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Abstract—The Pauli-based Circuit Optimization, Analysis and
Synthesis Toolchain (PCOAST) was recently introduced as a
framework for optimizing quantum circuits. It converts a quan-
tum circuit to a Pauli-based graph representation and provides
a set of optimization subroutines to manipulate that internal
representation as well as methods for re-synthesizing back to a
quantum circuit. In this paper, we focus on the set of subroutines
which look to optimize the PCOAST graph in cases involving
unitary and non-unitary operations as represented by nodes
in the graph. This includes reduction of node cost and node
number in the presence of preparation nodes, reduction of cost
for Clifford operations in the presence of preparations, and
measurement cost reduction using Clifford operations and the
classical remapping of measurement outcomes. These routines
can also be combined to amplify their effectiveness.

We evaluate the PCOAST optimization subroutines using the
Intel® Quantum SDK on examples of the Variational Quantum
Eigensolver (VQE) algorithm. This includes synthesizing a circuit
for the simultaneous measurement of a mutually commuting set
of Pauli operators. We find for such measurement circuits the
overall average ratio of the maximum theoretical number of two-
qubit gates to the actual number of two-qubit gates used by our
method to be 7.91.

Index Terms—quantum computing, quantum circuit optimiza-
tion, Pauli optimization

I. INTRODUCTION

PCOAST, a Pauli-based Circuit Optimization, Analysis, and
Synthesis Toolchain, was recently introduced as a comprehen-
sive framework for quantum circuit optimization [1]. It draws
on a class of unitary quantum circuit optimizations based on
Pauli rotations [2, 3, 4] that take advantage of the fact that
unitary circuits can be decomposed into Clifford gates and
Pauli rotations Rot(P, θ) = e−iθ/2P , where P is a Pauli matrix
X , Y , or Z. Because Cliffords always map Paulis to Paulis
by conjugation, it is possible to push Clifford unitaries U past
the non-Clifford Pauli rotations Rot(P, θ) to produce a new
rotation Rot(UPU †, θ). Doing so can expose the fact that
some rotations can be merged [2].

PCOAST extends these optimizations into a comprehen-
sive framework in several key ways. First, it introduces the
PCOAST graph whose nodes represent quantum operations
with edges based on the non-commutativity of the underlying
Pauli operators. While prior work was limited to unitary
optimizations, PCOAST acts on mixed unitary and non-unitary
circuits by introducing preparation and measurement nodes pa-
rameterized by Paulis alongside unitary rotations and Clifford

nodes. Second, PCOAST introduces a customizeable greedy
synthesis algorithm to synthesize efficient gate representations
from the PCOAST graph. And finally, PCOAST implements
sophisticated internal optimizations on the PCOAST graph,
which are the focus of this paper.

This paper presents the details of those PCOAST-to-
PCOAST graph optimizations primarily aimed at exploiting
the interaction between unitary and non-unitary nodes. These
optimizations include reducing both the cost and number of
non-Clifford nodes in the presence of preparations and the
cost of Clifford operations in the presence of preparations.
However, the most impactful of these optimizations is the
reduction of mutually commuting measurements and their cost
using Clifford operations and classical measurement remap-
ping. Though other methods exist [5, 6, 7], we demonstrate
that our methods:
● make no additional restriction on the measurement set;
● leverage full and partial qubit agreement (see Defn. 4);
● have no limit on size or independence of the Pauli

measurement set;
● leverage lower-weight elements in the span of the mea-

surement set to minimize the circuit costs; and
● are fully integrated into the PCOAST framework, and

inherit its efficiencies, refinements, and scalability[1] in-
cluding future development.

All methods discussed throughout the paper are implemented
in the Intel® Quantum Software Development Kit (SDK)1 [8],
including the automated remapping of measurement results.

The structure of the paper is as follows: In Section II, we
motivate the set of optimization implemented by PCOAST,
before giving some theoretical background in Section III. We
then discuss the Stabilizer Search Problem and our solution to
it in Section IV as well as the optimization of unitary channels
in the presence of preparations in Section V. Section VI
combines these into a full optimization scheme. In Section VII,
we evaluate the performance of our methods for the Variational
Quantum Eigensolver (VQE) algorithm where we find an
overall average ratio of the maximum theoretical number of
two-qubit gates to the actual number of two-qubit gates used
by our method to be 7.91. This is compared to the value of
3.5 as found for a similar metric using the best known existing

1https://developer.intel.com/quantumsdk
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solution to the Stabilizer Search problem[7]. Finally, we make
concluding remarks in Section VIII.

II. MOTIVATION

Much of PCOAST’s efficacy comes from the structure of the
PCOAST graph, primarily by exploiting commutativity of the
operations. This allows for merging of some operations and
synthesizing of a more optimal ordering when implemented.
However, this alone is not enough to capture many known
simplifications, especially at the interfaces of unitary and
non-unitary elements. Fig. 1 shows some common quantum
circuit optimizations involving preparations. Each of these is
an example of a unitary controlled on a qubit prepared in a
computational state and is not captured by the structure of
the PCOAST graph on its own. Furthermore, the result of
each example translates to the PCOAST graph differently, and
optimizations which capture and generalize these have to be
handled separately. This is not a drawback, however, because
the generalization can express otherwise non-intuitive relations
that go well beyond simple pattern matching. We demonstrate
this process in Section V.

Another opportunity for optimization using PCOAST comes
from a mutually commuting set of measurement nodes oc-
curring at the end of a PCOAST graph. Such a case occurs
when the graph is built from a quantum circuit that ends
by measuring most or all of its qubits. A similar situation
occurs when measuring an arbitrary Hamiltonian for the broad
class of VQE algorithms [9, 10, 11] or any other class which
requires the expectation value of a Hermitian observable.
Though other methods exist [12, 13, 14], a common strategy
for extracting expectation values is to expand the operator in
the Pauli operator basis, then group the terms of that expansion
into mutually commuting sets. These sets can either be qubit-
wise commuting [5], fully commuting [6] or sorted for the
sake of minimizing total shots on the quantum computer [7].
The qubit-wise commutation case has a direct translation to a
circuit—a single-qubit basis change to the agreed single-qubit
Pauli operator support (see Defn. 4). In the latter two cases,
however, the authors generate a Clifford circuit to extract a
set of simultaneous measurements capable of reconstructing
all elements. (see Defn. 3 for a formal description).

