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Abstract—This paper presents the Pauli-based Circuit Opti-
mization, Analysis, and Synthesis Toolchain (PCOAST), a frame-
work for quantum circuit optimizations based on the commuta-
tive properties of Pauli strings. Prior work has demonstrated
that commuting Clifford gates past Pauli rotations can expose
opportunities for optimization in unitary circuits. PCOAST
extends that approach by adapting the technique to mixed
unitary and non-unitary circuits via generalized preparation and
measurement nodes parameterized by Pauli strings. The result
is the PCOAST graph, which enables novel optimizations based
on whether a user needs to preserve the quantum state after
executing the circuit, or whether they only need to preserve the
measurement outcomes. Finally, the framework adapts a highly
tunable greedy synthesis algorithm to implement the PCOAST
graph with a given gate set.

PCOAST is implemented as a set of compiler passes in the
Intel® Quantum SDK. In this paper, we evaluate its compilation
performance against two leading quantum compilers, Qiskit and
t∣ket⟩. We find that PCOAST reduces total gate count by 32.53%
and 43.33% on average, compared to the best performance
achieved by Qiskit and t∣ket⟩ respectively, two-qubit gates by
29.22% and 20.58%, and circuit depth by 42.02% and 51.27%.

Index Terms—Quantum Compiler, Quantum Circuit Optimiza-
tion, Pauli Optimization, Classical-Quantum state

I. INTRODUCTION

Quantum circuit optimizations address an important chal-
lenge in the design of efficient quantum computing systems
by reducing the number of operations required to execute
quantum algorithms [1, 2, 3]. Optimizations fall in two main
classes: local, peephole-style optimizations [4, 5, 6, 7, 8, 9],
where local patterns of gates are replaced by other patterns;
and global optimizations, where circuits are converted to
an intermediate mathematical structure that highlights some
semantic equivalence, simplified according to the rules of that
structure, and synthesized back into a circuit that could be
significantly different from the original. This paper presents
a novel global optimization framework called PCOAST, a
Pauli-based Circuit Optimization, Analysis, and Synthesis
Toolchain, which successfully reduces total gate count, two-
qubit gate count, and depth compared to the best perfor-
mance of state-of-the-art optimizing compilers Qiskit [7] and
t∣ket⟩ [10].

Recently, a class of global optimizations based on Pauli rota-
tions have proved successful in reducing gate count for unitary
circuits beyond the reach of more traditional local peephole
optimizations [11, 12, 13]. These optimizations take advantage

of the fact that unitary circuits can be decomposed into Clif-
ford gates (generated by the Hadamard gate H , the phase gate
S and the controlled-not gate CNOT); and non-Clifford gates
represented by Pauli rotations Rot(P, θ) = e−iθ/2P , where
P is one the Pauli matrices X , Y , or Z. Because Cliffords
always map Paulis to Paulis by conjugation, it is possible to
push Clifford unitaries U past the non-Clifford Pauli rotations
Rot(P, θ) to produce a new rotation Rot(UPU †, θ). Doing
so can expose the fact that some rotations can be merged,
reducing the number of gates required in the final circuit,
even if the original gates did not appear directly next to
each other in the original circuit [11]. The implementation of
Pauli gadgets (the equivalent of Pauli rotations) in the t∣ket⟩
compiler [10] has been shown to reduce both the number of
2-qubit entangling gates, relevant for Noisy Intermediate Scale
Quantum (NISQ) workflows, and single-qubit non-Clifford
gates, relevant for fault-tolerant workflows [12].

These optimizations are quite powerful, but they fall short in
two main ways. First, they focus on unitary circuits, so equiv-
alences enabled by non-unitary operations like preparations
and measurements are not taken into account. For example,
if a Z rotation occurs on a qubit that was prepared in a Z
eigenstate, that rotation can be eliminated. Incorporating non-
unitary gates enables several powerful optimizations, such as
the ability to drop all unitary gates after measurement when
coherence on the quantum device doesn’t need to be preserved
after measurement. Second, while optimizations reduce the
number of rotations and put an upper bound on the size of the
resulting circuit, the number of two-qubit gates required can
be expensive if the rotations are synthesized in a suboptimal
order. Schmitz et al. [13] and Li et al. [14] both explore
synthesis in the context of Hamiltonian simulation, with the
goal of automatically synthesizing a Hamiltonian, described
as a product of Pauli rotations, into a circuit with a designated
gate set. In particular, Schmitz et al. describe a greedy search
algorithm that reduces this search problem to a variation of
the traveling salesman problem [13].

In this paper, we show that by addressing these deficits,
Pauli strings can be used not only as a standalone optimization
pass, but as a cohesive optimization framework, PCOAST.
Fig. 1 shows an example PCOAST workflow. First, the circuit
in Fig. 1a is converted into the PCOAST graph in Fig. 1b.
The graph highlights the commutativity of rotation nodes in
relation to each other—if there is no dependency between two
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PrepZ RX(θ1) RX(θ2) RX(θ3) MeasZc0

PrepZ H MeasZc1

(a) Example circuit. The c argument in MeasZc indicates the
classical variable that the measurement outcome is written to.

Prep(Z0,X0) Rot(X0, θ1) Measc1(Z0)

F = (Z0X1 Z1

Z0 X0Z1
)Rot(Z1, θ3) Rot(X0, θ2)

Prep(Z1,X1) Measc0(Z0X1)

(b) The PCOAST graph generated by the example circuit. The
groupings indicate nodes to be merged together, where Rot(X0, θ1)
and Rot(X0, θ2) combine to Rot(X0, θ1 + θ2), and Rot(Z1, θ3) is
absorbed by Prep(Z1,X1). Note that the measurement to variable
c1 has been transformed into a measurement of the first qubit, Z0,
due to the permutations of Clifford gates (F ) past the measurement.

Prep(Z0,X0) Rot(X0, θ1 + θ2) Measc
′

1(Z0) F ′ = (Z0 X0

Y1 X1
)

Prep(Z1,X1) Measc
′

0(X1)
µ = c0 ← c′0;

c1 ← c′0 + c′1

(c) The optimized PCOAST graph obtained when specifying a release
outcome. The optimization has reduced the support of the measurement
node Meas(Z0X1) to Meas(X1) by recognizing that the Z0X1 measure-
ments can be reconstructed by measuring X1 and combining the outcomes
with the measurement of Z0 classically. The measurement results of the
optimized graph is guaranteed to produce the same probability distribution
as Fig. 1b.

PrepZ RX(θ1 + θ2) MeasZc′1

PrepZ RY(−π
2
) MeasZc′0

µ = c0 ← c′0;

c1 ← c′0 + c′1

(d) Optimized released circuit synthesized from Fig. 1c, along with assign-
ments to classical variables to account for the release outcome optimization.

Fig. 1: PCOAST optimization on an example circuit.

nodes, they commute with each other. In addition to the uni-
tary Pauli rotations, our PCOAST graph contains non-unitary
gates—preparation and measurement—that are parameterized
by Pauli rotations and are subject to the same commutativity
rules as rotations. To represent Cliffords, we use a compact
representation as a Pauli frame F , otherwise known as a Pauli
tableau [15], which emphasizes the behavior of the Clifford
on Pauli arguments (Sec. IV-A). A summary of different types
of nodes is shown in Fig. 2.

