
Predictive Models from Quantum Computer
Benchmarks

Daniel Hothem∗§, Jordan Hines∗† Karthik Nataraj‡, Robin Blume-Kohout∗ and Timothy Proctor∗
∗Quantum Performance Laboratory, Sandia National Laboratories, Livermore, CA 94550, USA

†Department of Physics, University of California, Berkeley, CA 94720
‡Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305

§Email: dhothem@sandia.gov

Abstract—Holistic benchmarks for quantum computers are es-
sential for testing and summarizing the performance of quantum
hardware. However, holistic benchmarks—such as algorithmic or
randomized benchmarks—typically do not predict a processor’s
performance on circuits outside the benchmark’s necessarily very
limited set of test circuits. In this paper, we introduce a general
framework for building predictive models from benchmarking
data using capability models. Capability models can be fit to many
kinds of benchmarking data and used for a variety of predictive
tasks. We demonstrate this flexibility with two case studies. In
the first case study, we predict circuit (i) process fidelities and (ii)
success probabilities by fitting error rates models to two kinds of
volumetric benchmarking data. Error rates models are simple,
yet versatile capability models which assign effective error rates
to individual gates, or more general circuit components. In the
second case study, we construct a capability model for predicting
circuit success probabilities by applying transfer learning to
ResNet50, a neural network trained for image classification. Our
case studies use data from cloud-accessible quantum computers
and simulations of noisy quantum computers.

I. Introduction

Quantum processors have rapidly grown over the past
decade, but hardware errors (i.e., noise) limit their compu-
tational capabilities. The errors in one- or two-qubit systems
can be studied in detail using tomographic methods [1], but
contemporary processors suffer from complex errors (e.g.,
crosstalk) that are challenging to fully characterize [2]. This
has led to the proliferation of holistic benchmarks that aim
to quantify the overall impact of errors on a processor’s
performance [3], [4], [5], [6]. Holistic benchmarks run suites
of test circuits and use the data to compute metrics that
summarize a processor’s performance, e.g., mean gate in-
fidelities [7], [8], [9], the quantum volume [3], volumetric
benchmarking plots [4], or capability regions [5]. However,
while many holistic benchmarks offer useful summaries of
a processor’s performance, most benchmarks do not make
predictions about how well other circuits or algorithms will
execute. Any performance predictions from the results of a
holistic benchmark have been typically obtained using infor-
mal and ad hoc extrapolations (e.g., see [6]).

In this work we introduce a framework for constructing
predictive models from benchmarking data, and we provide
two case studies demonstrating how to do so. Our general
framework (see Section II) is based on capability models,
which builds on the concept of a processor’s capability

function [10]. A capability function captures how well a
processor can run circuits—by formalizing the concept of
a circuit’s “success probability” using a performance metric
such as process fidelity—and a capability model is simply a
parameterized model for a capability function. As we explain
herein, most holistic benchmarks can be interpreted as probing
a capability function, and so the parameters of a capability
model can be fit to benchmarking data. Capability models are
flexible, and we provide two case studies to demonstrate the
promise of this approach.

Our first case study (see Section III) introduces error rates
models (ERMs), which are flexible, scalable, and interpretable
capability models that can be designed to predict a variety of
figures of merit. ERMs generalize and formalize the widely-
used idea of representing the errors in each of a processor’s
gates with a generic error process (global depolarization) that
has a single parameter—the gate’s error rate. Fitting ERMs to
benchmarking data summarizes the data in terms of effective
error rates and enables predictions for how other circuits will
perform. Our second case study (see Section IV) creates a
capability model for circuit success probabilities from a pre-
trained neural network. We apply transfer learning [11] to
ResNet50 [12], an image classifier, to create a capability model
that predicts circuit performance on a simulated noisy quantum
computer. This complements recent work that has used custom
(rather than pre-trained) neural networks to predict a variety
of circuit performance metrics [10], [13], [14], [15], [16].