When applying synthesis to a PCOAST graph with mutually
commuting Pauli measurements at the end, the greedy synthe-
sis algorithm described in Ref. [1] can generate seemingly
odd behavior, as shown in Fig. 2. Here, we see that several
measurements are performed on the same qubit, and CNOT
gates are used to perform a binary sum over classical variables
which could be performed by classical resources. Moreover,
gate action after the measurements may cause problems if
the measurements on the underlying qubit system are destruc-
tive. This behavior cannot be remedied by simply replacing
the sequence of measurement and Clifford gates with some
equivalent sequence as described by the Refs. [5, 6, 7], as
there is an implicit promise that the resulting quantum channel
action is fully equivalent to what was originally specified,
including the end quantum state returned by the channel. We

refer to this as the end-state promise. The end-state promise
even applies when the qubit states are fully measured and
entanglement is completely removed. Baring some classical
feedback mechanism, synthesis does not know a priori what
the outcomes will be and has no choice but to use Clifford
gates to reconstruct the classical state and meet the promise.
However, there are many situations where the end-state is
irrelevant. This leaves two possible desired outcomes:

1) A hold outcome indicates that the quantum state is in
part or in whole a desired return of the program. Thus
we must meet the end-state promise.

2) A release outcome indicates that the desired results are
the measurement outcomes only. Once all measurement
results have been recorded, the quantum state can be
“released” and we make no promises on the final state of
the quantum system. More formally:

Definition 1. A release outcome is represented by an equiv-
alence class defined by a set of measurables, M = {mi}, of
quantum channels such that C is equivalent to C ′ relative to
M if and only if Tr(C(ρ)mi) = Tr(C ′(ρ)mi) for each i and
for all states ρ.2

In the case of a PCOAST graph, M is represented by the
measurement nodes of the graph, which is implied when
discussing a release outcome.

For most algorithms or quantum submodules, a release
outcome is sufficient, including variational algorithms such
as VQE, Thermofield double state preparation [15, 16], and
imaginary-time evolution [17, 18], to name a few. Hold
outcomes are typically only required for submodules where
partial measurements are used to update the state in real-time,
such as syndrome extraction for error correction or repeat-
until-success routines [19, 20].

In the case of a release outcome, we are free to replace a
set of mutually commuting measurements with an equivalent,
more efficient set of measurements. In Section IV, we propose
a method for simultaneously deriving both an equivalent set
of measurements as well as a circuit realizing them.

III. BACKGROUND

A. The Pauli group

A single-qubit Pauli is one of X , Y , Z, defined as the 2×2
matrices,

X = (0 1
1 0
) Y = (0 −i

i 0
) Z = (1 0

0 −1) , (1)

or the identity I . At times we use σ ∈ {X,Y,Z} to rep-
resent an arbitrary, non-identity single-qubit Pauli. A Pauli
operator, P , on N qubits is then the tensor product of
any combination of single-qubit Paulis, scaled by a constant
phase(P ) ∈ {1,−1, i,−i} ≃ Z4. By convention, the canonically
positive version of a Pauli operator is the one which can

2This definition is equivalent to that provided in [1], as written in terms
of classical-quantum states, where M corresponds the space of measurement
outcomes described therein.
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PrepZ

RX(θ)
=

PrepZ

⇒
Prep(Z0,X0) Rot(Z0X1,−θ/2)

Rot(X1, θ/2)
= Prep(Z0,X0)

(a) Positive control on a qubit prepared in the ∣0⟩ state is equivalent to just the preparation.

PrepZ

RX(θ)
=

PrepZ

RX(θ) ⇒
Prep(Z0,X0) Rot(Z0X1, θ/2)

Rot(X1, θ/2)
=

Prep(Z0,X0)

Rot(X1, θ)

(b) Negative control on a qubit prepared in the ∣0⟩ state is equivalent to just the preparation and the uncontrolled unitary.

PrepZ = PrepZ
⇒ Prep(Z0,X0) (Z0 X0Z1

Z1 Z0X1
) = Prep(Z0,X0) (Z0 X0

Z1 X1
)

(c) Equivalent example as Fig. 1a but in this case, the unitary is a Clifford, represented by a Pauli frame (see Sec III-C).

PrepZ MeasX

MeasZ
= PrepZ MeasX

MeasZ
⇒

Prep(Z0,X0) Measc0(X0X1)

Measc1(Z0Z1)
= Prep(Z0,X0) Measc0(X0)

Measc1(Z1)

(d) Similar to Fig. 1c but here we demonstrate the resulting PCOAST interpretation on downstream measurements for a release outcome.

Fig. 1: Simple optimizations following preparations, and the corresponding optimizations on PCOAST graphs.

Measc0(Z0) Measc1(Z0Z1) Measc2(Z0Z1Z2)

⇓

MeasZc0 MeasZc1 MeasZc2

Fig. 2: Example of how PCOAST circuit synthesis may handle
measurements because it must meet an end-state guarantee
implied by the PCOAST graph representation.

be written as such with the phase 1 ∈ Z4. This collection
of operators can be understood as the Pauli group, GN ,
under matrix multiplication. The support of an N -qubit Pauli
operator, supp(P ), is the set of indices i for which (P )i ≠ I .
We write Xi, Yi, and Zi for Paulis with support {i}.

An important feature of the Pauli group is that any two
members P1, P2 ∈ GN either commute or anti-commute. We
capture this in the function λ ∶ GN × GN → F2,

λ(P1, P2) =
⎧⎪⎪⎨⎪⎪⎩

0 P1 commutes with P2

1 otherwise
(2)

We have, therefore, that P1 ⋅ P2 = (−1)λ(P1,P2)P2 ⋅ P1.

B. The Pauli Space

Throughout this paper, the phase factor of the Pauli group,
Z4, tends to function as a hindrance to the understand of our
optimizations and their functioning. This is the case because
of the overwhelming use of the Hermitian versions of Pauli
operators (i.e. when Z4 is restricted to {1,−1} ≃ Z2) and
the ability for the distinction between the canonically positive
and negative version of a Pauli operator to be absorbed
by other mechanisms. As such, we define the Pauli space
as PN = GN /Z4. The Pauli space abelianizes the Pauli

TABLE I: Overview of the correspondence between the Pauli
Group and the Pauli Space. The use and interpretation of this
notation should be clear in the context in which it is used.

Notion Pauli Group Pauli Space

membership P ∈ GN p = [P ] ∈ PN

scalar action (a ∈ F2) Pa ap
group action P ∗Q p + q
identity I 0
2-form λ(P,Q) λ(p, q)

Clifford action
Ð→
F (P ) = UPU† f(p)

group, and thus can be understood as a binary vector space
PN ≃ Z⊕2N2 [21]. From this perspective, multiplication is
lifted to binary addition, implying I is the additive identity,
multiplicative power is lifted to scalar multiplication and the
binary field F2 is appropriate since P 2 ∝ I in GN . An
overview of this mapping is show in Table I. We denote the lift
of a Pauli operator P ∈ GN to its p ∈ PN equivalence class via
square brackets, p = [P ], and implicitly always map members
of PN to their canonically positive element in GN . Although
we lose the commutation relations, we can reintroduce them
by extending PN to a symplectic vector space, by treating λ
as a symplectic form (as restricted to PN ).3

C. Pauli Frame as Pauli Space Automorphism

Pauli tableaus [22] were first introduced as a way to simulate
stabilizer states generated entirely from Clifford gates (H ,
S, and CNOT) and single-qubit measurements. Since then,
Pauli tableaus have been used to represent Clifford circuits
in general, not just for the purposes of stabilizer simulation.

