
Tackling the Qubit Mapping Problem with
Permutation-Aware Synthesis

Ji Liu∗,†, Ed Younis‡,†, Mathias Weiden§, Paul Hovland∗, John Kubiatowicz§, Costin Iancu‡
∗ Mathematics and Computer Science Division, Argonne National Laboratory

{ji.liu, hovland}@anl.gov
‡ Computational Research Division, Lawrence Berkeley National Laboratory

{edyounis, cciancu}@lbl.gov
§Department of Electrical Engineering and Computer Science, University of California, Berkeley

{mtweiden, kubitron}@cs.berkeley.edu
† Contributed equally to this work

Abstract— We propose a novel hierarchical qubit mapping
and routing algorithm. First, a circuit is decomposed into blocks
that span an identical number of qubits. In the second stage
permutation-aware synthesis (PAS), each block is optimized and
synthesized in isolation. In the third stage a permutation-aware
mapping (PAM) algorithm maps the blocks to the target device
based on the information from the second stage. Our approach
is based on the following insights: (1) partitioning the circuit into
blocks is beneficial for qubit mapping and routing; (2) with PAS,
any block can implement an arbitrary input → output qubit
mapping (e.g., q0 → q1) that reduces the gate count; and (3)
with PAM, for two adjacent blocks we can select input-output
permutations that optimize each block together with the amount
of communication required at the block boundary. Whereas
existing mapping algorithms preserve the original circuit struc-
ture and only introduce “minimal” communication via inserting
SWAP or bridge gates, the PAS+PAM approach can additionally
change the circuit structure and take full advantage of hardware-
connectivity. Our experiments show that we can produce better-
quality circuits than existing mapping algorithms or commercial
compilers (Qiskit, TKET, BQSKit) with maximum optimization
settings. For a combination of benchmarks we produce circuits
shorter by up to 68% (18% on average) fewer gates than Qiskit,
up to 36% (9% on average) fewer gates than TKET, and up to
67% (21% on average) fewer gates than BQSKit. Furthermore,
the approach scales, and it can be seamlessly integrated into any
quantum circuit compiler or optimization infrastructure.

I. INTRODUCTION

Two of the most important goals of quantum compilers are
circuit depth and gate count reduction, since these are direct
indicators of program performance. Publicly available compil-
ers, such as Qiskit, TKET, and BQSKit, employ a sequence of
gate optimization and mapping passes: (1) optimizations delete
redundant gates by using functional equivalence [12], [21],
[40] or pattern rewriting [16], [35] heuristics; and (2) mapping
transforms an input circuit, which may contains multiqubit
gates between qubits that are not physically connected, into a
circuit that can directly run on the target quantum processing
unit. The qubit mapping problem is known to be NP-hard [4].
Several heuristic mapping algorithms [17], [20], [22] as well as
several optimal mappers [24], [27], [37] have been proposed.

While “optimizations” delete gates, mapping introduces
additional gates to perform communication (SWAP) between

qubits that are not directly connected. Most existing algorithms
consider only a pair of qubits as end points at any given time
and introduce 2-qubit entangling gates (e.g., CNOT, iSWAP)
between these. A canonical representative of such approaches
is SABRE [20]. SABRE divides the circuit into multiple layers
and iteratively routes the gates in the front layer. It selects the
best route based on a heuristic cost function that considers the
distance between mapped physical qubits.

Topology-aware synthesis algorithms also satisfy the need
for mapping a logical circuit to a physical device with limited
connectivity. Based on the unitary representation of a circuit,
topology-aware synthesis algorithms [6], [36], [46] generate
a circuit that is compatible with a device’s layout. Since
synthesis algorithms directly generate a circuit based on the
unitary representation, they are able to generate circuits with
fewer gates than routing algorithms can. However, synthesis
algorithms have scalability issues due to the exponential
growth in the search space.

In this paper we present a novel circuit mapping approach
based on a hierarchical circuit representation. Our proposed
framework combines circuit synthesis with qubit mapping and
routing algorithms. A circuit is first partitioned into smaller
blocks. Next, we use a novel permutation-aware synthesis
(PAS) to synthesize the blocks with different input and output
permutations. With PAS we can optimize each block as well
as find the permutation that minimizes the routing cost. Then,
we use the permutation-aware mapping (PAM) framework to
map and route the blocks to the target device. Integrating
the synthesis algorithm in a hierarchical mapping algorithm
provides both quality and scalability for our framework.

We make the following contributions:
• We introduce the idea of permutation awareness and

propose Permutation-Aware Synthesis (PAS). The princi-
ple behind PAS is that considering arbitrary input-output
qubit permutations at the unitary level leads to shorter
circuits. These permutations are handled during post-
processing without introducing any extra gates.