II. Predictive models from benchmarks

A. Benchmarks and capability functions

We begin with a brief overview of holistic quantum com-
puter benchmarks, and we explain how most benchmarking
data can be interpreted as estimates of a capability function
[10]. Holistic benchmarks typically consist of: (i) selecting
some set of circuits {c}, e.g., via sampling from some dis-
tribution; (ii) running these circuits (or some closely related
circuits) on the processor being tested; (iii) for each circuit
c ∈ {c}, computing from the data a single number ŝ(c) that is
an estimate of a metric s(c) (such as fidelity) that quantifies
how well the processor can run c; and (iv) computing one or
more summary statistics from the data {ŝ(c)}c∈{c}. We refer to
s(c) as the benchmark’s capability function [10].

ar
X

iv
:2

30
5.

08
79

6v
1

 [
qu

an
t-

ph
]

 1
5

M
ay

 2
02

3

Examples of benchmarks that can be described as above
include many RB methods [7], [8], [9], the quantum volume
benchmark [3], cross-entropy benchmarking [17], volumetric
benchmarks [4], and many algorithmic benchmarks [6]. For
example, many RB methods consist of running randomly
sampled circuits where each circuit’s overall action is to map
the standard input state |00 · · ·〉 to some computational basis
state |x〉. Therefore, an RB circuit is a definite outcome circuit,
meaning that it produces one particular bit string x if it is run
without error. In RB, each circuit’s success probability—i.e.,
the probability the correct bit string is returned—is estimated
from data. So this benchmark’s capability function s(c) is
success probability.

B. Capability models

Holistic benchmarks summarize their data using one or
more statistics or plots—e.g., see the volumetric benchmarking
plot of Fig. 1— but they typically do not make predictions. We
propose fitting parameterized models to benchmarking data to
construct predictive models from benchmarks. Our framework
is based on a particular kind of parameterized model that we
call a capability model.

Definition 1. Let s be a capability function s : C → R
defined over a set of circuits C. A capability model for s is a
parameterized function ε : C → R used to approximate s.

Capability models do not predict the outcome distribution
of a circuit, unlike many error models for quantum processors
(such as those constructed via gate set tomography [1]).
Instead capability models predict only how accurately the
processor implements circuits, as quantified by a capability
function s. A capability model can be any type of parameter-
ized function (e.g., a neural network) and its parameters do
not need to correspond to the rates of physical errors (e.g.,
gate over-rotation angles etc.).

We propose building predictive models from benchmarks as
follows:

(1) Run a benchmark that generates data {ŝ(c)} for a set of
circuits {c}, where ŝ(c) is an estimate of some capability
function s(c).

(2) Select a capability model ε for capability function s.
(3) Fit the parameters of ε to the data {ŝ(c)}.
We will explore two kinds of capability models in this work:

ERMs (see Section III) and pre-trained neural networks (see
Section IV).

III. Case study 1: Error rate models

In this case study, we introduce error rates models (ERMs)
and demonstrate their utility by fitting them to benchmarking
data.

A. Theory

ERMs generalize and formalize two simple concepts: (i)
represent the error in each of a processor’s quantum logic
operations by a single error rate, and (ii) predict a circuit’s

0 4 8 32 64 128
256
512

1k 2k 4k

Benchmark Depth

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

W
id

th

0.0

0.2

0.4

0.6

0.8

1.0

Po
la
ri
za
tio
n

Fig. 1. Volumetric benchmarks are not predictive. A volumetric
benchmarking plot [4] summarizing data from randomized mirror
circuits (RMCs) run on ibmq montreal. For each circuit width
and benchmark depth (see definition in Ref. [5]), the concentric
squares show the maximum (inner square), mean (middle square),
and minimum (outer square) of the estimated polarizations for all
the circuits of that shape that were run. The polarization (spol) of the
output distribution of a definite outcome n-qubit circuit c is simply
spol = (ssp − 1/2n)/(1 − 1/2n) where ssp is c’s success probability [5].
Frontiers (green, black, and red lines) show the circuit shapes at
which these three statistics drop below the threshold value of 1/e.
Volumetric plots summarize a processor’s observed performance on
some (necessarily small) set of benchmarking circuits {c}, but they
make no predictions. In this work, we propose fitting parameterized
models to benchmarking data like this, enabling predictions of the
processor’s performance on other circuits.

failure (or success) rate by a simple function (e.g., the sum)
of the error rates of all the operations in the circuit.