3The necessary feature of a symplectic form λ are for p, q, r ∈ PN : λ(p+
q, r) = λ(p, r)+λ(q, r), λ(p, p) = 0, and p = 0 if and only if λ(p, q) = 0 for
all q ∈ PN . Note that these conditions imply λ(p, q) = λ(q, p) in the binary
case. Also for a subset G ⊆ PN , we define G⊥ = {p ∈ PN ∶ λ(p,G) = {0}}.

3



Following Schmitz et al. [4], in this work we refer to Pauli
tableaus as Pauli frames to emphasize the linear algebraic
structure they represent for the Pauli space.

Definition 2. A Pauli frame F on N qubits is an N ×2 array
of Hermitian Pauli operators,

F =
⎛
⎜⎜⎜
⎝

effZ0 effX0

effZ1 effX1

⋮ ⋮
effZN−1 effXN−1

⎞
⎟⎟⎟
⎠
, (3)

which satisfy the following commutation relations:

λ(effZi,effZj) =λ(effXi,effXj) = 0 (4a)
λ(effZi,effXj) =δij . (4b)

We also define effYi = −ieffZi ∗ effXi and the origin frame
F 0 such that effσi = σi for all i. Furthermore, we say a Pauli
P ∈ GN is in the frame (∈) F if there exists an index 0 ≤ i < N
such that P = effXi, P = effYi or P = effZi.

An extensive discussion on the understanding of Pauli
frames as Clifford unitaries can be found in [1]. Instead, we
focus our discussion here on Pauli frame as a representation of
a symplectic automorphism on the Pauli space. A symplectic
automorphism on (PN , λ) is any linear map f ∶ PN → PN

which preserves the symplectic form.4 Given a Pauli frame as
defined in Eq.(3), one can lift it to two symplectic automor-
phism defined by
Ð→
F (p) =∑

i

(λ(p, [Xi])[effZi] + λ(p, [Zi])[effXi]) , (5a)

←Ð
F (p) =∑

i

(λ(p, [effXi])[Zi] + λ(p, [effZi])[Xi]) . (5b)

Furthermore, we use the term frame[23] as it emphasizes the
following linear algebraic properties. It should be obvious
from the commutation relations F satisfies that

Ð→
F ([Zi]) =

[effZi] and
Ð→
F ([(Xi]) = [effXi]. F 0 is clearly lifted to a

basis for PN , which implies that elements of F are also lifted
to a basis via the expansion of any p ∈ PN ,

p =∑
i

(λ(p, [effXi])[effZi] + λ(p, [effZi])[effXi]) . (6)

So we can interpret a Pauli frame in this context as both a basis
for PN as a symplectic frame as well as a symplectic auto-

morphism. From this and Eq. (6), it is clear that
←Ð
F = (Ð→F )

−1

.5

It should also be clear that any symplectic automorphism,
f can be interpreted as a canonically positive Pauli frame
via F = {(f([Zi]), f([Xi])}0≤i<N and thus can be mapped
to a Clifford unitary.6 It can also be shown that any set of

4For all p, q ∈ PN , λ(f(p), f(q)) = λ(p, q). Some immediate conse-
quences of this definition and the properties of λ are that f−1 exists and
λ(f(p), q) = λ(p, f−1(q)).

5This provides a means for inverting a signed Pauli frame and thus the
Clifford unitary it represents by asserting the signs of F−1 are such that
Ð→
F (F−1) = F 0.

6More accurately, the set of sympletic automorphisms is isomorphic to
the Clifford group quotient the Pauli group, and we are arbitrarily using
canonical positivity of the elements as a means of select an element from
each equivalence class of the quotient group.

2N members of PN when divided into two groups forms a
symplectic frame, i.e. can be mapped to a Clifford unitary, if
and only if they satisfy the commutation relations in Eqs.(4).
Importantly, linear independence in such a set is implied by
the commutation relations. In fact, a corollary to this result is
any set of such pairs of elements of PN less than N must also
be linearly independent.

D. The PCOAST Graph and its Semantics

The primary representation which we consider optimizing
is the PCOAST graph. In particular, we assume a frame-
terminating, fully-merged PCOAST graph as described in Ref.
[1]. We leave a detailed discussion of the process of converting
to the PCOAST graph representation and synthesis back to a
circuit representation to the reference, but give a brief overview
of the structure of the PCOAST graph representation here.

A PCOAST graph is a representation of a generic quantum
program which can be described as a sequence of gate-like
channels represented as nodes. We use the notation J⋅K when
interpreting a formal node or collection of them called a term
as a channel, where

Jt1; t2K = Jt2K ○ Jt1K. (7)

The direct equivalence between interpreted terms is referred
to as hold equivalence, ≡hold, which is contrasted with release
equivalence, denoted ≡release, when the interpreted terms both
satisfy Defn. 1. The sequencing of constituent nodes of a term
is then encoded in a directed acyclic graph (DAG) where nodes
are non-Clifford unitary and non-unitary quantum channels. A
singlet node is any node defined by a single Pauli operator
P as represented by n(P ). This includes Rot(P, θ) which
represents a Pauli rotation around the axis P by an angle of θ/2
and Measc(P ) which represents a projective measurement
of the eigenvalues of P where the outcome is recorded to
classical variable c. A factor node is any node defined by a
pair of non-commuting Pauli operators (P,Q) as represented
by n(P,Q). This includes Prep(P,Q) which represents a
preparation or reset of the state to the +1 eigenspace of
P using Q as conditional operation to take the state out
of the −1 eigenspace. Other single qubit rotations can be
generalized as factor nodes, but we avoid discussing them here
for clarity. Non-classical nodes are also included for mapping
measurement outcomes.