The addition of these non-unitary nodes enables a host of
additional internal optimizations on PCOAST graphs. Users
can choose between two optimization outcomes: either a hold
outcome, where the optimizations preserve the semantics of
the original circuit precisely; or a release outcome, where
more aggressive optimizations can be applied as long as they
produce the same measurement results. A release outcome will
drop unitary gates that can be delayed until after measurement,
with the guarantee that the measurement results will always be
statistically equivalent. To achieve this, we introduce classical

PCOAST nodes

Measurement
space

functions
µ ∶ M1 →M2

Quantum gates

Pauli preparations
Prep(PZ , PX)

Pauli measurements
Measc(P )

Unitary gates

Pauli rotations
Rot(P, θ) = e−i θ

2P

Clifford gates

Paulis
X0Z1Y3

Pauli frames
F ∶ P → P

Fig. 2: Types of PCOAST nodes in relation to each other.
Note that Paulis themselves are not nodes, but are represented
in PCOAST as Pauli frames.

remappings of measurement variables via what we call mea-
surement space functions. For example, if a release outcome is
specified for Fig. 1, it will be optimized to the PCOAST graph
as shown in Fig. 1c using the measurement space function
given in the bottom right.

Finally, we adapt Schmitz et al. [13]’s synthesis algorithm
to determine both how to order commuting nodes, and how
to decompose multi-qubit nodes using sequences of two-
qubit entangling gates. The result is shown in Fig. 1d. We
customize the synthesis algorithm with a number of heuristics
to minimize cost according to a given cost model, map into
a target gate set, and reduce the number of measurements
required for a stabilizer search. Currently, synthesis primarily
aims to minimize algorithm-level resource requirements like
circuit depth, although the design allows for customization to
prioritize other search criteria.1

This work makes the following contributions:

● We develop a semantics in which to describe the behavior
of PCOAST nodes, terms, and graphs that incorporates
both classical and quantum states.

● We introduce the key PCOAST data structures, including
Pauli frames and the PCOAST graph.

● We present three major components of the PCOAST
optimization: compiling a circuit to a PCOAST graph,
optimizing the graph, and synthesizing a circuit back out.

● We implement PCOAST in C++ as a sequence of com-
piler passes in the Intel® Quantum Software Development
Kit (SDK)2 [16], and evaluate its compilation perfor-
mance against two state-of-the-art optimizing quantum
compilers, Qiskit [7] and t∣ket⟩ [10]. Our experimental
results show that PCOAST reduces total gate count by
32.53% and 33.33% on average, compared to the best
performance achieved by Qiskit and t∣ket⟩ respectively,
two-qubit gates by 29.22% and 20.58%, and circuit depth
by 42.02% and 51.27%.

An extended version of this paper gives full proofs for all
lemmas and theorems [17].

1The full implications of such customization, including hardware-aware
layout, routing, and scheduling, are beyond the scope of this paper.

2https://developer.intel.com/quantumsdk
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II. BACKGROUND

Quantum states are represented as density matrices ρ: pos-
itive semi-definite, Hermitian complex matrices with trace 1.
Unitary transformations act on them via conjugation: UρU †. A
density matrix is called a pure state if it can be written as the
outer product of two state vectors ∣ϕ⟩ ⟨ϕ∣. If not, it is a mixed
state and can be written as the weighted sum of pure states,
representing a probability distribution over pure states. The
behavior of a quantum circuit can be described as a function
over density matrices known as a quantum channel [18].

A. The Pauli group

A single-qubit Pauli p is one of X , Y , Z, or I , where

X = (0 1
1 0

) Y = (0 −i
i 0

) Z = (1 0
0 −1) (1)

X , Y , and Z are Hermitian, meaning that pp = I , and satisfy
XY Z = i. A consequence is that any two single-qubit Paulis
either commute (written p1 á p2), meaning p1 ⋅ p2 = p2 ⋅ p1; or
anticommute (p1 /á p2), meaning p1 ⋅ p2 = −p2 ⋅ p1. We write

λ(p1, p2) =
⎧⎪⎪⎨⎪⎪⎩

0 p1 á p2

1 p1 /á p2
(2)

An n-qubit Pauli P = α(p0, . . . , pn−1) ∈ Pn is the tensor
product of n single-qubit Paulis scaled by α ∈ {1,−1, i,−i}.
Its support, supp(P ), is the set of indices for which pi ≠ I .
We write Xi, Yi, and Zi for Paulis with support {i}, and thus
the Pauli string X0Z2 refers to (X,I,Z).

Multiplication can be lifted to n-qubit Paulis as follows:

P1 ⋅ P2 = α1α2σ0⋯σn−1(q0, . . . , qn−1) (3)

where Pi = αi(pi0, . . . , pin−1) and p1i ⋅ p2i = σiqi. As a result,
n-qubit Paulis form a group with identity I = (I, . . . , I).

Commutativity can be lifted to n-qubit Paulis via a binary
function λ(P,P ′) ∈ {0,1} such that P ⋅P ′ = (−1)λ(P,P ′)P ′ ⋅P :

λ(α(p0, . . . , pn−1), α
′
(p′0, . . . , p

′
n−1)) =

n−1
∑

i=0
λ(pi, p

′
i) mod 2 (4)

We write P á P ′ if λ(P,P ′) = 0 and P /á P ′ if λ(P,P ′) = 1.
We are most interested in Hermitian Paulis where PP = I .

Since single-qubit Paulis are all Hermitian, an n-qubit Pauli is
Hermitian if and only if its coefficient is ±1. The Hermitian
product of Hermitian Paulis is P1 ⊙P2 = (−i)λ(P1,P2)P1 ⋅P2:
if P1 and P2 are both Hermitian, then so is P1 ⊙ P2.

III. SEMANTICS

As quantum channels, PCOAST nodes could be seen
as transformations on quantum states. However, because
PCOAST deals with mixed unitary and non-unitary circuits, it
also must account for transformations on classical states, for
example when writing measurement outcomes a classical reg-
isters. A classical state m is a finite sequence of assignments
of classical variables c to boolean values b ∈ {0,1}, written
c0 ← b0;⋯; cn−1 ← bn−1. The boolean value associated with a
variable is written m[c], and a finite set of classical states is
referred to as a measurement space M.

A. Classical-quantum states

Instead of working with density matrices directly, we will
operate over mixed classical-quantum states [19, 20]. A cq-
state γ ∈ CQM =M→ Cn×Cn, sometimes written m↦ γm, is
a function from a classical state m ∈ M to the quantum state of
the system after the measurement outcome m is observed. The
quantum state γm is represented as a partial density matrix
γm, whose trace 0 ≤ tr(γm) ≤ 1 corresponds to the probability
of observing m. The sum of all the partial density matrices in
the image of a cq-state is a full density matrix with trace 1.

As an example, the cq-state obtained from executing the
circuit PrepZ(0);H(0);MeasZc(0) is m↦ 1

2
∣m[c]⟩ ⟨m[c]∣.

When it is clear from context, we write ρ for the constant
cq-state ↦ ρ. Scaling and summation of cq-states over the
same measurment space is defined pointwise.