Definition 2. An error rates model E, for a capability function
s : C → R, is a capability model defined by the tuple
(X,E,N , f) where:

• X is a set of quantum logic operations, called basis
elements;

• E = {εx ∈ R | x ∈ X} are the model’s parameters, called
error rates;

• N : C → N|X| counts how many times each basis element
x ∈ X appears in a circuit, defined by a rule R for
decomposing any circuit c ∈ C into the basis elements
X;

• and f : N|X| → R is an E-parameterized function that is
composed with N to compute the model’s prediction, i.e.,
E(c) = f [N(c)].

ERMs are simple and flexible. For example, an ERM’s basis
elements can contain a diverse set of circuit components—
such as gates, circuit layers, or even large subroutines used
in algorithms. ERMs are also scalable, i.e., it is feasible to fit
ERMs to many-qubit data.

We now introduce a class of ERMs that are based on global
depolarization, which is a simple and widely-used model for
errors in quantum gates [5], [9], [10], [18]. Consider a circuit
set C and corresponding basis element set X that contains
(i) circuit sub-components (e.g., one- and two-qubit gates)
that ideally implement unitary evolutions, and (ii) readout
operations that only occur at the end of a circuit (so, e.g.,
X does not include mid-circuit measurements). Now model
the imperfect operation of each x ∈ X in an n-qubit circuit
by the perfect operation preceded by an n-qubit depolarizing
channel1 (Dεx) with process infidelity εx, i.e.,

Dεx [ρ] = γxρ + [1 − γx]I/2n, (1)

where γx = γ(Fx), Fx = 1 − εx is the process fidelity with
which operation x is implemented, and

γ(F) =
4nF − 1
4n − 1

, (2)

is a rescaling of process fidelity called process polarization.
Because n-qubit depolarizing channels commute with each
other and every n-qubit unitary superoperator, this model
predicts that the superoperator implemented when executing
a circuit c is simply

Λ(c) =

 ∏
x∈R(c)

Dεx

U(c) =

∏
x∈X

DN(c)
εx

U(c), (3)

where U(c) is the superoperator representation of the unitary
ideally implemented by c, andNx(c) is the number of instances
of basis element x in c. Given a capability function s (e.g.,
process fidelity) and a basis element set X, this model for
c’s superoperator implies an ERM for s. We now demonstrate
ERMs based on Eq. (3).

B. Example 1: Predicting process fidelities

Most benchmarks run a set of circuits {c} and then evaluate
performance on each circuit c by the difference between the
observed and ideal output distributions of c (quantified using,
e.g., cross-entropy [17], classical fidelity [6], or heavy output
probability [3]). However, stricter measures of performance
can be obtained by quantifying the difference between the ac-
tual and ideal quantum processes implemented when running c
[19], using, e.g., process fidelity (F)—or, equivalently, process
polarization [Eq. (2)]. Benchmarks whose data {ŝ(c)} consists

1For example, if X contains one- and two-qubit gates, the error channel for
a 3-qubit circuit layer containing a one-qubit gate (x1) and a two-qubit gate
(x2) is the product of two 3-qubit depolarizing channels with infidelities εx1
and εx2 . Because n-qubit depolarizing channels commute the order in which
the error channels are applied is irrelevant.

Fig. 2. Predicting circuit process fidelities. The predictions of a two-
parameter ERM for ibmq kolkata that was fit to benchmarking
data consisting of estimated process polarizations (a rescaling of
process fidelity) for 150 random circuits. The ERM was fit to training
data (120 circuits, blue points) and assessed on holdout test data (30
circuits, orange points). The data is summarized in the inset, which
shows estimated process polarization versus circuit depth. The fit
values for the model’s parameters (lower right)—an error rate for
one-qubit gates and an error rate for two-qubit gates—are effective
error rates that summarize the data.

of estimates of process polarization (or fidelity) for a circuit set
{c} can be constructed using mirror circuit fidelity estimation
(MCFE) [19]. MCFE is an efficient method for estimating the
process fidelity of a circuit c by embedding c within a variety
of other circuits.