Edges are drawn in the graph based on non-commutativity
of the defining Pauli operators with the direction of the edge
determined by the logical order of operation for the quantum
channel it represents. Thus any topological sort of the DAG
results in the same overall channel. The assumption of being
fully-merged means all nodes satisfying the merging rules
found in [1] are merged so long as they are not path-connected
or incomparable. A PCOAST graph is frame terminating when
it contains a single Pauli frame node representing a residual
Clifford unitary channel to be applied last. As discussed in
[1], any PCOAST graph can be reduced to this form and the
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semantics of frames is such that for any Pauli operator P ∈ GN
and terminating frame F ,

JUF K(P ) = JF K(P ) =←ÐF (P ). (8)

This also implies that

JF1;F2K = JF1 ○ F2K (9)

where we define F1 ○ F2 =
Ð→
F 1 ○

Ð→
F 2(F0) =

Ð→
F 1(F2).7

IV. STABILIZER SEARCH

Several of the optimizations we describe below depend on
an algorithmic solution to the following problem:

Definition 3. (Stabilizer search problem) Let S be a mutually-
commuting (Hermitian) subset of GN − Z2. The span of S
forms the stabilizer subspace, Span(S) = GS ⊂ PN . Given
some cost metric on Pauli frames (namely cost to implement
as a circuit), find a low cost frame, F , for which there exists
a similar mutually commuting set S′ such that S′ ⊂ F and
GS ⊆ Span(S′) = GS′ . If we require GS = GS′ , we refer to it
as the exact stabilizer search problem.

The primary use case for this problem is to measure a
set of mutually commuting Pauli operators using the fewest
resources as discussed in Section II. Deriving our solution
to this problem is an interesting exercise in leveraging the
symplectic vector space formalism. For brevity, we provide
an overview of the key insights from such a derivation along
with a proof of its correctness as a solution.

The power of couching the problem in the language of
linear algebra is that we have a well-understood analog from
which to draw intuition. As we generally expect the initial
set S to over-determine its span, we can see this problem
as a variant of finding the null space or row space of a non-
symmetric matrix. In particular, we characterize the null space
of the syndrome map in the general case or the row space
of the stabilizer map in the exact case, using the language
of quantum error correction[24, 25]. Either way, the solution
invokes Gaussian reduction, but with the analogous set of row
operations, noting the two-qubit entangling (TQE) gates are
as outlined in Ref. [4]:8

1) Row swapping → virtual qubit/Pauli position swapping,
2) Row scalar multiplication → nothing as the field is binary,
3) In-place row addition → applying a TQE gate.

Thus the algorithm, by virtue of (3), simultaneously produces
a circuit which preforms the Clifford transformation. We also
note that the process of reducing to row echelon form has
the property that the column of the pivot for a reduced row
can be effectively ignored from then on. This is analogously
handled here by support masking provided by the function
Mask ∶ GN × (subsets of qubits)→ GN , where

Mask(P,Q) = phase(P )∏
i∈Q
(P )i. (10)

7The action is implied to be entry-wise.
8For a given qubit pair there are 3× 3 = 9 TQE gates, generalizing CNOT

and CZ, such that we have one Pauli operator basis for each qubit.

1: function FINDSTABILIZERS(S, “general” or “exact”)
2: S′′ ← S, Q← supp(S′′), F ′ ← F 0, C ← ∅.
3: if this is the “general” case then
4: for i ∈ Q do
5: if S′′ agrees on support σ for qubit i then
6: Add a measurement for σi to C.
7: Remove i from Q.
8: while Q is not empty do
9: for each s ∈ S′′ do

10: if supp(Mask(s,Q)) is empty then
11: Remove s from S′′

12: else if Mask(s,Q) = ±σi for some i ∈ Q then
13: Add measurement of ±σi to C.
14: Remove i from Q.
15: Min ← {argmins∈S′′ supp(Mask(s,Q))}
16: MinGate← {TQE gates which reduces supp(Min)}
17: gmin ← argming∈MinGate Cost(g)
18: Add gmin to C.
19: S′′ ←Ð→F g−1min

(S′′), F ′ ← Fg−1min
○ F ′.

20: return (C,F ′−1).

Fig. 3: Psuedocode for Stabilizer Search Algorithm. Cost(g)
is any cost metric on the use of the TQE gate g for reducing
support.

That is, it reduces the support of P to that which is contained
in Q. One Pauli-space specific consideration is that of support
agreement:

Definition 4. For any mutually commuting set S ⊂ GN , we
say S agrees on support σ = X,Y,Z for qubit i iff for every
element s ∈ S, λ(s, σi) = 0. That is, every element of S either
has support σ or no support on i.

With this concept, we can paraphrase Defn. 3 as the
transformation of S by a Clifford unitary such that every
element agrees on support for every qubit. Thus we propose
the Stabilizer Search Algorithm in Fig. 3, as described for the
use of simultaneous measurements.

We defer any discussion around termination of FINDSTA-
BILIZERS to the implementation section below and take for
granted that the algorithm terminates. To prove Fig. 3 satisfies
Defn. 3, we prove the following:

Lemma 1. For F returned by FINDSTABILIZERS on set S,
the set

Ð→
F −1(S) agrees on its support for all qubits.

Proof. In the general case, S automatically agrees on all qubits
i which are removed in lines 4-7 of Fig. 3. Otherwise, all
qubits are in Q at the start and S agrees on all qubit not in Q
vacuously. Then let ∆Qinit contain all qubits not in Q.

For the sake of argument, suppose at step m and for all
m′ ≤m through the main loop of the algorithm,

Ð→
F ′
(m′)(S) =

S′
(m′) agrees on it support for all qubits not in Q(m′), where
(m′) denotes the m′th versions of F ′, Q and other quantities
at the end of that iteration. Now consider the beginning of
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the (m + 1)th iteration. At step (1), if Mask(s,Q(m)), for
s ∈ S′′

(m) ⊆ S′(m), has no support, then it agrees with the rest
of S′

(m) by our hypothesis and is then absent from S′′
(m+1). If

Mask(s,Q(m)) = ±σq , then consider for any s′ ∈ S′
(m),

λ(σq, s
′) =λq(Mask(s,Q(m)), s′)
= ∑
i∈Q(m)

λi(s, s′) + ∑
i∉Q(m)

λi(s, s′)

=λ(s, s′) = λ(Ð→F −1(m)(s),
Ð→
F −1(m)(s′))

=0. (11)

Eq. 119 implies that all of S′
(m) agrees on the support of σ on

q and as we remove it, q ∉ Q(m+1). Thus by the end of step (1),
all changes to Q are made such that Q(m) → Q(m+1), and all
of S′′

(m) agrees on support for all of ∆Q(m) = Q(m)−Q(m+1).
The TQE gate selection in lines 15-17 insures gmin(m) only

acts on elements of Q(m+1). Therefore since S′
(m) agree on

support for qubits not in Q(m+1), it is the case that S′
(m+1) =Ð→

F g−1(m)
(S′
(m)) must also agree on support for qubits not in

Q(m+1).
Assuming the algorithm terminates, there exists M such

that Q = ⋃0≤m<M ∆Q(m)⋃∆Qinit and F = F −1
(M). Therefore

by induction, we have that
Ð→
F −1(S) agrees on its support for

all qubits.