• We present Permutation-Aware Mapping (PAM), a novel
hierarchical qubit mapping framework. PAM exploits the
optimization and mapping potential of PAS with block

1

ar
X

iv
:2

30
5.

02
93

9v
1

 [
qu

an
t-

ph
]

 4
 M

ay
 2

02
3

q0 U3 U3 q0

q1 U3 U3 q1

q2 U3 U3 U3 U3 q2

(a) Original circuit

SWAP

q0 U3 q1

q1 U3 U3 U3 q0

q2 U3 U3 U3 U3 q2

(b) OLSQ

q0 U3 U3 U3 U3 U3 q0

q1 U3 U3 U3 U3 U3 U3 U3 q1

q2 U3 U3 U3 q2

(c) Qsearch

q0 U3 U3 U3 U3 q1

q1 U3 U3 U3 U3 U3 U3 q0

q2 U3 U3 U3 q2

(d) PAS

Fig. 1: 3-qubit quantum Fourier transform (QFT) mapped to a linear topology with different algorithms

level routing heuristics. PAM has better solution quality
and scalability than the optimal solver OLSQ.

• We demonstrate the ability to leverage hardware-
connectivity. This is particularly beneficial on fully-
connected architectures, such as trapped ion. In contrast,
no other compiler can effectively leverage the all to
all connectivity when starting from a sparsely-connected
input circuit.

The evaluation shows that PAM achieves better results than
state-of-the-art available compilers: Qiskit, TKET, BQSKit.
Our generated circuits contain fewer gates than optimal so-
lutions generated by domain specific compilers for circuits
such as the QFT [41] and Transverse Field Ising Model [33]
(TFIM). PAM produces better quality results than optimal
mapping algorithms such as OLSQ [37], while improving
scalability from less than ten qubits to thousands of qubits.

II. BACKGROUND AND MOTIVATION

A. Qubit mapping and routing

Qubit mapping and routing are important in the optimization
workflow of quantum circuit compilers. The goal is to pro-
duce a circuit with multiqubit gates only between physically
connected qubits. The problem can be resolved in two steps:
finding the initial logical-to-physical qubit mapping (mapping)
and applying SWAP gates to move the qubits to physically
connected qubits (routing). The qubit mapping and routing
problems are known to be NP-hard [4]. Previous qubit map-
ping algorithms can be classified into two categories: heuristic
algorithms and optimal mapping algorithms.

1) Heuristic Algorithms: SABRE [20] is a canonical
heuristic algorithm that has been adopted by the Qiskit com-
piler [7] and multiple routing algorithms [22], [28]. In SABRE,
the circuit is divided into layers. The algorithm routes gates in
the front layer and selects a path using a heuristic cost function
based on the distance between mapped physical qubits. The
heuristic cost function routes the front layer with lookahead.
It balances the routing cost for the gates in the front layer and
the gates in the extend layer (i.e., gates that will be routed
in the future). The initial mapping is updated based on the
reverse traversal of the circuit.

Several heuristic algorithms are inspired by SABRE. Niu
et al. proposed a layered hardware-aware heuristic [28] based
on calibration datas. Liu et al. [22] proposed an optimization-
aware heuristic that minimizes the number of 2-qubit gates
after circuit optimizations. Other heuristic algorithms in-
clude TKET [35], commutation-based routing [17], simulated

annealing-based routing [48], dynamic lookahead [49], and
time-optimal mapping [47].

2) Optimal algorithms: Another class of routing algorithms
is optimal qubit mappers. Optimal mappers solve the mapping
problem by converting it into a set of constraints and finding
the circuit with optimal SWAP gate count or optimal depth
via optimal solvers. For example, the OLSQ [37] approach
formulates the problem as a satisfiability modulo theories
(SMT) optimization problem and then uses the Z3 SMT
solver [26] to find the optimal circuit. The BIP mapper [27]
in Qiskit finds the optimal mapping and routing by solving
a binary integer programming (BIP) problem. Because of
the exponential growth of the search space, however, these
constraint-based solvers all face significant scalability issues.
Besides the scalability issue, we will show in the next subsec-
tion that synthesis algorithms may generate smaller circuits
than those that the optimal mappers generate.