PCOAST utilizes two different equivalence relations on cq-
states. The hold relation completely preserves the quantum
state corresponding to every classical state, while the release
relation only requires that the probability of being in the same
state, tr(γi

m), is the same for each classical state m.

γ1 ≡hold γ2 ⇐⇒ ∀m ∈ M, γ1
m = γ2

m (5)

γ1 ≡release γ2 ⇐⇒ ∀m ∈ M, tr(γ1
m) = tr(γ2

m) (6)

In this context, the semantics of a quantum circuit C can
be described as a classical-quantum channel—a linear function
JCK ∶ CQM1 → CQM2 between cq-states, where M1 is the
set of states exectuion may be in before C, and M2 contains
the states the program may be in after executing C.

B. Sum-of-Pauli semantics

Classical-quantum channels will be used to describe the
behavior of circuits and PCOAST nodes on classical variables.
However, the majority of nodes do not affect classical states
at all. In that case, their behavior can be naturally described
as a Pauli map, a function from n-qubit Paulis to cq-states.
Intuitively, the quantum component of the input cq-state will
be decomposed into a sum of Pauli operators scaled by
arbitrary complex values, which we call Pauli vectors.

Lemma 1. Every 2n × 2n complex matrix A can be decom-
posed into a Pauli vector A = ∑i αiPi.

Multiplication of Pauli vectors, written v1 ⋅v2, and conjugate
transpose, v†, are defined in the expected way.

Definition 2. A Pauli map is a function f ∶ Pn → CQM from
n-qubit Paulis to cq-states. It can be lifted to a cq-channel
[f] ∶ CQM0 → CQM0+M as3

[f](γ) =m0;m↦∑
i

αiγi(m) (7)

where γ(m0) = ∑i αiPi and γi = f(Pi) ∈ CQM .

A Pauli vector v can be lifted to a Pauli map v∗(P ) = vPv†,
called the conjugation action of v. Scaling (αm) and addition
(v1 + v2) of Pauli maps are defined pointwise, and we say a

3M1 +M2 = {m1;m2 ∣mi ∈ Mi}.
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Pauli map acts on a Pauli vector by mapping it over every
Pauli in the vector: m(∑i αiPi) = ∑i αim(Pi).

IV. PCOAST DATA TYPES

PCOAST uses five types of nodes for different sorts of gates:
● Pauli rotations Rot(P, θ) for non-Clifford unitaries e−iθ/2P

● Pauli preparations Prep(P1, P2)
● Pauli measurements Measc(P )
● Measurement space functions µ
● Pauli frames F for Clifford unitaries

The semantics of PCOAST nodes are defined as Pauli maps
JnK ∶ Pk → CQ, except for measurement space functions,
which are defined as cq-channels directly.

Definition 3. A Pauli rotation Rot(P, θ) consists of a Her-
mitian Pauli P on k qubits and a real number θ ∈ R. The
semantics of a Pauli rotation JRot(P, θ)K is given by the
conjugation action of its corresponding unitary, [Rot(P, θ)]:4

JRot(P, θ)K(Q) = [Rot(P, θ)]Q[Rot(P,−θ)] (8)

[Rot(P, θ)] = e−iθ/2P = cos ( θ
2
)I + i sin ( θ

2
)P (9)

Definition 4. A Pauli preparation Prep(PZ , PX) consists of a
pair of non-commutative Hermitian Paulis.

JPrep(PZ , PX)K(Q)

= 1

4
((I + PZ)Q(I + PZ) + PX(I − PZ)Q(I − PZ)PX)

=
⎧⎪⎪⎨⎪⎪⎩

Q(I + PZ) λ(Q,PZ) = λ(Q,PX) = 0
0 otherwise

(10)

Intuitively, Prep(PZ , PX) collapses the state in the eigen-
subspaces of PZ and, if -1 is obtained, applies PX . As an
example, Prep(Zi,Xi) prepares the ith qubit in the Z basis.

Definition 5. A Pauli measurement Measc(P ) consists of a
Hermitian Pauli acting as a measurement operator.

JMeasc(P )K(Q) =m↦
⎧⎪⎪⎨⎪⎪⎩

1
4
(I + P )Q(I + P ) m[c] = 0

1
4
(I − P )Q(I − P ) m[c] = 1

= c← b↦
⎧⎪⎪⎨⎪⎪⎩

1
2
Q(I + (−1)bP ) λ(P,Q) = 0

0 λ(P,Q) = 1
(11)

As an example, Measc(Zi) measures qubit i in the Z basis.
c is the classical register in which measurement is recorded.

Definition 6. A measurement space function µ ∶ M1 →M2 is
a function between two measurement spaces. It is interpreted
as a cq-channel JµK ∶ CQM1 → CQM2 as follows:

JµK(γ) =m2 ↦ ∑
m1∈µ−1(m2)

γm1 . (12)

As an example, in the circuit Prep(Zi,Xi);Measc(Zi), the
measurement can be optimized away, yielding Prep(Zi,Xi);µ
where µ(m) =m; c← 0.

4Recall, if the classical state is not specified, it is assumed to be the constant
cq-state ↦ ρ.

A. Pauli Frames

Clifford unitaries satisfy the property that when acting on
a Pauli P by conjugation, the result UPU † is still a Pauli. A
Pauli frame5 is a compact representation of a Clifford unitary
defined by that conjugation—or more precisely, its inverse
conjugation U †PU—on every base Pauli string Zj , Xj , and
Yj . For example, the inverse conjugation of U = CNOT0,1 is

j U †ZjU U †XjU U †YjU
0 Z0 X0X1 Y0X1

1 Z0Z1 X1 Z0Y1

(13)

It suffices to store only the first two columns of this table: we
can derive U †YjU = −i(U †ZjU)(U †XjU) since Y = −iZX .
Thus, an n-qubit Clifford is represented by an n × 2 Pauli
frame, where the first column stores U †ZjU and the second
column stores U †XjU :

( Z0 X0X1

Z0Z1 X1
) (14)

Note that whether we store U †PU or UPU † in the entries
of the Pauli frame is a matter of style—the inverse of a
Pauli frame can always be calculated to obtain one from
the other [17]. However, the choice affects the efficiency of
the lookup operation

Ð→
F (Defn. 8 below). For efficiency in

PCOAST, the lookup operation should implement the opposite
of the semantic interpretation JF K(Q) = UQU † (Defn. 10).

Definition 7. A Pauli frame F on k qubits is a k × 2 array of
Hermitian k-qubit Paulis:

F =
⎛
⎜
⎝

effZ0 effX0

⋮ ⋮
effZn−1 effXn−1

⎞
⎟
⎠

(15)

The arguments in the first column are called the effective Zj

Paulis, and the arguments in the second column the effective
Xj Paulis, and they must respect all the same commutativity
relations as the corresponding Zj and Xj Paulis:

λ(effZi, effZj) = λ(effXi, effXj) = 0 (16)

λ(effZi, effXj) = λ(effXj , effZi) = δi,j6 (17)

Definition 8. The lookup action of F on P = α(p0, . . . , pk−1),
written

Ð→
F (P ), is the product of the effective entry of each pj :

Ð→
F (α(p0, . . . , pn−1)) = α∏

j

effpj (18)

where effIj = I and effYj = effZj ⊙ effXj .