An immediate corollary to this proof is that every mea-
surement in the circuit corresponds to the support agreement
for all qubits Q on which S has support. Let Σ = {σq}q∈Q
be the set of support agreement as found from the returned
circuit. As each element of Σ is a single qubit Pauli operator
on different qubits, every element of S′ = Ð→F (Σ) belongs to
F and is mutually commuting. To prove this set of operators
satisfy Defn. 3, it is sufficient to prove S′ ⊆ G⊥S . 10 But this
immediately follows from the above proof since,

λ(S,S′) = λ(S,Ð→F (Σ)) = λ(Ð→F −1(S),Σ) = {0}, (12)

Because
Ð→
F (Σ) is contained in the frame F , we can use

Eq. 6 to expand members of S as a product of elements in S′

via the Map Measurement Algorithm as described in Fig. 4.11

9The subscript on λ represents its functional support on that qubit, the first
equality is a consequence of s have single-qubit masked support, the second
is a consequence of our induction hypothesis, and the final two equalities are
a consequence of the automorphism property of frames and the fact that S is
a mutually commuting set.

10This on its own is actually not sufficient. We need to also show that
all members of S, when expanded in the basis F , contains only terms from
elements of F associated with Q. However, it should be clear that this is
trivially true as S has no support outside of Q and the gates used to generate
F and thus by extension F itself have no action on operators with no support
in Q.

11We must address why the exact version of Fig. 3 satisfies the exact
condition of Defn. 3. The binary matrix b returned by Algorithm 4, when
restricted to elements of S satisfying line 12 of Fig. 3 has a upper triangular
form and is thus inevitable.

1: function MAPMEASUREMENTS(S,C,F )
2: Σ← {σq}, where each σq is a measurement in C.
3: S′ ←←ÐF (Σ), b← 0, v ← 0⃗.
4: for all si ∈ S do
5: Pauli P ← I
6: for all σq ∈ Σ do
7: if λ(si, F (σ̃q)) then
8: P ← P ∗ F (σq), biq ← 1.

9: if phase(P ) ≠ phase(si) then
10: vi ← 1.
11: return (b, v)

Fig. 4: Psuedocode for Map Measurement Algorithm.

A. Implementation of the Stabilizer Search Algorithm

It should be clear from the discussion in the Section V.C
of Ref. [1] that, given the appropriate search functions, the
greedy search algorithm for circuit synthesis is well suited
for implementing Fig. 3. As argued in [1], we are then
guaranteed the algorithm terminates. Moreover we can modify
almost any version of the search functions used for circuit
synthesis so long as they make an additional promise.12 Thus
we introduce the stabilizer search template. This is a templated
implementation of the search functions which holds internally
a list of qubits for the sake of masking and removes a qubit
when a measurement is added to the circuit.

The complexity of Fig. 3 also follows from Ref. [1] as
O(N3k2) where k is the size of the outcome stabilizer set
S′ which is also its stabilizer space dimension. The number
of TQE gates it produces is at most Nk−k(k+1)/2, but tends
toward far lower numbers as we demonstrate in Section VII
while also taking into consideration circuit depth and the target
gate set.

V. UNITARY REDUCTION BY PREPARATIONS

A. Frame Reduction

In this section, we discuss an algorithmic solution to the
following problem:

Definition 5. (Preparation-on-frame reduction problem) Sup-
pose we have a set of mutually commuting, un-equal prepa-
ration channels Prep({(Pi,Qi)}) = Prep(Π), followed by
a Clifford unitary channel as defined by the Pauli frame F .
Given some cost metric on Pauli frames (again, typically
circuit cost to implement), find a lower cost frame F ′ and
possibly lower cost representation Π′ = {(P ′i ,Q′i)} ≃ Π such
that,

JPrep(Π);F K = JPrep(Π′);F ′K. (13)

For Prep(P,Q), we refer to P as the stabilizer, which is
privileged over Q which we refer to as the destabilizer[22].
To understand the preparation-on-frame reduction problem,

12REDUCENODE as described in [1] only returns TQE gates entirely
supported on the qubit support of the passed node.
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we first consider what is meant by Π ≃ Π′. As discussed
in [1], a pair of anti-commuting Pauli operators can always
be understood as defining an effective qubit factorization of
the Hilbert space. From the description of Prep in Section
III-D, we find that Π generalize this such that it defines an
effective multi-qubit factorization of the Hilbert space where
the outcome of Prep(Π) is a simultaneous +1 eigenstate of
the stabilizers, using a specific combination of destabilizers to
transform out of any other alternative stabilizer subspace.13

Thus Prep(Π′) must have the same action on any state.
Finding such an alternative should already evoke the exact
version of Defn. 3. Let S = Stabs(Π) = {Pi}, on which we
can apply the exact version of Fig. 3 to find S′ = Stabs(Π′)
and F . To construct corresponding destabilizers, {Q′i}, note
they must satisfy λ(P ′i ,Q′i) = δij and λ(Q′i,Q′j) = 0. For
simplicity, assume Q′i ∈ Span({Qj}) such that the second
condition is satisfied. Let Q̃i ∈ F be one of the two elements
which anti-commutes with P ′i . We then find that,14

[Q′i] =∑
j

λ(Q′i, Pj)[Qj] =∑
jk

λ(Q′i, P ′k)λ(Q̃k, Pj)[Qj]

=∑
j

λ(Q̃i, Pj)[Qj], (14)

We also consider the equivalence in Eq. (13). An alternative
formulation of JPrep(Π)K is as a partial trace over he sub-
system/factor defined by Π, tensor product with the projection
onto the appropriate stabilizer subspace, i.e.

JPrep(Π)K(ρ) = TrΠ(ρ)⊗Proj(S), (15)

where Proj(S) is defined as the projection onto the simultane-
ous +1 stabilizer space of S. From this, it is clear that when
ρ is expanded in the Pauli operator basis, terms not wholly
outside of the subsystem defined by Π are zero under the
partial trace and all remaining terms are multiplied in equal
measure by elements from Span(S). Thus the frames F and
F ′ in Eq. (13) need only have the same action on this limited
set of Pauli operators. This provides us with the following
conditions:

Lemma 2. Eq. (13) is true if and only if15

←Ð
F (Span(S)) ≃←ÐF ′(Span(S)), (16a)

←Ð
F (Span(Π)⊥ ⊕ Span(S))

Span(S) =
←Ð
F ′(Span(Π)⊥ ⊕ Span(S))

Span(S)
(16b)

The first says that F can modify the stabilizers over what F ′

does, but it must preserve the space.16 The second condition

13Alternatively, we understand equivalence by considering a symplectic
subspace of PN with symplectic form provided by λ as restricted to that
subspace, for which Π is a frame for that subspace and can be used as such.
Π′ is then just an alternate frame for that subspace.

14Note that we can freely ignore sign here, because the sign of a destabilizer
does not change the channel action.

