loss landscapes exhibit large areas of barren

plateaus [6] and sections riddled with local minima. Therefore,
the initial point in parameter space plays an important role in
the performance of QAOA. For the scope of this paper, we
consider two relatively simple strategies, uniformly random
initialization and a linear initialization. The latter is inspired
by the analogy between QAOA and quantum annealing. The
β parameters decrease linearly with each layer whereas the
γ increase linearly in order to mimic the annealing time
evolution. We observe no statistically significant difference
between the two strategies and, for this reason, stick with
random initialization. In principle, there are more sophisticated
strategies for the initial point selection [22].

4) QAOA Depth
The depth p of QAOA determines the number of alternating

layers applied to construct the ansatz. As p increases, the
approximation of the ground state of the problem Hamiltonian
is expected to improve [4]. Due to decoherence, NISQ devices
are limited to relatively shallow circuits. Following a reverse
causal cone argument [23], a depth of p = 5 should be
sufficient to produce reasonable solutions.

5) Simulating QAOA with Various Optimizers and Hyper-
parameters

Together with the hyperparameters shown above, the op-
timizers accessible through Qiskit are tested in statevector
simulation for the 4-node TSP instance (for data see Ap-
pendix A). Throughout all tests, the achieved feasibility ratio is
low, and the variational procedure does not manage to amplify
a solution state sufficiently, or reliably produce a feasible state.
This is true even for the smallest example instance of four
cities. The optimizers still differ in performance as seen by
the final energies, with NFT and UMDA reaching the best
states. Among the other optimizers, some fail to converge with
the allocated iteration budget (Nelder-Mead, SPSA) whereas
others finish quickly without any meaningful optimization
effort (SLSQP). While still far from any useful solution, the
Powell optimizer shows the best combination of the number
of quantum circuit executions and energy obtained.

In light of these results, tests with real hardware do not seem
useful. Even switching from the exact statevector simulation
method to approximate ones resulted in a severe decrease in
solution quality, most likely due to the very flat distribution
of output states. Furthermore, real hardware would be much
more restricted in the number of circuit executions. Overall,
it is doubtful that the performance gap can be closed by mere
hyperparameter tuning. Our experiments with various scaling
factors, penalties, depth and initial points support this claim.

B. Warm-Start QAOA

A possible improvement to the standard QAOA ansatz,
referred to as warm-start QAOA (WS-QAOA), was proposed
by Egger, Mareček and Woerner [13]. Instead of preparing a
uniform superposition state |+〉⊗n, a classical solver obtains
a solution to the relaxed continuous problem, x̃ ∈ [0, 1]n that,
once encoded, serves as initial state

|ψ̃〉 =

n−1⊗
i=0

RY (θi) |0〉 , (18)

where the angles are defined by the solution x̃ by θi =
2 arcsin

√
x̃i. Further, a new mixer operator is defined that

depends on the continuous solution x̃ as well. The solution
to the relaxation of the QUBO problem of the 4-node TSP
instance turns out to be integer. Thus the initial state is a
computational basis state corresponding to the optimal solution
and a search with QAOA is not necessary. For this reason, we
cannot derive any insights on the performance of WS-QAOA
based on the present instance.
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C. Recursive QAOA

Recursive QAOA (rQAOA) [9] is a potential extension
of the QAOA protocol aimed at improving its performance.
The idea is to use QAOA to find correlated qubits that can
then be merged to reduce the problem size until it can be
solved classically. The strongest correlation among qubit pairs
is effectively rounded to ±1, replacing both qubits with a
single one while modifying the cost function in accordance
with the sign of the correlation. However, the success of this
reduction directly depends on the accuracy of the rounding.
The low-quality QAOA output achieved for the TSP does
certainly not suffice to produce meaningful results. For the
MaxCut problem (the standard test problem for QAOA),
rQAOA has shown promising results. However, when applied
to the TSP, rQAOA encounters two additional obstacles. First,
the reduction process can be very fragile with approximate
solutions, and even a single error can render the entire rQAOA
output meaningless. For example, one faulty correlation that
results in setting two qubits associated to the same node as
equal results in the whole rQAOA never exploring feasible
states in the future. MaxCut has no infeasible states and
thus does not suffer from this problem. Second, the one-hot
encoding together with the inherent inversion symmetry of the
TSP paths significantly reduces the amount of correlation in
the qubit pairs. To illustrate, the 4-node TSP has two optimal
routes, (0,1,3,2) and (0,2,3,1), corresponding to the bitstrings
100001010 and 010001100, respectively. Any algorithm that
only distinguishes states by their Ising energy cannot tell them
apart. A perfect solution is therefore a mixture between these
states. However, only half of the qubit pairs are correlated.
For the two equivalent solution strings of a MaxCut problem
in contrast, all qubit pairs are correlated. In the light of these
theoretical and practical difficulties, applying rQAOA to the
TSP problem does not seem sensible.