Mapping and routing should be performed at the multiqubit
gate level. The Orchestrated Trios [8] compiler shows that pre-
serving complex 3-qubit operations during qubit mapping and
routing can reduce routing overhead, since these complex op-
erations better inform the routing algorithm about how qubits
should be moved around. However, a generalized quantum
algorithm may not contain these complex operations. In the
permutation-aware mapping (PAM) framework, we propose a
block-based routing framework that captures circuit structure
and has a better lookahead window. Insight 1: Creating and
preserving complex operations (blocks) may be beneficial
for qubit mapping and routing.

Both heuristic and optimal solvers introduce communica-
tions by inserting SWAP gates or bridge gates, but they
are unable to remove communication. Another advantage
of block-based mapping is the ability to take permutation
into consideration. A block with different input and output
permutations may have different basis gate counts. We can find
the input and output permutations that optimize each block.
These permutations at the block boundary can be resolved as
we map the circuit to physical devices. Insight 2: Introducing
input and output permutation for the circuit block may
reduce the circuit size.

B. Synthesis for mapping

A unitary synthesis algorithm generates a quantum circuit
based on a 2n×2n unitary matrix representation of the circuit.
In this paper we focus on topology-aware synthesis algorithms
since they can synthesize quantum circuits that are compatible
with the device topology. Qsearch [6] is a topology-aware

2

1) Partition Circuit

2) Synthesize all permutations of each block
for all possible block architectures

0

2

1
0

1

2

0

2

1

1

0

2

Mapped Not Mapped

3) Map the circuit with a forward pass,
selecting the best block permutations as

they are passed.

Fig. 2: This example applies permutation-aware mapping on a circuit with 3-qubit blocks. Each block is synthesized with possible input and output
permutations. Our permutation-aware mapping procedure then resolves the different qubit permutations as we map the blocks to the device. Additionally, as
with any mapping or routing algorithm, inserting SWAP gates is necessary.

synthesis algorithm that generates circuits with optimal depth.
Qsearch employs an A* heuristic to search over a tree of pos-
sible circuits based on device topology. In practice, however,
the scalability of Qsearch is limited to 4 qubits because of
the exponential growth of the search space. Other topology-
aware synthesis algorithms such as QFAST [46] improve the
scalability of synthesis by encoding placement and topology
using generic “gates.” LEAP [36] improves scalability from
4- to 6-qubit circuits by narrowing the search space through
prefix circuit synthesis. The QGo [43] optimization framework
proposes a circuit partitioning algorithm that partitions a
large circuit into smaller blocks (subcircuits) and synthesizes
each block in parallel. In contrast to our work, QGo is an
optimization framework and is applied after qubit mapping
and routing. It relies on the qubit mapping algorithm to find
the logical-to-physical qubit mapping and cannot change the
placement of the blocks.

Synthesis algorithms can map small circuits to physical
devices with fewer gates compared with routing algorithms.
We use the 3-qubit QFT algorithm as an example. The best-
known implementation of this algorithm [41] is shown in
Figure 1a which contains six CNOT gates. As shown in
Figure 1b, the circuit mapped with optimal routing algorithm
OLSQ [37] contains a single SWAP gate, and the total CNOT
gate count is nine. Since routing algorithms only insert SWAP
gates, they maintain the original structure of the circuit. The
subsequent optimizations may not change these structures and
hence may result in a suboptimal solution.

On the other hand, synthesis algorithms directly construct a
circuit based on the unitary matrix, regardless of the original
circuit structure. In Figure 1c, the Qsearch algorithm finds a

better linearly connected design with only six CNOT gates.
The permutation-aware synthesis (PAS) further reduces the
gate cost by finding the best output permutation and im-
plements the 3-qubit QFT with only five CNOTs, shown in
Figure 1d. To the best of our knowledge, this is the best-
known implementation of this essential circuit. Insight 3:
Permutation-aware synthesis can directly map a circuit
to a physical device with higher quality than routing
algorithms can achieve.

III. PAM OVERVIEW

We propose our permutation-aware mapping (PAM) frame-
work based on the aforementioned insights. PAM partitions a
circuit into blocks, performs permutation-aware synthesis for
each block, and runs a block-based mapping for the blocks.

An overview of the PAM framework is shown in Figure 2.
First, the input n-qubit quantum circuit is vertically partitioned
into k-qubit blocks, B1, ... , BM , by grouping together
adjacent gates. Second, we resynthesize each block for all
possible permutations and k-qubit topologies (sub-topologies).
As shown in the previously mentioned example, 3-qubit blocks
generally need four sub-topologies. One comes from the fully-
connected or all-to-all 3-qubit architecture, and the other three
represent all orientations of a 3-qubit line or nearest-neighbor
architecture. The resynthesis results, including the associated
qubit permutation and circuit, are stored for use during the
next mapping phase.