15Note, s ∈ Span(S), sProj(S) = Proj(S), i.e. the projection operator can
always absorb a stabilizer. This is necessary for understanding Eq.16b.

16Though we are using the language the Pauli space here, it is fundamental
that the signs are also preserved by F as well.

is more strict with the exact equality implying that any Pauli
operator which commutes with all of the elements of Π must
be transformed exactly the same by F and F ′ modulo some
element of Span(S).

This leads us to introduce a frame transformation we refer
to as qubit decoupling:

Definition 6. For an anti-commuting pair (P,Q) and frame
F as defined in Eq. 3 such that P ∈ F , the qubit decoupling
transformation Decouple(F, (P,Q)) is defined as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

effZ0P
λ(effZ0,Q) effX0P

λ(effX0,Q)

effZ1P
λ(effZ1,Q) effX1P

λ(effX1,Q)

⋮ ⋮
P Q
⋮ ⋮

effZN−1P
λ(effZN−1,Q) effXN−1P

λ(effXN−1,Q)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (17)

At times we omit the argument (P,Q) for brevity. To show
Decouple results in a valid frame, note P was a part of F
and has all the correct commutation relation with respect to the
other elements of the resultant frame. Likewise is true for those
elements multiplied by it. The only commutation relations of
interest involve Q for which,

λ(Q,effZiP
λ(effZi,Q)) =λ(Q,effZi) + λ(P,Q)λ(effZi,Q)

=0 (18)

Next we show the transform Decouple preserves the proper-
ties of Lemma 2. Since P is a member of the frame, Eq. (16a)
is satisfied trivially. Without loss of generality, suppose P is
effZq and consider r ∈ PN such that λ(P, r) = λ(Q, r) = 0.
Note this implies for i ≠ q λ(r,effZiP ) = λ(r,effZi), and
likewise for effXi. Thus we find,

[JDecouple(F )K(r)] = [JF K(r)] + λ(r,effXq)[P ]. (19)

Therefore, Decouple also satisfies Eq. (16b).
Decouple is a powerful tool for reducing the cost of a frame

in the presence of a single Prep, but requires the stabilizer to
be a part of the frame. To generalize, we find an auxiliary
frame, Faux such that F ○ Faux does contain the stabilizer. As
such F ′ = Decouple(F ○ Faux) ○ F −1aux, satisfies Eq. (16). This
processes is then generalized Π or alternatively Π′. For this
purpose, we introduce the Preparation-on-Frame Reduction
Algorithm in Fig. 5. The correctness of Fig. 5 can then be
argued with the following lemma:

Lemma 3. Every call to Decouple in Fig. 5 is well-formed.

Proof. Suppose Fig. 5 enters the first branch at line 7. By
construction, for each σqi ,

←ÐÐÐÐ
F ○ Faux(σqi) = P ′i is both in the

frame F ○ Faux, and a stabilizer of Π′. Also, the outcome of
Decouple(F ○Faux, (P ′i ,Q′i)) contains P ′j for any j ≠ i, since
λ(P ′j ,Q′i) = 0. Therefore the decoupling sequence is well-
formed.
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1: function REDUCEFRAMEBYPREP(Π, F )
2: S ← Stabs(Π), M ← ∣S∣, S̃ ←←ÐF (S)
3: (C,Faux)← FINDSTABILIZERS(S̃, “exact”).
4: Let {σqi}0≤i<M be the measurements in order from C.
5: Construct Π′ using Π, F ○ Faux and Eq. (14).
6: c← Cost(Π), c′ ← Cost(Π)
7: if c′ < c then
8: F̃ ← Decouple(F ○ Faux,Π

′) ▷ in any order
9: return (Π′, F̃ ○ F −1aux).

10: else
11: F̃0 ← F ○ Faux.
12: for i = 0 up to M do
13: Let (Pi,Qi) ∈ Π such that Pi =

←Ð̃
Fi(σqi).

14: F̃i+1 ← Decouple(F̃i, (Pi,Qi))
15: return (Π, F̃M ○ F −1aux)

Fig. 5: Psuedocode for Preparation-on-Frame Reduction Al-
gorithm. Cost(Π) represents some cost evaluation for imple-
menting of Prep(Π).

Alternatively, suppose Fig. 5 enters the else branch at
line 10. Note, as a property of using of the exact version of
Fig. 3, we have that for all m <M

←ÐÐ
F̃ −10 (Pm) = σqm + ∑

i<m

cmiσqi , (20)

where cmi is some binary scalar and Pm is the mth element
of Stabs(Π) which was reduced to support 1 when masked in
the call at line 3. In the first step of the loop, It is clear from

Eq. (20), that
←Ð̃
F0(σq0) = P0 ∈ Π. Thus the first Decouple is

well-formed.
For the sake of argument, now assume that for all m′ <m,

where m < M , the m′th Decouple was well-formed. Now

consider the mth step and
←Ð̃
F m(σqm) ∈ F̃m which, based on

our hypothesis and the definition of Decouple can be written
as,

←Ð̃
F m(σqm) =

←Ð̃
F 0(σqm) + ∑

m′<m
λ(F0(σqm),Qm′)Pm′ (21)

where we note that because
←Ð̃
F 0(σqm) ∈ Span(Π), we can

expand it in Π as a basis, noting λ(
←Ð̃
F 0(σqm), Pm′) = 0:

←Ð̃
F 0(σqm) = ∑

m′<M
λ(
←Ð̃
F 0(σqm),Qm′)Pm′

=Pm + ∑
m′<m

λ(
←Ð̃
F 0(σqm),Qm′)Pm′ , (22)

where the last equality is a consequence of inverting the upper
triangular form of Eq. (20) and the uniqueness of the expansion

in this basis. From this it it immediately follows
←Ð̃
F m(σqm) =

Pm and thus the Decouple for this step is well formed and
by induction the sequence of Decouples is well-formed.

1: function REDUCENODESBYPREP(G)
2: G′ ← G, Prep(G′)← all Prep nodes in G′.
3: for n = n(P,Q) ∈ Prep(G′) do
4: for n′(R) incomparable of n, n′ ∉ Prep(G′) do
5: if Cost(n′(R ∗ P )) < Cost(n′(R)) then
6: R ← R ∗ P such that n′ comes after n.
7: for n(R) distance +1 from n, λ(P,R) = 0 do
8: if Cost(n(R ∗ P )) < Cost(n(R)) then
9: Replace n(R) with n(R ∗ P ).

10: else if n(R∗P )) or can be merged in G′ then
11: Replace n(R) with n(R ∗ P ).
12: return G′.

Fig. 6: Psuedocode for Preparation-on-Node Reduction Algo-
rithm.