Lemma 9. For every Pauli frame F there is a Clifford
unitary UF , unique up to overall phase, satisfying

Ð→
F (P ) =

(UF )†PUF for any Pauli P .
5Pauli tableaus [15] were first introduced as a way to simulate stabilizer

states generated entirely from Clifford gates and single-qubit measurements.
Since then, Pauli tableaus have been used to represent Clifford circuits in
general, not just for the purposes of stabilizer simulation. Following [13, 21],
in this work we refer to Pauli tableaus as Pauli frames to emphasize their
linear algebraic structure with regards to the Pauli group.

6δi,j is 0 if i = j and 1 otherwise.
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P á n

Rot(P, θ) á n

P1 á n P2 á n

Prep(P1, P2) á n

P á n

Measc(P ) á n

F ○ F ′ = F ′ ○ F

F á F ′
n not a Pauli frame n á F

F á n

µ á Rot(P, θ) µ á F µ á Prep(P1, P2)

Fig. 3: Definition of n1 á n2 indicating when two PCOAST
nodes commute. These definitions, given as inference rules, are
understood as follows: the conclusion below the line holds if
and only if all the hypotheses above the line hold.

Definition 10. The semantics of a Pauli frame is given by the
Pauli map JF K(Q) = UFQ(UF )†.

The frame FU associated with a Clifford unitary U is

effpF
U

j = U †pjU, (19)

where effpFj is entry of F corresponding to pj . We refer to
F I as the origin frame.

A consequence of the commutativity rules for frames is that
the lookup action preserves commutativity and composition.

λ(Ð→F (P ),Ð→F (Q)) = λ(P,Q) (20)
Ð→
F (PQ) = Ð→F (P )Ð→F (Q) (21)

Definition 11. Composition of Pauli frames F2 ○F1 is defined
as effpF2○F1

i = Ð→F1(effpF2

i ). It satisfies UF2○F1 = UF2UF1 .

B. PCOAST Terms

A PCOAST term t is a sequence of PCOAST nodes
n0; . . . ;nk−1 with 1 indicating the empty sequence. The se-
mantics of nodes can be lifted to terms JtK ∶ CQ → CQ.

We define an equivalence relation on PCOAST terms pa-
rameterized by a hold or release outcome o, corresponding to
the two equivalence relations on cq-states.

t1 ≡o t2 ⇐⇒ ∀γ, Jt1K(γ) ≡o Jt2K(γ) (22)

If not specified, we assume o is the stronger hold outcome.
Intuitively, two PCOAST nodes commute exactly when

their underlying Paulis commute. Formally, Fig. 3 defines a
commutativity relation n á n′ between nodes, aided by a
helper relation Q á n (Fig. 4) that indicates when a Pauli
commutes with a PCOAST node.

Theorem 12. If n1 á n2 then n1;n2 ≡ n2;n1.7

7Note that this property does not hold in the other direction; the rules for
n1 á n2 are strictly more restrictive. In particular, the relation is not reflexive
on Prep(PZ , PX) since PZ /á PX .

Q á P

Q á Rot(P, θ)

Ð→

F (Q) = Q

Q á F

Q á P1 Q á P2

Q á Prep(P1, P2)

Q á P

Q áMeasc(P ) Q á µ

Fig. 4: Definition of Q á n, when a Pauli Q commutes with a
PCOAST node n. Recall that for two Paulis, we write P1 á P2

if and only if λ(P1, P2) = 0.

C. The PCOAST Graph

Definition 13. A PCOAST graph G = (V,E) is a directed
acyclic graph whose vertices V are PCOAST nodes. For any
nodes n1 and n2 that do not commute, there is either an edge
from n1 to n2 or vice versa (but not both). There are no edges
between commuting vertices.

As an example, in Fig. 1c there are edges from both
measurement nodes to the the measurement space function
node µ, but there are no edges to the Pauli frame F ′ because
both Z0 and X1 commute with F ′.

Every topological ordering of a PCOAST graph G cor-
responds to a PCOAST term tG. Even though topological
orderings of a graph are not unique, they are equivalent to
each other due to Thm. 12: if two vertices do not commute,
there is an edge between them in one direction or the other,
and that edge will be preserved by the topological ordering.

PCOAST graphs satisfy three key invariants: frame-
terminal, measurement-space terminal, and fully merged.

1) Frame-terminal graphs: A PCOAST graph is called
frame-terminal when it contains a single Pauli frame node,
and that frame has no outgoing edges. It is always possible to
construct a frame-terminal graph because a Pauli frame F can
be commuted past any other node n by transforming n into a
new node

Ð→
F (n) that satisfies F ;n ≡ Ð→F (n);F .

Ð→
F (n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F −1 ○ F ′ ○ F n = F ′

Rot(Ð→F (P ), θ) n = Rot(P, θ)
Prep(Ð→F (PZ),

Ð→
F (PX)) n = Prep(PZ , PX)

Measc(Ð→F (P )) n =Measc(P )
µ n = µ

(23)

2) Measurement-space terminal graph: Similarly, a graph
is called measurement-space terminal when it contains at
most one measurement space function node, and that node
has no outgoing edges. Since frames and measurement space
functions always commute, this does not conflict with the
graph being frame-terminal. To construct a measurement-
space-terminal graph, it suffices to push all measurement space
nodes past measurement nodes via the equivalence

µ;Measc(P ) ≡Measc
′

(P );µ′ (24)

where c′ is fresh and µ′(m) =m; c←m(c′).
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Rot(P, θ1);Rot(±P, θ2) Ð→M

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

F Rot(P,θ) θ = θ1 ± θ2 is a
multiple of π

2

Rot(P, θ) otherwise
Prep(PZ , PX);Prep(±PZ , P

′
X) Ð→M Prep(±PZ , P

′
X)

Prep(PZ , PX);Rot(±PZ , θ) Ð→M Prep(PZ , PX)

Measc1(P );Measc2((−1)bP ) Ð→M Measc1(P ); c2 ← c1 + b

Prep(PZ , PX);Measc((−1)bPZ) Ð→M Prep(P,PX); c← b
Rot(±P, θ);Measc(P ) Ð→M Measc(P )

F1;F2 Ð→M F2 ○ F1 µ1;µ2 Ð→M µ2 ○ µ1

Fig. 5: Rules for merging vertices. When θ is a multiple of π
2

,
Rot(P, θ) is a Clifford unitary.

Corig

F orig

Gorig

µorig

F opt

Gopt

µopt

Copt

µopt

A B C

Fig. 6: Flow for constructing a PCOAST graph from a circuit,
starting with the circuit on the left Corig and ending with the
optimized circuit on the right Copt. The steps correspond to
Sections V-A, V-B, and V-C).

3) Mergeable nodes: A pair of nodes (n1, n2) is called
mergeable if there is no path between them in the graph and
there is a step n1;n2 Ð→M t to a new Pauli term, as defined
in Fig. 5. For such a merge to occur, n1 and n2 must have the
same underlying Pauli arguments modulo ±1, in which case
they can be combined into a single node, or in the case of
measurement, two new but still simpler nodes.

Lemma 14. If t1 Ð→M t2 then t1 ≡ t2.