We now demonstrating fitting ERMs based on the global
depolarizing model [Eq. (3)] to benchmarking data that has
process polarization as its capability function. The model of
Eq. (3) implies that the process polarization of a circuit c is

E(c) =
∏
x∈X

γNx(c)
x . (4)

We fit this capability model to data from ibmq kolkata that
consists of estimated process polarizations for 150 12-qubit
random circuits (these estimates were obtained using MCFE).
The inset of Fig. 2 summarizes the data. We fit a simple ERM,
with two basis elements—a one-qubit gate and a two-qubit
gate—and corresponding error rates.

Figure 2 shows the predictions of the best-fit ERM (fit
with a least squares objective function). We find effective
one- and two-qubit error rates of ε1 = (0.39 ± 0.14)% and
ε2 = (8.5 ± 1.8)%, respectively. These best-fit error rates are
approximately eight times larger than the mean of IBM’s
reported one- and two-qubit gate error rates for the twelve
qubits used in this experiment (ε1 = 0.05% and ε2 = 1.1%)
and our best-fit error rates are a better description of the data:
the mean absolute error δabs(E) = Ec|E(c) − ŝ(c)| of our two-
parameter ERM with best-fit error rates is 3.0% whereas if we
use IBM’s error rates it is 11.8%.

C. Example 2: Predicting circuit success probabilities

Many benchmarks (e.g., RB) run definite outcome circuits
and estimate these circuits’ success probabilities—the prob-
ability that the circuit returns its single correct bit string.

(a) (b)

(c)

Fig. 3. Effective error rates for ibmq montreal. We fit ERMs
to 1-27 qubit random circuit data from ibmq montreal. (a) The
predictions for holdout test data of two ERMs E1 (blue) and E2
(orange) (details in the main text) versus each circuit c’s success
probability ŝ(c). Both models have moderate prediction accuracy, as
summarized by (b) prediction errors, i.e., δ(c) = E(c) − ŝ(c) (see
legend for the mean absolute error). (c) Both ERMs are parameterized
by error rates that depend on circuit width. Here we show each
model’s average two-qubit gate error rate (top left), average one-qubit
gate error rate (lower left) and total readout error (upper right) versus
the circuit width (number of qubits) alongside IBM’s reported error
rates. IBM’s average gate error rates fail to account for increasing
crosstalk errors as circuit width increases, and our gate error rates are
effective error rates that better describe the data. Each ERM’s error
rates can be used to compute a mean error rate (ε̄w) for a random w-
qubit circuit layer (lower right). We observe close agreement between
each ERM’s estimate for ε̄w and an independent estimate extracted
from the data by a conventional RB analysis (at each w, we fit
the success probabilities versus circuit depth to an exponential). All
uncertainties are 1σ and are computed using a bootstrap.

The capability model for the success probability of an n-qubit
definite outcome circuit c implied by Eq. (3) is simply

E(c) =

(
1 −

1
2n

)∏
x∈X

γR(c)x
x +

1
2n . (5)

We demonstrate this family of capability models using
data from randomized mirror circuits (RMCs) [8] run on
ibmq montreal, a 27-qubit system. We ran approximately
3000 circuits with varied circuit widths and depth. For each
RMC we estimate its success probability.2 The data is sum-
marized in Fig. 1. For each width w, circuits were run on
a single connected set of w qubits (Γw) and these sets were

2RMCs data is often analyzed using so-called adjusted success probabilities
defined in Refs. [8], [9], but we do not this here for conceptual simplicity.

nested (Γw ⊂ Γw+1). We fit two ERMs (E1 and E2) with
different basis elements X. To investigate crosstalk errors in
ibmq montreal using ERMs we fit models in which each
gate’s error rate is indexed by circuit width. We describe this
in terms of sub-ERMs: Each ERM Ei consists of 27 different
sub-ERMs (Ew

i) where Ew
i makes predictions for (and is fit to

the data from) circuits of width w. Each sub-ERM in E1 is a
three-parameter model, with generic one-qubit gate, two-qubit
gate, and readout basis elements. In contrast, each sub-ERM
in E2 models one-qubit gates (two-qubit gates) on different
qubits (qubit pairs) with independent error rates.