D. Constraint-Preserving Mixer QAOA

The Constraint-Preserving Mixer QAOA, often referred to
as Quantum Alternating Operator Ansatz (AOA) [10], aims to
restrict the search space to the subspace containing the feasible
solutions. Consider a binary optimization problem min f(x)
for x ∈ F ⊂ {0, 1}n. Define a Hamiltonian Hf to act as f on
computational basis states, i.e. Hf |x〉 = f(x) |x〉. Then the
Alternating Operator Ansatz (AOA) is defined by two families
of parameterized operators,

• phase separation operators UP (β) defined by the objec-
tive function f , e.g. UP (β) = e−iβHf , and

• mixing operators UM (γ) defined by the constraints that
preserve the feasible subspace F and allow its full
exploration.

The quantum circuit of the AOA is given by the alternating
application of the two operators for p layers on an easily
prepared feasible initial state |s〉 (s ∈ F ). The parameters
are then optimized classically as in QAOA.

In [10], constructions for mixer operators for several appli-
cations are given, including the TSP. Let

S+ = |1〉 〈0| , S− = |0〉 〈1| , (19)

HM,i,{u,v} = S+
u,iS

+
v,i+1S

−
u,i+1S

−
v,i + S−u,iS

−
v,i+1S

+
u,i+1S

+
v,i,
(20)

HM =

n∑
i=1

∑
{u,v}∈([n]

2 )

HM,i,{u,v}. (21)

Then a mixer operator for the TSP is given by

UM(β) = eiβHM . (22)

For a 4-node TSP instance, this mixer Hamiltonian consists
of 1100 terms. In our simulations, states remain feasible
throughout the search, however, the optimal solution was not
found.

E. Variational Quantum Eigensolver

For VQE, we test a simple ansatz comprising a layer of
single-qubit rotation gates (X and Z) followed by entangling
controlled-X rotation gates in nearest-neighbor connectivity on
a chain topology. To ensure a fair comparison, we adjust the
maximum allowed number of iterations to the optimizer to
avoid exceeding the timeout of the IBM statevector simulator.
All TSP instances were formulated with a penalty of P = 100
for the optimizer comparison. To facilitate the comparison with
the QAOA runs, we chose the scaling factor with the ground
state gap strategy outlined in Section IV-A1. However, since
the optimizers are scale-invariant and the problem Hamiltonian
does not enter the ansatz, the scaling factor is irrelevant for
VQE.

1) Optimizers
For the simple TSP example, the optimization process is

quite successful for most optimizers, as shown in Table II.
Feasibility ratios of 90% and above are within reach, as
Figure 3 illustrates while some optimizers still fail to am-
plify the solution state at all. Notably, the Powell, COBYLA
and Nelder-Mead optimizers are stable. In high-dimensional
parameter spaces such as the ones encountered in TSP, one
should therefore prefer gradient-free optimizers. The Nelder-
Mead method, although robust, requires a huge number of
evaluations of the quantum circuit to converge and may not be
suitable for practical applications. Furthermore, the number of
iterations needed grows with the system size. It is worth noting
that execution times on the IBM statevector simulator do not
seem to depend solely on the total number of quantum circuit
shots, even for the same optimizer. Scheduling might interfere
here, so comparing circuit executions is a better performance
metric than real time, assuming a fixed ansatz.