V. THE PCOAST OPTIMIZATION

The PCOAST optimization, illustrated in Fig. 6, starts with
a circuit, compiles it to a PCOAST graph, optimizes that
graph, and then synthesizes a circuit again. To maintain the
frame- and measurement-space-function-terminal invariants,
we separate out the terminal frame F and measurement space
function µ from the rest of the graph G.

A. Compiling circuits to PCOAST graphs

The procedure CIRCTOGRAPH(C) (Fig. 7) produces a
PCOAST graph G, a terminating Pauli frame F , and a
terminating measurement space function µ from a circuit C by
moving gates into G or F respectively using a helper function
ADDNODE(G,n) (Fig. 8). The algorithm maintains the loop
invariant that tC ≡ g;F ;µ; tC

′

.

B. Internal optimizations on PCOAST graphs

We give a brief overview of the internal optimizations on
the PCOAST graphs here, where a detailed discussion is the
contents of [21]. The optimizations are primarily concerned
with the interfaces between unitary and non-unitary elements
of the graph, and how these optimizations are leveraged

1: procedure CIRCTOGRAPH(C)
2: G← ∅; F ← F I ; µ← µ0

3: for each g in C do
4: for each n in tg do
5: if n =Measc(P ) then
6: n←Measc

′

(P ); µ← µ[c↦ c′] ▷ c′ fresh
7: if n = µ′ then µ← µ′ ○ µ
8: else if n = F ′ then F ← F ′ ○ F
9: else

10: (G′, F ′, µ′) ← ADDNODE(G,
Ð→
F (n))

11: G← G′;F ← F ○ F ′;µ← µ ○ µ′
12: return (G,F,µ)

Fig. 7: The function CIRCTOGRAPH(C) takes as input a
circuit C and returns a PCOAST graph G, a Pauli frame F , and
a measurement space function µ such that G;F ;µ ≡ tC . We
assume that every gate in C can be written in a straightforward
way as a PCOAST term tg .

1: procedure ADDNODE(G, n)
2: if n = F then return (G,F,µ0)
3: else if n = µ then return (G,F I , µ)
4: else
5: for each node n0 in G with outdegree 0 do
6: if n0;nÐ→M n′0 OR n′0;µ0 then
7: G′ ← REMOVEVERTEX(G,n0)
8: (G′′, F, µ) ← ADDNODE(G′, n′0)
9: return (G′′, F, µ0 ○ µ)

10: G′ ← ADDVERTEX(G,n′)
11: for each node n0 in G′ do
12: if n0 /á n′ then G′ ←ADDEDGE(G′, n0, n

′)
return (G′, F I , µ0)

Fig. 8: The procedure ADDNODE(G,n), where G is a
PCOAST graph and n is a PCOAST node, returns an updated
graph G′, a Pauli frame F , and a measurement space function
µ such that G;n ≡ G′;F ;µ. The functions ADDVERTEX, RE-
MOVEVERTEX, and ADDEDGE implement the corresponding
simple graph operations. Note that if n0;nÐ→M t, it is either
the case that t is a single node n′0, or is equal to n′0;µ0.

depends on the desired outcome of the quantum program,
release or hold. We give a brief outline of the optimizations
here, and illustrate them in Fig. 9.
1) In both cases, reduce the size of the support for nodes

which are either weakly or not at all dependent (as defined
in [21]) on a preparation (Fig. 9a).

2) For a hold outcome, reduce the cost of the terminating
frame in the presence of preparations with outdegree 0 in
the graph (Fig. 9b).

3) For a release outcome (Fig. 9c):
a) Trivialize the terminating frame and remove nodes that

can be commuted past all measurements.
b) If there are preparation nodes with outdegree 0,

i) Replace all measurement nodes with outdegree 0
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with an equivalent and more efficient set of mea-
surements and a terminal measurement map via a
stabilizer search [21].

ii) reduce the cost of the the frame generated by 3(b.i)
in the presence of preparations with outdegree 0.

iii) convert the graph back to frame-terminating.

Theorem 15 ([21]). If G is optimized to G′ with outcome o,
then tG ≡o tG′ .

C. Synthesizing circuits from PCOAST graphs

After optimizing the PCOAST graph, the next step is to
synthesize an equivalent circuit. In this section we summarize
the method outlined in Ref. [13] along with the modifications
needed to adapt it to PCOAST.

We will always start with a frame-terminal, fully merged
PCOAST graph (G,F ). The process starts by prepending the
graph with an empty circuit and iteratively synthesizing gates
from dependency-free nodes. If a node has a direct equivalent
as a gate, such as Prep(Zi,Xi), that gate is added directly.
If not, we select a Clifford gate g to add to the circuit, and
transform the rest of the graph by F ′ = F g−1 to obtain

C; g;F ′;G;F ≡ C; g;
Ð→
F ′(G);F ○ F ′ (25)

where
Ð→
F ′(G) applies

Ð→
F ′(n) to each node in G.

Thus synthesis is primarily a method for selecting the
sequence of Clifford gates, particularly two-qubit entangling
(TQE) gates, that minimizes the gate cost, depth or other cost
metric of the resulting circuit.8 To do so, we adapt the search
algorithm of [13] with what we call search functions.

1) NODECOST(n) returns the cost to implement n, which
is zero if and only if a gate gn implements it.

2) REDUCENODE(n) returns a set of TQE gates g that
minimize the NODECOST of

Ð→
F g(n). Repeated application

will monotonically reduce NODECOST to 0.
3) GATECOST(C,G,F, g) returns the cost of the action of

Eq. (25).
4) ADDGATE(C,G,F, g) performs the action of Eq. (25).
We start with synthesizing non-Clifford nodes (Fig. 10).

The search always terminates due to the search functions’
guarantees [13]. It should be clear that tC ; tG

′

; tF
′ ≡ tG, as

ADDGATE preforms a logical identity between the graph and
the circuit.

1) Search function implementations: Search functions can
be implemented differently based on complexity and cost. The
basic implementation in the Intel Quantum SDK primarily
considers the minimum number of TQE gates required to
reduce the node cost to zero. This cost depends on whether
the node is a singlet or a factor node.

Singlet nodes n(P ) are those defined by a single Pauli
operator such as Rot(P, θ) or Measc(P ).

NODECOST(n(P )) = supp(P ) − 1. (26)

8For a given qubit pair there are 3× 3 = 9 TQE gates, generalizing CNOT
and CZ, such that we have one Pauli operator basis for each qubit [13].

Factor nodes n(P,Q) are defined by two anti-commuting
Pauli operators. We can understand factor nodes as effective
qubits consisting of an effective Z and effective X , much like
the rows of the Pauli frame. Thus far we have only introduced
one type of factor node, Prep(PZ , PX), but to synthesize
Clifford circuits in Sec. V-C2, we break an n-qubit Pauli frame
into n factor nodes, one for each row, called local frames.9

The node cost of a factor node is the number of TQE gates
needed to reduce the effective qubit to an actual one.The local
support matrix of an anti-commuting pair P,Q and qubit i is

suppi(P,Q) = (
λ(P,Xi) λ(P,Zi)
λ(Q,Xi) λ(Q,Zi)

) , (27)

The determinant (mod 2) of the local support matrix is called
the local determinant. We say a node has weak support on
qubit i if its local support matrix is nonzero, but has zero
determinant, and strong support if its local determinant is 1.
Ref. [17] argues that for any factor node, the sum over all
local determinants is 1 mod 2. In addition, there exist six
TQE gates to reduce any two qubits with strong support to two
with weak support, and exactly one to reduce one strong and
one weak support to no support on the weak support qubit.10

Reducing a Pauli factor node is then the process of reducing
all strong support to a single qubit (the final qubit to which
the node is reduced) and eliminating all weak support. Thus

NODECOST(n(P,Q)) =(∑
i

det(suppi(P,Q)) − 1) /2

+ (∑
i

[suppi(P,Q) ≠ 0] − 1) (28)

The implementation of REDUCENODE follows from the dis-
cussion in [17] around the selection of gates which reduce
strong-strong and strong-weak qubit pairs.