Figure 3 shows (a) the predictions and (b) prediction errors,
of best-fit E1 and E2 capability models. These models were
fit to training data (90% of the circuits) using maximum
likelihood estimation. In Figure 3 (a-b) we evaluate the models
using holdout test data (the remaining 10% of the circuits).
Both models have moderately low prediction error—the mean
absolute errors on the test data are δabs(E1) ≈ 2.8% and
δabs(E2) ≈ 2.9%. The additional parameters of E2 therefore
do not improve prediction accuracy on the test data. The fit
error rates—the parameters of E1 and E2—are summarized
in Fig. 3 (c). The average one-qubit gate and two-qubit gate
error rates of E1 and E2 (which depend on circuit width w)
are in close agreement. Both one- and two-qubit gate error
rates generally increase with w, becoming significantly larger
than the average gate error rates reported by IBM [compare
the blue and orange points with the pink points in the left
column of Fig. 3 (c)]. This discrepancy suggests large crosstalk
errors, as IBM’s gate error rates do not include the effects of
crosstalk (they are estimated using one- and two-qubit RB).
Our gate error rates are effective error rates that better describe
the data and include the impact of crosstalk. In contrast, our
total readout error estimates are consistent with IBM’s reported
readout error rates.

IV. Case study 2: Transfer learning with Resnet50
In our second case study, we create a capability model by

applying transfer learning to ResNet50, a pre-trained neural
network.

A. Neural network capability models
Neural networks are highly-expressive parameterized mod-

els that are general-purpose function approximators [20].
Recent work has explored using custom neural networks as
capability models with promising results [10], [13], [15],
[16]. However, training and tuning de novo neural network
capability models is costly—it can be computationally inten-
sive and can require large amounts of data. One approach
to reducing the cost of creating neural network capability
models is transfer learning. Transfer learning is a broad set of
techniques designed to modify pre-trained neural networks for
use on a new task [11]. Transfer learning can be particularly
valuable when training data for the new task is scarce.

B. Capability models from ResNet50
To explore the feasibility of creating capability models

from pre-trained neural networks, we used transfer learning

techniques to create a capability model from ResNet50 [12].
ResNet50 is a large pre-trained image classifier that consists
of 48 convolutional layers, an average pooling layer, a max
pooling layer, and a 1000-unit classification layer [12]. We
modified ResNet50 to create a capability model by replacing
ResNet50’s final 1000-unit classification layer with a single-
unit dense layer that has a sigmoid activation function (so its
predictions are within [0, 1]). Only the weights in the final
single-unit dense layer are learnable parameters, i.e., all the
weights in the layers from ResNet50 are fixed (frozen).

C. Encoding circuits for ResNet50

Inputting a circuit c into ResNet50 requires a representation
I(c) of c that is compatible with ResNet50. As an image
classifier, ResNet50 processes three-dimensional tensors. We
therefore input circuits into ResNet50 by modifying the three-
dimensional tensor encoding I′(c) of circuit introduced in
Ref. [10]. This encoding represents a w × d circuit c for an
n-qubit device as an n × dmax color image where dmax is the
depth of the deepest circuit in the dataset, i.e., I′(c) is an
n× dmax × h tensor where h is the number of “color” channels
(h = 10 for the encoding of Ref. [10]). The color channels
store information about which gate is performed on each qubit
in each layer of the circuit (as well as some limited information
about each qubit’s error sensitivity). See Ref. [10] for details
on the circuit encoding I′(c).

ResNet50 accepts tensors with three channels, so we must
map I′(c) to a three-channel image I(c). Our mapping consists
of simply reshaping I′(c) (after embedding it within a larger
tensor, if necessary). This reshaping destroys some locality
information encoded within I′(c), and more principled or
trainable I′(c)→ I(c) mappings are possible.