B. Non-Clifford Reduction

Non-Clifford nodes of the PCOAST graph can also be
simplified when “seen” by a Prep(P,Q). As demonstrated
in Eq. (15), P ∼ I after the application of Prep(P,Q). Thus
for a singlet node dependent on the Pauli operator R, n(R),
which is incomparable with Prep(P,Q), we have that

Jn(R);Prep(P,Q)K =JPrep(P,Q);n(R)K
=JPrep(P,Q);n(P ∗R)K. (23)

Note this relation goes both ways. We can also consider
applying this identity to a node defined by R′ = R ∗ P , i.e.
λ(R′P ) = 0 and λ(R′,Q) = 1. Which version we choose for
the sake of optimization depends on the cost of the outcome.
We thus outline the use of Eq. (23) for the Preparation-on-
Node Reduction Algorithm in Fig. 6.17

VI. PCOAST GRAPH OPTIMIZATIONS

The previous sections outline the tools we leverage for
PCOAST graph optimization. The full sequence of the
PCOAST Graph Optimization Algorithm is described in Fig. 7.
Note the conditional introduced at line 13 is added specifically
to target cases similar to Fig. 1d.

While Fig. 7 is used to optimize the PCOAST graph back
to another PCOAST graph, there are other uses of the routines
described herein. During circuit synthesis as described in
[1], the synthesis of non-Clifford nodes intentionally defers
synthesis of measurement nodes topologically at the end of
the graph in the “release” case and returns them. Note these
nodes are clearly mutually commuting and so we are free to
use Fig. 3 to synthesize the remaining circuit and Fig. 4 for
the mapping of measurements. A benefit of this methodology
is the stabilizer search is performed in the “context” of the
rest of the circuit since the measurements are transformed
by the residual Clifford. For example, consider the case of
a VQE algorithm circuit where one first prepares an ansatz
state and then measures part of the Hamiltonian using a
mutually commuting set. The stabilizer search of the mutually

17Note we only check for node merging in line 10 and not earlier as to do
so would be redundant by Eq.(23).
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1: function OPTIMIZEGRAPH(G, F , “hold” or “release”)
2: G′ = ∅, and G′′ ← G.
3: while G′ ≠ G′′ do
4: G′ ← REDUCENODESBYPREP(G′′)
5: Let Πe be the set of Prep nodes with outdegree 0.
6: if this is the “hold” case then
7: (Πe, F )← REDUCEFRAMEBYPREP(Πe, F ).
8: else if this is the “release” case then
9: Let Me be all Meas nodes with outdegree 0.

10: Let Ce be the measurement space of Me.
11: Remove all incomparable nodes of Me in G′.
12: F ← F 0 in G′.
13: if Πe ≠ ∅ then
14: Let Ce be the measurement space of Me.
15: Remove Me from G′.
16: (Fs,C)←FINDSTABILIZERS(Me).
17: Let Mn be the single-qubit Meas from C.
18: Let Cn be the measurement space of Mn.
19: (Πe, F )←REDUCEFRAMEBYPREP(Πe, Fs).
20: Add Mn to G′.
21: (b, v)←MAPMEASUREMENTS(Me,C,Fn)
22: Add the node (v + b) ∶ Cn → Ce to G′.
23: return G′

Fig. 7: PCOAST Graph Optimization Algorithm

commuting measurements in isolation is different than that
of the search when combined with the (incomplete) circuit
synthesis of the ansatz. As such, its not simply that we
optimize the Clifford circuit at the interface of the ansatz
preparation and the measurements, but the combined effect
may change what Pauli operators are measured to build the
desired outcome. We demonstrate this point in Fig. 8 and in
the results of Section VII.

VII. EVALUATION

We focus on the VQE use case and the use of Fig. 3 for
measurement reduction. For comparison, we consider three
methods found in the literature for solving a similar problem.18

Ref. [5] only considers the case of qubit-wise commutativity
i.e. full qubit agreement as defined in Defn. 4. By virtue of the
initial search for agreement in lines 4-7, Fig. 3 produces essen-
tially the same circuit under these circumstances, thus making
a direct comparison unnecessary. Ref. [6] allows for general
commutativity, but their code implementation requires the
commuting set have exactly N independent elements (whereas
our implementation allows one to specify any commuting
set without considering independence). They also map the
elements of the set, under conjugation by a Clifford, exactly to
a single-qubit measurement, i.e. they do not leverage smaller
weight bases for the stabilizer space. Ref. [7] is the least

18Unlike the references to follow, we only focus on the circuit generation,
not the grouping problem for which they provide methods which are fully
compatible with this work as demonstrated by our use of the grouping method
described in Ref. [7].

Ansatz
Prep

Measc0(Z0Z1) Measc5(Z2Z3)

Measc1(Z0Z2) Measc6(X0X1X2X3)

Measc2(Z0Z3) Measc7(Y0Y1Y2Y3)

Measc3(Z1Z2) Measc8(X0X1Y2Y3)

Measc4(Z1Z3) Measc9(Y0Y1X2X3)

Ansatz
Prep

Measc
′
0(−Z0Z1)

Measc
′
1(Y0Y1X2X3)

Measc
′
2(−Z2Z3)

Measc
′
3(Z0Z2)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0
c1
c2
c3
c4
c5
c6
c7
c8
c9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

↦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1
1
0
1
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 0 0 1
0 0 1 1
1 0 0 1
1 0 1 1
0 0 1 0
1 1 0 0
0 1 1 0
1 1 1 0
0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c′0
c′1
c′2
c′3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

≡
release

≡
release

Measc
′
0(−Z0Z1)

Measc
′
1(−Z2Z3)

Measc
′
2(X0X1X2X3)

Measc
′
3(−Z1Z3)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0
c1
c2
c3
c4
c5
c6
c7
c8
c9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

↦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
0
1
1
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
1 1 0 1
1 0 0 1
0 1 0 1
0 0 0 1
0 1 0 0
0 0 1 0
1 1 1 0
0 1 1 0
1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c′0
c′1
c′2
c′3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 8: PCOAST graph representations for a hydrogen VQE
example (H2; JW encoding). The center graph represents the
ansatz preparation and measurement of one mutually commut-
ing set. The graph below represents the stabilizer search result
for the measurements alone, whereas the top result represents
the stabilizer search result in the context of the ansatz. Table III
demonstrates the top outcome results in a better circuit.

constrained and as such represents the best comparison to
our methods; we use their method, SORTED INSERTION, for
partitioning the Hamiltonian, and compare PCOAST circuit
constructions against their method. Their methods achieve a
ratio of the theoretical maximum number of two-qubit gates to
actual number of two-qubit gates of approximately 3.5. Thus
we compute a similar metric,

r2q =
Nk − k(k + 1)/2

# 2q gates
, (24)

where k is extracted as the number of single-qubit measure-
ments in the PCOAST-optimized circuit.