GATECOST is the average change in NODECOST over all
remaining nodes.11 We use average change as opposed to
average absolute cost as it is faster to compute. ADDGATE
produces the equivalent change to the PCOAST graph.

The Intel Quantum SDK implements a variation of the basic
cost functions, incorporating the following:
● A “schedule” search maintains an approximate ASAP

scheduling of the circuit. GATECOST includes a paral-
lelization credit with a tuneable parameter [13].12

● A “native gate” search targeting a particular gate set,
which informs circuit cost. In the case of the the Intel
Quantum SDK, the set is {CZ,RXY,MeasZ,PrepZ}.

● GATECOST includes a cost penalty for the action of the
gate on the terminating frame.

9In the implementation, we also have 2-axis rotations Rot2(P1, P2, θ, ϕ),
the generalization of the Intel Quantum SDK’s RXY gate; see [17].

10There do exists cases where a TQE gate can reduce two qubits with weak
support to one with weak support, but it is not guaranteed.

11One simple modification to GATECOST is to give greater weight to
dependency-free nodes, as discussed in Section VI. There, we weight free
nodes proportionally to the total number of nodes in the graph divided by
the number of free nodes, meaning that weighting has diminishing impact as
synthesis proceeds.

12The value of this is a fine-tuning modification studied in Sec. VI.
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Prep(Z0,X0) Rot(Z0Z1, θ/2)

Rot(Z1, θ/2)
≡

Prep(Z0,X0)

Rot(Z1, θ)

PrepZ

RZ(θ)
≡

PrepZ

RZ(θ)

(a) Reducing node support in the presence of a
preparation node (top) is the equivalent of removing
a control-line when the control is initialized via a
preparation (bottom).

Prep(Z0,X0) (Z0 X0Z1

Z1 Z0X1
) ≡

Prep(Z0,X0)

(Z0 X0

Z1 X1
)

PrepZ
≡

PrepZ

(b) Reducing the cost of the Pauli Frame in the
presence of a preparation (top) is the equivalent of
removing a CZ when the control line is initialized
via a preparation (bottom).

Measc0(Y0X1Z2)

Prep(X0, Y0) Rot(Z0Z1, θ1)
⎛
⎜
⎝

Z0X1 Z1

Z0 X0Z1

Z2 X2

⎞
⎟
⎠

Measc1(X0Y1Z2)

Measc0(Y0X1Z2)

Prep(X0, Y0)
⎛
⎜
⎝

Z0 X0

Z1 X1

Z2 X2

⎞
⎟
⎠

Measc1(X0Y1Z2)

Measc
′

0(Y0)

Prep(X0, Y0)
⎛
⎜
⎝

Z0X1 X0

Z1X0 X1

Z2 X2

⎞
⎟
⎠

Measc
′

(Z2)
c0 ← c′0 + c′;
c1 ← c′1 + c′

Measc
′

1(Y1)

Measc
′

0(−Z0)
⎛
⎜
⎝

Z0 X1

Z1 X1

Z2 X2

⎞
⎟
⎠

Prep(X0, Y0) Measc
′

(Z2)
c0 ← c′0 + c′;
c1 ← c′1 + c′

Measc
′

2(Y1)

≡hold

≡release

≡hold

(c) Sequence of transformations applied in the case a release outcome.

Fig. 9: Examples of the PCOAST graph optimizations.

1: procedure SEARCHNONCLIFFORD(G,F , hold/release)
2: C ← ∅, G′ ← G, F ′ ← F
3: while G′ contains (release) non-measurement /

(hold) non-Clifford nodes do
4: for n ∈ BEGIN(G′) do
5: if NODECOST(n) = 0 then
6: if (hold) OR n ∉ END(G′) OR
7: n not a measurement node then
8: ADDGATE(C,G′, F ′, gn)
9: G′ ← REMOVEVERTEX(G′, n)

10: Min ← argminn∈BEGIN(G′) NODECOST(n)
11: MinGate ← REDUCENODE(Min)
12: gmin ← argming∈MinGate GATECOST(C,G′, F ′, g)
13: ADDGATE(C,G′, F ′, gmin)
14: return (C,G′, F ′)

Fig. 10: Ultra Greedy Search Algorithm for Non-Clifford
nodes of a PCOAST graph G. Returns a circuit C and
terminating frame F ′ such that tC ; tG

′

; tF
′ ≡ tG. BEGIN(G)

is the set of dependency-free non-Clifford nodes in G and
END(G) the set of nodes with outdegree 0.

● The search functions described here are also used to
implement the stabilizer search algorithm of [21].

2) Adapting Ultra-Greedy Search to finalize the circuit:
After synthesizing the non-Clifford nodes, Fig. 10 leaves us
with (G′, F ′), where either (hold) G′ is empty and F ′ is
non-trivial, or (release) G′ contains only mutually commuting
measurements and F ′ can be discarded.

In the hold case, while methods exist for synthesizing a
circuit for a Pauli frame/tableau [15, 22], we leverage the
ultra-greedy algorithm to automatically take into account all
search function considerations. As such, Pauli frame synthesis

is implemented by Fig. 10 with the rows of the Pauli frame re-
interpreted as a set of mutually independent local-frame factor
nodes, and a zero-cost node replacing the Clifford it represents.
With a few additional promises made by the search functions
(see [21] for details), it is guaranteed that when one local frame
is reduced, it is independent of all other local frames. If the
local frame is reduced to a different qubit than its row index,
it is implemented by a swap. In some cases this swap can
be implemented virtually and thus considered free, but future
versions may include the swap cost when qubit swapping must
be performed by gates.

In the release case, we can again adapt Fig. 10 for the
measurements in G′ by replacing the search functions with the
stabilizer-search-templated versions and adding any measure-
ment space function generated by the search. As measurement
space functions are (binary) linear, they add no more than
a polynomial-time cost (in number of measurements) to the
overall quantum-classical computation [21].13

VI. EVALUATION

PCOAST is implemented in C++ as the core optimization
of the Intel Quantum SDK, enabled by the (-O1) flag. In this
section, we evaluate its performance against IBM’s Qiskit [7]
and Quantinuum’s t∣ket⟩ [10] optimizing compilers.

A. Experimental Setup

System: Our experiments use an Intel Xeon® Platinum CPU
(2.4GHz, 2TB RAM) and Python 3.10.