D. Demonstration on simulated data

To train and test our ResNet50-based capability model we
used simulated data from a publicly-accessible repository [21].
The data consists of success probabilities for RMCs for a 5-
qubit processor. The circuits ranged in width from 1 to 5 qubits
and in depth from 3 to 1825 layers. The circuits were simulated
with a stochastic Pauli errors model (detailed in Section IV A
of Ref. [10]). We used training, validation, and test datasets
containing 996, 664, and 1494 circuits, respectively.

We trained our model for up to 150 epochs, using binary
cross-entropy (BCE) on the training data as the loss metric.
Throughout training, only the weights in the final single-unit
dense layer were updated (all the weights in ResNet50 were
frozen). Loss on the validation dataset was monitored, training
was stopped after five epochs of increasing validation loss, and
the final model used the weights that minimized the validation
loss (this occurred after the 144th epoch). Figure 4 (b) shows
the training history.

The trained ResNet50-based capability model (EResNet50)
has moderate prediction accuracy on the test data. Figure 4
(a) shows the prediction error of EResNet50 for every circuit
c in the test dataset, for which δabs(EResNet50) = 2.48%.
This demonstrates the feasibility of using transfer learning

(a)

(b)

Fig. 4. Predicting circuit success probabilities using Resnet50. We
used transfer learning to create a capability model from ResNet50.
(a) The prediction error on test data of our ResNet50-based capability
model versus the true success probabilities (main plot), a histogram of
the success probabilities (upper plot), and a histogram of prediction
error (right plot). We observe moderate prediction accuracy on the test
data (δabs = 2.48%). (b) Training and validation loss versus training
epoch. The fluctuations in both the training and validation loss could
be caused by a high learning rate (α = .0001).

to create capability models from large neural networks that
have been trained for different prediction tasks. However,
EResNet50’s prediction accuracy is worse than has been obtained
using custom de novo CNNs trained on data from this dataset
(c.f., Ref. [10] with δabs ≈ 0.8%). This suggests that transfer
learning is likely to prove most useful when neural networks
that have been designed and trained as capability models
need to make out-of-distribution (OOD) predictions. Two
particularly relevant examples of OOD prediction tasks are:
(1) training on data from one circuit family (e.g., random
circuits) and then making predicting for another circuit family
(e.g., algorithm circuits), and (2) training on data from one
processor (real or simulated) and then making predictions for
a difference processor. Transfer learning has the potential to
greatly improve OOD predictions by fine-tuning a pre-trained
network using a small amount of new OOD training data.

V. Conclusions

In this paper we have proposed a general framework for
building predictive models from quantum computer bench-
marking data. Our framework consists of fitting a capability
model to benchmarking data, and it can be applied to data
from a wide range of benchmarks—including RB, cross-
entropy benchmarking, algorithmic benchmarks, volumetric
benchmarks, and the quantum volume benchmark. Capability
models encompass a broad range of parameterized models,

and we explored two interesting classes of capability model:
ERMs (error rates models) and neural networks.

ERMs are simple, flexible, interpretable, and scalable mod-
els that make accurate predictions when stochastic errors
dominate. But even when a best-fit ERM’s predictions have
low accuracy, ERM’s are still an powerful tool, because a best-
fit ERM’s parameters summarize the data in terms of effective
error rates. In contrast, neural network capability models have
the potential to be accurate in the presence of complex and
poorly-understood errors [10] but do not have interpretable
parameters. In this work, we applied transfer learning to create
a capability model from ResNet50, a large, pre-trained CNN.
Although we obtained lower prediction accuracy than with
bespoke models (see Ref. [10]), our results demonstrate the
promise and feasibility of a transfer learning approach to
capability learning.

Data and code availability
The data and code used in the project will be available at Ref. [22].

In the meantime, please email the corresponding author.

Acknowledgements
This material was funded in part by the U.S. Department of Energy,

Office of Science, Office of Advanced Scientific Computing Research,
Quantum Testbed Pathfinder Program, and by the Laboratory Directed
Research and Development program at Sandia National Laboratories.
T.P. acknowledges support from an Office of Advanced Scientific
Computing Research Early Career Award. Sandia National Laborato-
ries is a multi-program laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration
under contract DE-NA-0003525. All statements of fact, opinion or
conclusions contained herein are those of the authors and should not
be construed as representing the official views or policies of the U.S.
Department of Energy, or the U.S. Government. We acknowledge the
use of IBM Quantum services for this work. The views expressed are
those of the authors, and do not reflect the official policy or position
of IBM or the IBM Quantum team.