There is no monotone relation between the Ising energy and
the application-specific performance metric (mlen,mfeas). As
seen in Figure 3 for TSP instances of size 5 and 6, there is
a transition point where the feasibility increases rapidly with
decreasing energy. Below this energy threshold, a high number
of measured shots will be feasible. For a successful solution

7



of the TSP, it is crucial to surpass this threshold at about 97-
98% of the optimal energy, which is far beyond QAOA’s per-
formance guarantees. The relative transition threshold depends
on the penalty factor, but not the scaling. The appearance of the
transition changes with the optimizer as well, see Appendix B
for tests with COBYLA.

Moreover, Table II includes the results of a small number of
VQE runs with the best optimizers (Powell and NFT) on the
27-qubit IBM system in Ehningen. As expected, performance
degrades significantly compared to the simulation, with NFT
showing a better noise resilience than Powell. Only the 4-node
TSP could be solved satisfactorily on real hardware.

2) Penalty
The selection of suitable penalty factors is an open research

question that receives constant interest. For the 4- and 5-node
TSPs, we have determined that the minimum penalties Pmin
required to ensure the lowest energy state is also a feasible
(and therefore optimal) solution are approximately 50 and
75, respectively. In our simulations, we tested penalty factors
ranging from approximately Pmin to 3Pmin, using the best
optimizers identified beforehand, NFT and Powell. The scaling
factor was kept constant. The optimal energies still shift due to
the constant offset between the QUBO and Ising formulations,
which is dependent on the penalty.

For the 4-node TSP (data see Appendix C), the quantum
state found by the NFT optimizer contains almost exclusively
feasible states regardless of the penalty. The TSP length ratio
seems to reach a stable plateau at about P = 70, but is overall
high. However, the optimizer uses its iteration budget (maxfev)
entirely on most runs. Powell, on the other hand, converges
faster, but achieves lower TSP ratios for penalties P = 50 and
P = 60. The solution quality stabilizes again around a penalty
factor of P = 70.

The results for the 5-node TSP in Table III clearly demon-
strate the impact of penalties below Pmin ≈ 75. For P = 50,
the feasibility is very low (the uniform superposition would
be at 4!/216 ≈ 4 · 10−4). The feasibility ratio at P = 70
and 80 rises significantly and, most interestingly, has a high
variance, suggesting a feasibility phase transition when the
lowest feasible state crosses the lowest infeasible one. Above
this transition, NFT achieves good feasibility ratios, whereas
Powell remains in a medium feasibility ratio regime with
high variance between runs. Both optimizers’ average TSP
length ratio stays around 75 − 85%, (uniform superposition:
79%), however variance indicates runs with it coming close to
optimality. NFT once again depletes its entire iteration budget,
while Powell terminates after roughly 3700 executions of the
quantum circuit (excluding shots).

V. DISCUSSION

We have conducted an evaluation of the usefulness of
current-era QC restricted to NISQ devices for the highly
relevant TSP application. The TSP is a simpler variant of
the CVRP, which is particularly difficult to solve using clas-
sical computing methods. To this end, we have presented a
QUBO formulation of the CVRP that requires fewer qubits

than previously derived formulations. Our numerical studies
are based on two prominent variational algorithms for opti-
mization problems, VQE and its special case, QAOA. Their
performance was evaluated on simulators as well as in first
hardware experiments. To reflect the actual solution quality of
the algorithm, we have proposed a pair of performance metrics,
(mlen,mfeas), which measures the ratio of obtained path length
to the optimal (or best known) one and the feasibility ratio,
respectively. This performance metric is necessary to account
for infeasible solutions in contrast to the approximation ratio
for MaxCut. It enables the user to quickly judge the quality of
the algorithm from an application viewpoint and to determine
whether it can yield helpful solutions to their problem. In
practice, the Ising energy is not of interest to end users, but the
feasibility and quality of the final path. Our experiments have
shown that the Ising energy has no monotone relation with
the performance metrics. Instead, at an (Ising) approximation
ratio around 97 − 98%, the feasibility rises significantly and
is close to zero below. This explains why QAOA failed
to obtain feasible results since it stays below the threshold
for all hyperparameter choices. The high approximation ratio
required is partly caused by the problem formulation and
might be avoided with a different encoding. In our suggested
formulation, we state several constraint terms, and violating
any constraint increases the energy, thus, the energy spectrum
is quite wide with a large part of it only differentiating between
infeasible states. Furthermore, extensions like rQAOA, WS-
QAOA and QAOA with a constraint-preserving mixer are a
possible path to improve the convergence process, but require
more tuning and did not converge to the optimal solution with
an out-of-the-box implementation either. On the other hand,
hardware-efficient VQE performs well for toy instances of
4, 5 and 6 cities with very little hyperparameter tuning. In
particular, Powell and NFT are powerful optimizers that can
tackle the high-dimensional parameter space of 3 parameters
per qubit without major problems. The parameter landscape
of VQE has a simple structure, especially when compared
to QAOA, cf. Figure 2, which enables the optimizer to
find good parameters. However, the performance decreases
again on real hardware which is expected due to noise and
runtime constraints. With a more thorough ansatz selection
and hyperparameter tuning, good results on hardware do not
seem out of reach. Ansätze with a more favorable tuning of the
parameter number are of particular interest. The ansatz used
in Section IV-E needs three parameters per qubit, or a total of
3(n− 1)2 parameters for a n-vertex TSP.