Framework Setup: We compare against the Qiskit tran-
spiler with optimization levels 2 (qiskit2) and 3 (qiskit3).
For t∣ket⟩, we compare with two predefined optimization

13Measurement space functions are handled automatically in the Intel
Quantum SDK: classical instructions are generated in the LLVM IR to
appropriately map fresh measurement outcomes to classical variables.
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TABLE I: Results for total gate count, two-qubit gates, and depth compared with Qiskit and t∣ket⟩. The coloring indicates the
range from best (dark green, bold) to worst (white).

Gate Count 2Q Gates Depth

Benchmark N PCOAST1 PCOASTFT qiskit2 qiskit3 tket1 tket2 PCOAST1 PCOASTFT qiskit2 qiskit3 tket1 tket2 PCOAST1 PCOASTFT qiskit2 qiskit3 tket1 tket2

H2 BK 4 47 47 117 117 79 76 13 13 38 33 18 17 31 31 95 86 66 60
H2 JW 4 58 36 195 165 91 81 19 12 56 40 20 16 25 21 126 103 65 54
H2 PM 4 53 53 119 106 72 71 15 15 38 30 16 15 25 25 99 80 63 58
LiH BK 12 3143 2372 24985 21080 12017 10786 1308 964 8680 6834 3385 2858 1157 1027 18549 15111 9799 8665
LiH JW 12 3173 2647 21239 20083 9471 8225 1295 1062 8064 6666 2616 2040 1194 1070 17027 14787 7654 6310
LiH PM 12 3218 2402 22214 20897 11030 9795 1324 905 7640 6893 3092 2565 1182 999 16131 14674 9263 8021

BeH2 BK 14 7164 6016 54201 48857 26465 23834 3049 2407 18796 15936 7482 6240 2726 2430 39889 34861 21702 19029
BeH2 JW 14 6812 5967 54113 51123 23684 19974 2970 2363 21072 17528 6669 5044 2571 2372 44354 38564 19706 15619
BeH2 PM 14 7143 5806 59164 55629 29069 25923 3051 2260 20392 18418 8309 6913 2646 2340 42891 39019 24475 21316

qft 5 5 68 65 87 69 104 86 26 25 26 20 26 20 31 25 48 41 55 49
qft 10 10 262 210 334 289 416 371 112 89 105 90 105 90 81 70 103 96 120 114
qft 20 20 922 645 1269 1179 1631 1541 440 289 410 380 410 380 270 217 212 206 250 244
qft 30 30 2281 1280 2804 2642 3646 3466 1119 589 915 858 915 858 491 455 322 316 380 374
qft 50 50 6348 3150 7674 5862 9236 7666 3282 1489 2525 1898 2315 1898 1324 1165 542 536 640 634

grover 5 5 37 37 52 52 62 62 13 13 13 13 13 13 6 6 35 35 44 44
grover 10 10 162 145 187 187 230 230 56 48 49 49 49 49 11 11 94 94 124 124
grover 30 30 530 504 637 637 790 790 185 160 169 169 169 169 26 26 274 274 364 364
grover 80 80 1545 1442 1762 1762 2190 2190 559 467 469 469 469 469 63 63 721 721 960 960
grover 100 100 1936 1814 2212 2212 2750 2750 695 587 589 589 589 589 78 78 901 901 1200 1200
hea5 l 20 5 341 307 326 326 345 345 93 80 80 80 80 80 114 108 106 106 106 106
hea5 c 20 5 473 380 405 405 405 405 184 125 100 100 100 100 221 175 222 222 222 222
hea5 f 20 5 326 307 446 446 705 705 85 80 200 200 200 200 111 108 144 144 264 264
hea10 l 40 10 1591 1412 1451 1451 1490 1490 480 360 360 360 360 360 277 218 216 216 216 216
hea10 c 40 10 4348 2655 1610 1610 1610 1610 1749 977 400 400 400 400 924 659 842 842 842 842
hea10 f 40 10 1592 1412 2891 2891 5810 5810 476 360 1800 1800 1800 1800 275 218 489 489 1129 1129
hea20 l 50 20 4065 3772 3821 3821 3870 3870 1152 950 950 950 950 950 401 288 286 286 286 286
hea20 c 50 20 20533 4679 4020 4020 4020 4020 9048 1524 1000 1000 1000 1000 2207 1275 2052 2052 2052 2052
hea20 f 50 20 4063 3772 12371 12371 29520 29520 1147 950 9500 9500 9500 9500 401 288 1119 1119 2919 2919
qaoa 6 3 6 98 83 85 89 108 108 23 22 24 24 24 24 36 33 37 37 50 50
qaoa 6 6 6 97 86 93 93 122 122 25 24 28 28 28 28 37 34 51 51 76 76

qaoa 17 3 17 432 381 406 406 586 586 148 136 148 148 148 148 90 75 81 81 114 114
qaoa 17 6 17 731 659 761 761 1202 1202 253 220 324 324 324 324 128 124 161 161 247 247
qaoa 28 3 28 1007 887 952 952 1456 1456 356 328 384 384 384 384 151 116 156 156 225 225
qaoa 28 6 28 1746 1617 1870 1870 3052 3052 660 596 840 840 840 840 248 218 278 278 423 423
qaoa 40 3 40 2169 1882 2035 2035 3254 3254 865 725 884 884 884 884 251 222 279 279 418 418
qaoa 40 6 40 3456 3220 3876 3876 6460 6460 1361 1210 1800 1800 1800 1800 413 364 418 418 629 629

sequences: tket1, comprised mainly of the SynthesiseTket pass;
and tket2, comprising of the FullPeepholeOptimise pass.14

For PCOAST we compare optimization level 1 (PCOAST1)
and a version where we fine-tune some parameters of the
search functions (PCOASTFT), as discussed in Sec. VI-C.

Benchmarks: We analyze the compilation performance
for a total of 36 benchmarks of different configurations
and sizes: the Unitary Coupled-Cluster Single and Double
excitations (UCCSD) ansatz [23], Quantum Fourier Trans-
form (QFT) [18], Grover’s Diffusion operator [24], Hardware-
Efficient Ansatz (HEA) [25], and the Quantum Approximate
Optimization Algorithm (QAOA) ansatz [26].

For UCCSD, we construct ansatz for 3 molecules (H2, LiH,
and BeH2) obtained through 3 fermionic mapping techniques:
Jordan-Wigner (JW) [27], Bravyi–Kitaev (BK) [28], and Parity
Mapping (PM) [29]. We test HEA for different circuit sizes
and entanglement arrangements: linear, circular, and full.
Finally, we construct QAOA ansatz for graph MaxCut on
Erdős-Rényi random graphs [30] of different sizes with edge
probabilities of 0.3 and 0.6.

Gate Set Conversions: To guarantee fairness, we map both
Qiskit and t∣ket⟩’s compilation workflows to Intel’s native
gate set {RXY,CZ,RZ,I}. This is done in Qiskit by adding
equivalence rules to the SessionEquivalenceLibrary class, such
as connecting RXY (RGate in Qiskit) to other gates and
decomposing CX into RXY;CZ;RXY. For t∣ket⟩ this is done
via a CustomRebase pass that maps the gate set to t∣ket⟩’s
TK1 and CX gates, and applied at the end of tket1 and tket2.

14In both cases we add other passes like PauliSimp and OptimisePhaseGad-
gets when they improve t∣ket⟩’s performance.