PCOAST is implemented in C++ as the core optimization
of the Intel® Quantum SDK, enabled by the (-O1) flag, which
we use for all our experiments. We apply PCOAST to the
Hamiltonians of several molecules in the context of VQE. We
use Qiskit’s PySCF driver [26, 27] to express all fermionic
Hamiltonians in the STO-3G basis as qubit observables using
either the Bravyi-Kitaev (BK) [28] or Jordan-Wigner (JW) [29]
transformation. Grouping of the Hamiltonian terms in mutually
commuting sets is obtained by using an adapted version of the
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TABLE II: Statistics for the measurement circuits for each molecule for both BK and JW mappings.

Avg total gates Avg 2Q gates Avg Depth Avg r2q Avg k

Benchmark # Qubits # Measurements # Groupings BK JW BK JW BK JW BK JW BK JW

H2 4 15 2 5.00 12.00 0.00 2.50 1.50 4.50 - 2.40 4.00 3.50
HF 12 631 38 41.61 38.34 9.79 8.89 10.53 7.89 6.53 7.12 10.26 9.82
LiH 12 631 41 38.07 36.34 8.27 8.34 9.41 8.15 7.76 7.24 10.46 9.54

BeH2 14 666 36 47.33 43.83 11.47 10.36 11.17 9.69 7.53 8.40 11.31 11.31
H2O 14 1086 50 48.98 46.88 11.52 11.46 10.76 9.78 7.65 7.58 11.98 11.36
BH3 16 1957 76 48.85 53.15 10.29 13.11 10.45 10.03 11.47 8.93 14.40 13.57
NH3 16 2949 105 52.28 55.48 11.26 13.64 10.68 10.50 10.54 8.60 14.51 13.82
CH4 18 6892 163 71.14 59.24 17.58 13.58 13.89 9.54 8.60 11.04 16.74 16.06
B2 20 2239 64 84.96 72.70 23.94 20.23 16.00 13.06 6.31 7.42 16.64 16.26
O2 20 2239 67 85.89 72.84 24.57 20.16 15.55 12.95 7.46 9.04 16.43 16.18
Be2 20 2951 74 89.56 78.67 24.98 22.16 16.10 14.06 7.42 8.40 17.13 16.95
C2 20 2951 75 90.34 78.06 25.36 21.83 15.97 13.55 7.23 8.51 17.28 17.24
F2 20 2951 76 88.66 77.15 25.09 22.06 16.57 13.95 7.36 8.32 16.86 16.42
Li2 20 2951 78 90.81 77.22 25.87 21.96 17.04 13.67 7.12 8.40 16.87 16.58
N2 20 2951 79 93.53 79.00 27.10 22.10 16.90 13.91 6.86 8.41 17.35 17.06

TABLE III: Average (%) reductions in total gate count, two-
qubit gates, depth, and measurement gates achieved when
PCOAST synthesizes a combined ansatz and measurement
circuit vs each individually. Results are shown for both BK
and JW mappings.

Total Gates 2Q Gates Depth Meas

Benchmark BK JW BK JW BK JW BK JW

H2 70.00 35.27 0.00 41.34 50.00 5.45 75.00 -16.67
HF 5.89 11.54 3.92 10.64 3.89 6.56 7.11 3.62
LiH 5.19 0.93 5.12 -0.72 2.01 0.34 1.63 3.03

BeH2 1.90 3.99 0.62 2.69 1.75 0.64 2.91 -7.25
H2O 2.81 5.19 2.52 4.33 4.26 2.18 3.55 0.62
CH4 4.09 3.16 3.84 2.97 1.04 0.32 1.04 -1.70

SORTED INSERTION algorithm of Ref. [7]. For all benchmarks
in Table III, we pick the Unitary Coupled-Cluster Single
and Double excitations (UCCSD) [30] as our ansatz. Our
experiments use an Intel Xeon® Platinum CPU (2.4GHz, 2TB
RAM). All averages are over the various groupings.

Table II shows our results. We find a combined average r2q
value over all benchmarks of 7.85 (7.99) with a maximum
value of 11.47 (11.04) for the BK (JW) encoding. All metrics
appear to scale linearly in qubit number including k with the
ratio k

N
an average value of 83.64%. It is worth noting that in

a majority of benchmarks, the JW encoding outperforms the
BK encoding.

We also consider the outcome of synthesizing the mea-
surement circuit collectively with the ansatz using PCOAST.
Table III shows the average reductions gained when PCOAST
synthesizes a quantum program comprised of both ansatz
and measurement circuits vs. when it synthesizes each part
individually. Overall, we see that when combined, PCOAST
further reduces the total gates, two-qubit gates, depth, and
measurement gates by 14.98% (10.01%), 2.67% (10.21%),
10.49% (2.58%), and 15.21% (−3.06%) for the BK (JW)
encoding.

Though there is a reduction in aggregate, we find sev-
eral instance where the separate synthesis outperform the
combined synthesis. Because the separate synthesis outcome
is theoretically achievable with the combined synthesis, this

demonstrates that there is more refinement available to both
PCOAST in general and the Stabilizer Search Algorithm in
particular.

VIII. CONCLUSION

In this paper, we have introduced a set of optimization
routines included in PCOAST which optimize at the interface
between unitary and non-unitary operations. This includes
reduction of node cost and node number in the presence
of preparation nodes via the Preparation-on-Node Reduction
Algorithm, reduction of cost for Clifford operations in the
presence of preparations via the Preparation-on-Frame Re-
duction Algorithm, and measurement cost reduction using
Clifford operations via the Stabilizer Search Algorithm and
the classical remapping of measurement outcomes via the Map
Measurement Algorithms. These routines are also combined
to amplify their effectiveness when optimizing the PCOAST
graph via the PCOAST Graph Optimization Algorithm. These
routines were described in detail and shown to be valid
relative to the appropriate equivalence (“hold” or “release”).
We numerically studied the effectiveness of the Stabilizer
Search Algorithm as used for measurement reduction circuits
for VQE. We found an overall average ratio of the theoretical
maximum number of two-qubit gates to resulting number of
two-qubit gates of 7.85 (7.99) for the BK (JW) encoding. We
also showed that synthesis of the VQE ansatz along with the
measurements results in a better aggregate circuit.

In future work, we hope to further refine the algorithms
presented here. In particular, we hope to increase the efficiency
of the general Stabilizer Search Algorithm by considering
partial qubit masking. Instead of a fully opaque qubit mask
as defined in Eq.(10), we can weight the cost of the support
based on the fraction of measurement elements which don’t
agree on that support. This should further reduce the number
of TQE gates needed to find full qubit support agreement
within the measurement set. We also look to expand the types
of optimization routines within PCOAST, including more
sophisticated transformations on unitary elements, and better
use of stabilizer subspace methods by finding incomparable
node cliques in the PCOAST graph.
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