VI. OUTLOOK

This work serves as a foundational exploration of the CVRP
with variational quantum algorithms, highlighting the obsta-
cles in obtaining useful solutions. While the study’s outcomes
demonstrate the difficulty of achieving high quality solutions,
there are several proposals of interest for future studies, such as
encoding mechanisms or algorithms. One promising approach
attempts to obtain more favorable loss landscapes with alterna-
tive encodings (e.g., binary, domain-wall). Additionally, using
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Table II: VQE performance with various optimizers. Each row results from a set 50 individuals runs with randomly chosen
initial points. The maximum number of circuit evaluations is adapted to the three hour timeout of the statevector simulator.
Sets where a significant number of runs did not reach convergence within the allocated maximum number of circuit executions
are marked with a star (∗) in the circuit executions column. Hardware runs are indicated by (H) in the optimizer column. The
data is grouped by TSP size, where the analytic optimal energies for each instance are given in the intermediate rows.

Optimizer Energy ↓ Feas. ratio mfeas ↑ TSP ratio mlen ↑ Circuit executions ↓
TSP size 4 Optimal energy −137.72
Powell −136.6± 3.3 0.986± 0.012 0.95± 0.12 2000± 500
Powell (H) −109± 15 0.37± 0.34 0.91± 0.14 900± 800
COBYLA −125± 16 0.60± 0.43 0.89± 0.16 330± 60
Nelder-Mead −74.3± 4.0 (2.5± 2.8) · 10−3 0.85± 0.13 84000∗

SLSQP −13± 40 0.017± 0.038 0.91± 0.12 1606± 25
SPSA −132.2± 9.0 0.84± 0.37 0.92± 0.14 16000∗

NFT −136.5± 4.0 0.9982± 1.8 · 10−3 0.97± 0.09 100000∗

NFT (H) −128.7± 1.5 0.947± 0.032 0.88± 0.20 2000∗

CG −73.5± 2.9 (2.7± 3.8) · 10−3 0.88± 0.15 700± 100
UMDA −92± 14 0.08± 0.27 0.92± 0.15 70000± 20000

TSP size 5 Optimal energy −221.10
Powell −217.3± 2.7 0.79± 0.35 0.83± 0.13 4000± 3000
Powell (H) −185.5± 6.7 0.014± 0.034 0.790± 0.079 500± 600
COBYLA −209.7± 7.1 0.27± 0.33 0.83± 0.13 600± 100
Nelder-Mead −177.4± 1.9 (2.5± 4.2) · 10−4 0.838± 0.094 8700∗

SLSQP −3± 60 (0.3± 1.0) · 10−3 0.82± 0.15 500∗
SPSA −215.8± 5.0 0.71± 0.45 0.87± 0.13 5000∗

NFT −218.8± 1.4 0.9968± 2.1 · 10−3 0.86± 0.10 29000∗

NFT (H) −201.0± 6.7 (3.5± 4.3) · 10−3 0.928± 0.046 1600∗

CG −176.0± 2.0 (2.7± 6.8) · 10−4 0.82± 0.13 1300± 300
UMDA −195± 23 0.25± 0.36 0.87± 0.15 17000± 4000

TSP size 6 Optimal energy −400.47
Powell −390.82± 3.76 0.423± 0.40 0.80± 0.12 2500∗