B. Gate Counts & Circuit Depth

Table I shows the total gate count, two-qubit gates, and
depth for PCOAST, Qiskit, and t∣ket⟩ across all benchmarks.
Results assume an all-to-all connected machine as a backend
and are obtained from multiple runs to guarantee consistency.

The untuned implementation, PCOAST1, reduces the to-
tal gate count by 22.51% (respectively 33.70%), single-
qubit gates by 22.06% (43.58%), two-qubit gates by 13.46%
(2.62%), and depth by 36.02% (45.52%) compared to the best
Qiskit (t∣ket⟩) performance across all benchmarks.

PCOAST1 performs exceptionally well with UCCSD, with
average reductions in total gate count by 76.42% (55.51%),
two-qubit gates by 72.52% (32.45%), and depth by 84.82%
(74.30%) compared to the best Qiskit (t∣ket⟩) results. This can
be attributed to the fact that all fermionic mapping methods
are equivalent up to conjugation by a Clifford, and thus are
naturally captured by Pauli frames.

In some cases, PCOAST1 is outperformed by Qiskit and
t∣ket⟩ in two-qubit gate counts for QFT (34.71%) and HEA
(34.14%). This is a result of PCOAST1’s circuit synthesis cost
function optimizing mainly for circuit depth.

C. Fine-tuning PCOAST’s Cost Function

To investigate the cases where PCOAST1 performs poorly
(qft 50, hea10 c and hea20 c), we modify the parallelization
credit, as described in Footnote 12, away from its default
value of 1.0, and we add the weighting modification discussed
in Footnote 11. Additionally, we utilize a release outcome
whenever a workload represents a full computation (UCCSD,
HEA, and QAOA), not a subroutine. Table I’s PCOASTFT
shows the results of these modifications. We see that by
fine-tuning the cost function, we are able to achieve better
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Fig. 11: Normalized gate counts vs. compile time for each framework to evaluate the scalability across different benchmarks.

performance in all cases, where PCOASTFT reduces the gate
count by 50.33%, 38.24%, and 76.82% for the respective
workloads, as compared to PCOAST1.

Our empirical analysis reveals that setting the parallelization
credit less than 0.1 tends to achieve the best results. As we
increase its value beyond 1, performance plateaus due to the
dominance of the parallelization part of the cost function.

Overall, PCOASTFT reduces total gate count, two-qubit
gates, and depth by 16.79%, 20.5%, and 11.28% respec-
tively compared to PCOAST1, and by 32.53%(43.33%),
29.22%(20.58%), and 42.05%(51.27%) compared to the best
Qiskit (t∣ket⟩) performance across all benchmarks.

D. Scalability

Ref [17] argues that the complexity of PCOAST’s search
algorithm is O(N3∣G∣2), where N is the number of qubits
and ∣G∣ the number of nodes. Table I shows that PCOAST
can be applied to circuits with up to 100 qubits. To gain a
comprehensive understanding of scalability and quality, we
compared compilation time and performance (gate count)
across various toolchains (Fig. 11), revealing that PCOAST’s
scalability is superior to other frameworks. Its data points
consistently reside in the lower left region, indicating better
results, with a few exceptions in HEA.

VII. RELATED WORK

Global quantum circuit optimizations, such as phase poly-
nomials [31, 32, 6, 33], the ZX-calculus [34, 35, 36, 12],
Pauli strings [14], and Pauli rotations [11, 13], leverage
mathematical structures to reduce gate count. Most focus
on unitary optimizations, with the exception of some ZX
variants [37, 36]. Most similar to PCOAST graphs is [11]’s
DAGs of Pauli rotations and [12]’s ZX-based Pauli gadgets.
Both overlap with Sec. V-A when restricted to unitary gates,
but neither use Pauli frames to represent Cliffords, nor address
efficient Pauli gadget synthesis. With ZX-based approaches
in particular, optimizations must maintain a “circuit-like”
form, as not all ZX diagrams can be directly synthesized
into gates [34, 36, 38]. In contrast, all PCOAST nodes are
synthesizable, as synthesis is built into the framework itself.

Bottom-up synthesis methods construct parameterized cir-
cuits by iteratively adding gates and using numerical optimiza-
tion algorithms for parameter determination [39, 40, 41, 42].
Compilation algorithms like QGo [43] and QUEST [44] lever-
age bottom-up synthesis for larger circuits, though scalability

remains a concern because their search space increases expo-
nentially with circuit size. In contrast, PCOAST scales well to
large circuits, as demonstrated in Sec. VI-D.

Schmitz et al. [13] and Li et al. [14] both address circuit
synthesis from Pauli strings in the context of Hamiltonian
simulation. [13] is the basis of the PCOAST synthesis algo-
rithm, extended to support non-unitary gates and custom cost
functions that allow the ultra-greedy search to be fine-tuned. Li
et al. incorporate hardware-aware optimization and scheduling
passes into Hamiltonian synthesis and, though out of scope of
this work, we will extend PCOAST search functions with such
hardware-aware considerations in the near future.

VIII. CONCLUSION

PCOAST is a novel optimization framework for mixed
unitary and non-unitary quantum circuits that adapts the com-
mutativity properties of Cliffords and Pauli strings to prepa-
ration and measurement gates in the PCOAST graph. Internal
optimizations simplify the graph depending on whether the
quantum state needs to be preserved (hold) or can be released
(release) after circuit execution. Finally, a customizable greedy
search algorithm finds an efficient gate implementation for the
optimized PCOAST graph.

Implemented in the Intel Quantum SDK, PCOAST signif-
icantly reduces gate count, two-qubit gates, and depth in key
benchmarks. With minor tuning, it reduces total gate count
by between 32% (resp. 43%) two-qubit gates by 29% (21%),
and depth by 42% (51%) compared to the best performance of
Qiskit (resp. t∣ket⟩). On applications for quantum chemistry,
it reduces gate count by 79% (62%), two-qubit gates by 77%
(54%), and depth by 85% (76%).

The framework leaves many avenues for future work.
PCOAST can be used as an IR beyond circuit conversion for
Hamiltonian simulation [13] and higher-order circuit trans-
formations [45]. Future internal optimizations could include
more advanced unitary optimizations such as singlet node
to factor node merging and incorporating other representa-
tions like phase polynomials into PCOAST. For synthesis,
immediate next steps will adapt state-of-the-art methods for
limited connectivity in NISQ architectures by incorporating
connectivity and noise into the search functions.
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Äquivalenzverbot,” Zeitschrift für Physik, vol. 47, no.
9-10, pp. 631–651, Sep. 1928. [Online]. Available:
https://doi.org/10.1007/bf01331938

[28] S. B. Bravyi and A. Y. Kitaev, “Fermionic quantum
computation,” Annals of Physics, vol. 298, no. 1,
pp. 210–226, may 2002. [Online]. Available: https:
//doi.org/10.1006/aphy.2002.6254

[29] J. T. Seeley, M. J. Richard, and P. J. Love, “The
Bravyi-Kitaev transformation for quantum computation
of electronic structure,” The Journal of Chemical
Physics, vol. 137, no. 22, p. 224109, Dec. 2012.
[Online]. Available: https://doi.org/10.1063/1.4768229
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