References

[1] E. Nielsen, J. Gamble, K. Rudinger, T. Scholten, K. Young, and
R. Blume-Kohout, “Gate set tomography,” Quantum, vol. 5, p.
557, 2021. [Online]. Available: https://quantum-journal.org/papers/
q-2021-10-05-557/

[2] M. Sarovar, T. Proctor, K. Rudinger, K. Young, E. Nielsen, and
R. Blume-Kohout, “Detecting crosstalk errors in quantum information
processors,” Quantum, vol. 4, p. 321, 2020. [Online]. Available:
https://quantum-journal.org/papers/q-2020-09-11-321/

[3] A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M.
Gambetta, “Validating quantum computers using randomized model
circuits,” Phys. Rev. A, vol. 100, p. 032328, 2019. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevA.100.032328

[4] R. Blume-Kohout and K. Young, “A volumetric framework for quantum
computer benchmarks,” Quantum, vol. 4, p. 362, 2020. [Online].
Available: https://quantum-journal.org/papers/q-2021-10-05-557/

[5] T. Proctor, K. Rudinger, K. Young, E. Nielsen, and R. Blume-
Kohout, “Measuring the capabilities of quantum computers,” Nature
Phys, vol. 18, no. 1, p. 75, 2021. [Online]. Available: https:
//www.nature.com/articles/s41567-021-01409-7

[6] T. Lubinski, S. Johri, P. Varosy, J. Coleman, L. Zhao, J. Necaise,
C. H. Baldwin, K. Mayer, and T. Proctor, “Application-oriented
performance benchmarks for quantum computing,” IEEE Transactions
on Quantum Engineering, vol. 4, pp. 1–32, 2023. [Online]. Available:
https://ieeexplore.ieee.org/document/10061574

[7] E. Magesan, J. M. Gambetta, and J. Emerson, “Scalable and
robust randomized benchmarking of quantum processes,” Phys.
Rev. Lett., vol. 106, p. 180504, 2011. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevLett.106.180504

[8] T. Proctor, S. Seritan, K. Rudinger, E. Nielsen, R. Blume-Kohout, and
K. Young, “Scalable randomized benchmarking of quantum computers
using mirror circuits,” Phys. Rev. Lett., vol. 129, p. 150502, 2022.
[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.129.
150502

[9] J. Hines, M. Lu, R. K. Naik, A. Hashim, J.-L. Ville, B. Mitchell, J. M.
Kriekebaum, D. I. Santiago, S. Seritan, E. Nielsen, R. Blume-Kohout,
K. Young, I. Siddiqi, B. Whaley, and T. Proctor, “Demonstrating scalable
randomized benchmarking of universal gate sets,” 2022, unpublished
manuscript. [Online]. Available: http://arxiv.org/abs/2207.07272

[10] D. Hothem, T. Catanach, K. Young, and T. Proctor, “Learning a
quantum computer’s capability using convolutional neural networks,”
2023, unpublished manuscript. [Online]. Available: https://arxiv.org/
abs/2304.10650

[11] K. Weiss, T. Khoshgoftaar, and D. Wang, “A survey of transfer
learning,” J Big Data, vol. 3, no. 9, 2016. [Online]. Available:
https://doi.org/10.1186/s40537-016-0043-6

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[13] N. Elsayed Amer, W. Gomaa, K. Kimura, K. Ueda, and
A. El-Mahdy, “On the learnability of quantum state fidelity,”
EPJ Quantum Technology, vol. 9, p. 31, 2022. [Online].
Available: https://epjquantumtechnology.springeropen.com/articles/10.
1140/epjqt/s40507-022-00149-8#citeas

[14] J. Liu and H. Zhou, “Reliability modeling of NISQ-era quantum
computers,” in Proceedings of the 2020 IEEE International Symposium
on Workload Characterization, 2020, pp. 94–105.