Powell (H) −349.4± 6.9 0.005± 0.010 0.75± 0.13 800± 600
COBYLA −381± 11 0.185± 0.27 0.79± 0.13 924± 200
Nelder-Mead −350.6± 2.8 (1.1± 2.9) · 10−4 0.78± 0.12 1200∗

SLSQP 12± 93 — — 56∗

SPSA −379± 12 0.09± 0.18 0.77± 0.11 990∗

NFT −395.3± 4.1 0.94± 0.24 0.79± 0.12 3800± 700
NFT (H) −362.1± 2.5 (3.5± 4.0) · 10−4 0.734± 0.070 1600± 100
CG −351.2± 1.9 (4.9± 6.1) · 10−5 0.75± 0.11 1300± 300
UMDA −232± 32 — — 1600± 200

Table III: Performance of VQE for various penalties for the 5-node TSP instance. Pmin is approximately 75 for this problem
instance. Each row is the result of a set of 50 individual runs with randomly chosen initial points. All runs with the NFT
optimizer finished due to reaching the maximum number of circuit executions (marked by ∗).

Penalty Opt. Energy Optimizer Energy ↓ Approx. ratio ↑ Feas. ratio mfeas ↑ TSP ratio mlen ↑ Circuit executions ↓

50 −143.44 NFT −142.5± 1.1 99.34% (4± 19) · 10−3 0.03± 0.15 10000∗

60 −157.86 NFT −156.6± 1.1 99.20% (1.2± 3.4) · 10−3 0.29± 0.40 10000∗

70 −172.29 NFT −171.71± 0.28 99.67% 0.36± 0.48 0.37± 0.43 10000∗

80 −188.13 NFT −186.67± 0.91 99.22% 0.32± 0.47 0.42± 0.44 10000∗

90 −204.61 NFT −201.8± 2.2 98.65% 0.9951± 4.0 · 10−3 0.87± 0.10 10000∗

100 −221.10 NFT −218.3± 2.0 98.75% 0.9963± 2.6 · 10−3 0.85± 0.10 10000∗

120 −254.06 NFT −251.2± 2.0 98.87% 0.9972± 2.1 · 10−3 0.83± 0.10 10000∗

150 −303.51 NFT −300.6± 2.1 99.03% 0.9967± 2.2 · 10−3 0.86± 0.10 10000∗

200 −385.92 NFT −382.1± 3.2 99.02% 0.9971± 1.9 · 10−3 0.78± 0.13 10000∗

50 −143.44 Powell −141.1± 4.5 98.35% (2.3± 5.7) · 10−3 0.86± 0.12 2500± 1400
60 −157.86 Powell −153.6± 7.1 97.32% (3.9± 7.8) · 10−3 0.88± 0.12 3600± 1500
70 −172.29 Powell −167.9± 6.4 97.46% 0.20± 0.36 0.74± 0.11 3500± 1700
80 −188.13 Powell −181± 10 96.07% 0.08± 0.28 0.81± 0.12 4100± 1600
90 −204.61 Powell −198± 10 96.66% 0.54± 0.48 0.84± 0.11 4000± 1700

100 −221.10 Powell −212± 13 95.84% 0.58± 0.48 0.87± 0.12 3800± 1300
120 −254.06 Powell −240± 19 94.43% 0.69± 0.43 0.80± 0.13 3800± 1700
150 −303.51 Powell −286± 24 94.17% 0.64± 0.47 0.83± 0.12 3200± 1200
200 −385.92 Powell −363± 28 94.05% 0.60± 0.50 0.75± 0.12 3700± 900
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Figure 3: The relation of the feasibility ratio to the Ising energy of VQE with the Powell optimizer on a TSP with 4 to 6
nodes. For the 5- and 6-node TSP, it becomes clear that the feasibility undergoes drastic changes at a transition point in energy,
illustrated with an arctan fit. The data was obtained with a QASM Simulator on the IBM cloud. 50 attempts were run for each
TSP instance of which a significant amount failed for the 6-node TSP due to runtime constraints.

encodings where every state corresponds to a feasible solution
will increase the performance in mfeas. However, it is unlikely
that algorithms based on QAOA will be able to reach the
approximation ratio required for a high feasibility ratio. Still,
constraint-preserving mixers might bypass this issue entirely
if they can be implemented effectively on NISQ devices. The
exploration of recursive QAOA for the use case runs into the
issue of imperfect correlations, even in the ideal solution state
as outlined in Section IV-C. This issue goes beyond the con-
vergence problems with QAOA in practice. It is rooted in the
degeneracy of the solution state originating from the inversion
symmetry of the paths (as a reminder, the cyclic permutation
symmetry is eliminated in the problem formulation). There are
two ways to address this problem: One could implement an
additional constraint (e.g., “city 1 is visited before city 2“)
or include an intermediate processing step after each QAOA
iteration, essentially mapping one of the two degenerate basis
states onto the other one. The latter option requires modifying
the hybrid algorithm itself whereas the first still works with
the basic QAOA, but is complex to encode. To continue in
this direction, constraint terms depending on the parity of a
permutation may be worth exploring. Furthermore, in light
of the experimental difficulties with QAOA, an analogous
recursive VQE protocol could be the superior choice. Further
insights on the performance of WS-QAOA can be gained from

implementations for additional problem instances of the TSP
and CVRP. In the QAOA variant with a constraint-preserving
mixer, the principal tasks are to reduce the size of the mixer
and examine its stability against noise. To this end, alternative
encodings may be beneficial, particularly those with a higher
density of feasible states in the phase space. VQE, on the
other hand, has a good performance baseline even with a naive
ansatz. Further efforts are necessary to estimate its scaling
behavior, simplify the ansatz, promote noise resilience, and
improve its convergence for larger problems. A candidate
method is, e.g., filtered VQE [24].

However, the roles of many parameters, such as the initial
point, penalty, or scaling, remain on heuristic grounds. There-
fore, additional numerical experiments and analytic efforts are
necessary to expand the study to other problem instances an
gain a deeper understanding of the optimization process.
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APPENDIX

A. QAOA Performance

As described in Section IV-A, QAOA generally did not achieve to produce feasible solutions. The optimal state is far from
what any optimizer is able to achieve. In addition to the results shown in Table IV, different hyperparameter combinations
according to Table I were tested with similarly discouraging results.

Table IV: QAOA performance with various optimizers in simulation on the 4-city problem instance. Each row is the aggregate
of 50 individual runs with a random initial point. The problem was formulated with P = 100 resulting in an optimal energy of
−137.72. Values marked with ∗ indicate that a significant portion of the runs finished due to reaching the maximum allowed
number of circuit executions.

Optimizer Energy ↓ Feas. ratio mfeas ↑ TSP length ratio mlen ↑ Circuit executions ↓

CG −11.5± 6.5 0.0110± 6.6 · 10−3 0.846± 0.043 290± 50
COBYLA −23± 15 0.014± 0.011 0.847± 0.039 97± 10
Nelder-Mead −25± 10 0.015± 0.010 0.857± 0.050 7000∗

NFT −57± 10 0.021± 0.017 0.854± 0.057 19000∗

Powell −48± 27 0.018± 0.017 0.868± 0.061 800± 400
SPSA −45.9± 9.5 0.018± 0.018 0.857± 0.050 10000∗