[15] A. Vadali, R. Kshirsagar, P. Shyamsundar, and G. Perdue, “Quantum
circuit fidelity estimation using machine learning,” 2022, unpublished
manuscript. [Online]. Available: https://arxiv.org/pdf/2212.00677.pdf

[16] H. Wang, P. Liu, J. Cheng, Z. Liang, J. Gu, Z. Li, Y. Ding, W. Jiang,
Y. Shi, X. Qian, D. Pan, F. Chong, and S. Han, “Quest: Graph
transformer for quantum circuit reliability estimation,” in Proceedings
of the 39th International Conference on Computer-Aided Design. ACM
Press, 2022. [Online]. Available: https://arxiv.org/pdf/2210.16724.pdf

[17] S. Boxio, S. Isakov, V. Smelyanskiy, R. Babbush, N. Ding,
Z. Jiang, M. Bremner, J. Martinis, and H. Neven, “Characterizing
quantum supremacy in near-term devices,” Nature Phys, vol. 14, pp.
595–600, 2018. [Online]. Available: https://www.nature.com/articles/
s41567-018-0124-x

[18] IBM Quantum, https://quantum-computing.ibm.com, 2021.
[19] T. Proctor, S. Seritan, E. Nielsen, K. Rudinger, K. Young,

R. Blume-Kohout, and M. Sarovar, “Establishing trust in quantum
computations,” 2022, unpublished manuscript. [Online]. Available:
http://arxiv.org/abs/2204.07568

[20] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Networks, vol. 2, p.
359, 1989. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/0893608089900208

[21] D. Hothem, T. Catanach, K. Young, and T. Proctor, https://doi.org/10.
5281/zenodo.7829489, accessed: 2023-04-12.

[22] D. Hothem, J. Hines, K. Nataraj, R. Blume-Kohout, and T. Proctor,
https://doi.org/10.5281/zenodo.todo, published: TBD.

https://quantum-journal.org/papers/q-2021-10-05-557/
https://quantum-journal.org/papers/q-2021-10-05-557/
https://quantum-journal.org/papers/q-2020-09-11-321/
https://link.aps.org/doi/10.1103/PhysRevA.100.032328
https://quantum-journal.org/papers/q-2021-10-05-557/
https://www.nature.com/articles/s41567-021-01409-7
https://www.nature.com/articles/s41567-021-01409-7
https://ieeexplore.ieee.org/document/10061574
https://link.aps.org/doi/10.1103/PhysRevLett.106.180504
https://link.aps.org/doi/10.1103/PhysRevLett.106.180504
https://link.aps.org/doi/10.1103/PhysRevLett.129.150502
https://link.aps.org/doi/10.1103/PhysRevLett.129.150502
http://arxiv.org/abs/2207.07272
https://arxiv.org/abs/2304.10650
https://arxiv.org/abs/2304.10650
https://doi.org/10.1186/s40537-016-0043-6
https://epjquantumtechnology.springeropen.com/articles/10.1140/epjqt/s40507-022-00149-8#citeas
https://epjquantumtechnology.springeropen.com/articles/10.1140/epjqt/s40507-022-00149-8#citeas
https://arxiv.org/pdf/2212.00677.pdf
https://arxiv.org/pdf/2210.16724.pdf
https://www.nature.com/articles/s41567-018-0124-x
https://www.nature.com/articles/s41567-018-0124-x
https://quantum-computing.ibm.com
http://arxiv.org/abs/2204.07568
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://doi.org/10.5281/zenodo.7829489
https://doi.org/10.5281/zenodo.7829489
https://doi.org/10.5281/zenodo.todo

	I Introduction
	II Predictive models from benchmarks
	II-A Benchmarks and capability functions
	II-B Capability models

	III Case study 1: Error rate models
	III-A Theory
	III-B Example 1: Predicting process fidelities
	III-C Example 2: Predicting circuit success probabilities

	IV Case study 2: Transfer learning with Resnet50
	IV-A Neural network capability models
	IV-B Capability models from ResNet50
	IV-C Encoding circuits for ResNet50
	IV-D Demonstration on simulated data

	V Conclusions
	References