SLSQP −2.0± 6.7 0.0112± 8.5 · 10−3 0.849± 0.049 12± 4
UMDA −57.3± 7.7 0.023± 0.022 0.850± 0.049 5000± 1000

B. VQE with the COBYLA optimizer

In the same manner as Figure 3, optimizing the VQE ansatz with COBYLA as shown in Figure 4 shows an energy threshold
below which feasible states start to appear. However, the relation between mfeas and the Ising energy at the transition point
seems different. Powell exhibits an approximate step-like behaviour, modeled in Figure 3 through an arcus tangens. For
COBYLA, it looks like the feasibility ratio increases linearly below a threshold energy. Further research is needed in this
direction, but this phenomenon hints towards the best optimizer choice depending on the specific application as well as the
formulation and encoding of the problem. Different optimizers may take different paths towards the optimum, resulting in
approximate results of different quality. Once again, this is why one should consider application-specific performance metrics
and cannot rely purely on energy approximation ratios.
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Figure 4: The relation of the feasibility ratio to the Ising energy of VQE with the COBYLA optimizer on a TSP with 4 to 6
nodes. In contrast to Powell, COBYLA seems to show a linear increase in feasibility below a threshold energy. 50 attempts
were run for each TSP instance.
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Table V: Performance of VQE for various penalties for the 4-node TSP instance. Pmin = 50 is the approximate minimum
penalty for the 4-node TSP. All simulations were given a budget of 10000 quantum calls. The overall scaling was held constant,
but different penalty factors still result in varying optimal energies

Penalty Opt. Energy Optimizer Energy ↓ Approx. ratio ↑ Feas. ratio mfeas ↑ TSP length ratio mlen ↑ Circuit evaluations ↓

50 −80.90 NFT −80.69± 0.93 99.74% 0.98± 0.14 0.91± 0.15 10000∗

60 −92.27 NFT −91.9± 2.0 99.60% 0.98± 0.14 0.969± 0.095 10000∗

70 −103.62 NFT −103.2± 2.4 99.59% 0.99836± 6.4 · 10−4 0.976± 0.083 10000∗

80 −114.99 NFT −113.6± 4.6 98.79% 0.99834± 6.6 · 10−4 0.96± 0.10 10000∗

90 −126.36 NFT −125.9± 2.4 99.64% 0.99832± 6.4 · 10−4 0.976± 0.083 10000∗

100 −137.72 NFT −135.9± 5.1 98.68% 0.98± 0.14 0.96± 0.11 10000∗

120 −160.45 NFT −158.6± 5.1 98.85% 0.98± 0.14 0.981± 0.070 10000∗

150 −194.54 NFT −194.1± 2.4 99.77% 0.99849± 6.1 · 10−4 0.983± 0.069 10000∗

200 −251.35 NFT −249.9± 4.6 99.42% 0.99846± 6.4 · 10−4 0.99713± 9.7 · 10−4 10000∗

50 −80.90 Powell −79.9± 2.1 98.76% 0.65± 0.46 0.88± 0.16 2000± 600
60 −92.27 Powell −90.4± 4.7 98.00% 0.87± 0.33 0.89± 0.16 2000± 600
70 −103.62 Powell −102.0± 4.7 98.51% 0.93± 0.24 0.95± 0.12 1900± 500
80 −114.99 Powell −113.8± 4.1 98.96% 0.9923± 6.5 · 10−3 0.983± 0.070 2000± 600
90 −126.36 Powell −125.8± 2.4 99.59% 0.9907± 9.2 · 10−3 0.99± 0.13 2000± 600
100 −137.72 Powell −137.2± 2.5 99.63% 0.9920± 5.2 · 10−3 0.99± 0.11 2100± 600
120 −160.45 Powell −158.5± 7.4 98.77% 0.95± 0.20 0.95± 0.12 2000± 600
150 −194.54 Powell −193.6± 3.3 99.53% 0.9919± 6.1 · 10−3 0.990± 0.049 2000± 600
200 −251.35 Powell −250.3± 3.4 99.58% 0.991± 0.011 0.990± 0.051 2100± 600

C. Influence of the Penalty Factor for the 4-node TSP instance

Results with varying penalties for the 4-node TSP instances are shown in Table V. The NFT and Powell optimizers reach
approximation ratios around 98 − 99% for all penalty factors. Likewise, the feasibility and TSP length ratios obtained are
similarly well, with the exception that Powell starts to reach high feasibility only starting at P = 70. Furthermore, with
penalties only slightly higher than Pmin, the performance metrics fluctuate more and stabilizes around P = 70 ≈ 1.4Pmin
for both optimizers. Within the tested values from Pmin = 50 to 4Pmin = 200, no significant performance impact can be
observed. . NFT still uses its budget of quantum circuit evaluations completely. A modification of the convergence criterion
might be useful for this optimizer. Powell requires significantly fewer executions for a feasibility ratio that is only marginally
lower.
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