The permutation-aware mapping algorithm continues over
the partitioned circuit, unlike standard heuristical mappers,
which mainly deal with native gates. To accomplish this,
we supplement the SABRE algorithm with a novel, albeit

3

Regular
Synthesis

Permutation-
Aware

Synthesis

=

Regular
Synthesis

Permutation-
Aware

Synthesis

Fig. 3: Regular synthesis will construct a circuit implementing a given unitary matrix preserving input and output qubit orderings. Before synthesizing a
unitary, permutation-aware synthesis will factor out implicit qubit communication, leading to an overall shorter circuit. This action, however, will not preserve
input and output qubit orderings and will require some simple classical processing when preparing the initial qubit state and reading out the final qubit state.

generalized, heuristic to evaluate the current mapping state.
Additionally, we add an extra processing step when moving
gates from the unmapped to the mapped region. During
this step, we utilize another novel heuristic to select the
synthesized block permutation that best balances gate count
and routing overhead for subsequent blocks. These block-level
permutations leverage implicit communication buried in their
computation to beneficially affect the state of the progressing
mapping algorithm, drastically reducing the need for SWAP
gates to perform global communication.

IV. PERMUTATION-AWARE SYNTHESIS

A. Permutation-aware synthesis

Synthesis algorithms typically construct a circuit based on
its unitary matrix representation. They preserve the input and
the output qubit ordering for the circuit. However, the ordering
can be permuted to change the unitary matrix. Constructing the
circuit based on the permuted unitary may result in a shorter
circuit.

We formalize here the concept of permutation-aware syn-
thesis. As shown in Figure 3, a synthesis algorithm constructs
the unitary matrix U with three CNOTs, and the qubit ordering
is preserved. When considering alternate qubit permutations,
we can always insert an input order permutation Pi and its
inverse PT

i . Pi and PT
i will cancel out, and the circuit’s

functionality is unchanged. Similarly, we can insert an output
order permutation Po and its inverse PT

o . After introducing
these four extra permutations, we can group Pi, U , and Po

to generate a permuted unitary for synthesis. Since applying
a gate on the left of a gate is equivalent to multiplying its
unitary matrix on the right, the permuted unitary gate is
represented as PoUPi. This permuted unitary gate may require
fewer basic gates to implement. The insertion of permutations
Pi

T and Po
T can be achieved through classically changing

the qubit index orders and does not require any gates to
implement. As shown in Figure 3, the gate marked in yellow
is a permuted unitary gate, which can be synthesized with
only two CNOT gates. The permutations Pi

T and Po
T have

the effect of permuting the input and output qubit orders,
but can be handled classically by changing the index of the
input and output qubit orders. In other words, permutations
can be factored out to the inputs and outputs and resolved

through classical processing. The core idea of our permutation-
aware synthesis and permutation-aware mapping algorithm is
the association of the original unitary with input and output
permutations and the methodology to resolve the remaining
permutations. We will evaluate permutations to find the one
that yields the fewest gates.

B. Permutation search space

Permutation-aware synthesis is a generalized approach that
can be applied to any synthesis algorithm. In this work we use
the Qsearch [6] algorithm to synthesize the permuted unitary
since it produces near-optimal solutions.

Multiple permutations need to be evaluated to identify the
best permutation. For an n-qubit circuit, there are n! × n!
input and output permutation combinations in total. To reduce
the search space, we introduce the sequentially permutation-
aware synthesis (SeqPAS). In SeqPAS, we first evaluate all
the input permutations to find the best permutation Pi. Then,
we fix the best input permutation Pi to find the best output
permutation Po. The total number of evaluations in SeqPAS
is 2× n!. In fully permutation-aware synthesis (FullPAS), we
evaluate all the input and output permutation combinations. In
Section VII-A we will provide a comprehensive comparison
of these two PAS designs with the synthesis and routing
algorithms. In most cases, SeqPAS generates circuits with a
gate count close to that of FullPAS and with less compilation
overhead. It’s worth noting that classical reversible logic
synthesis [32], [42] have leveraged output permutations to
reduce circuit cost, they reduce the search space with garbage
output bits (the outputs are by definition don’t cares in the
reversible circuit). However, in the practical quantum circuits,
non of the output qubits is garbage qubit.

V. PERMUTATION-AWARE MAPPING

In this section we clarify how we combine circuit parti-
tioning, block-level permutation-aware resynthesis, and novel
heuristics with tried-and-trued routing techniques to assemble
our permutation-aware mapping framework.

Like other mapping algorithms, we break the problem into
two steps: layout and routing. Layout discovers an initial
logical to physical qubit mapping; routing then progresses this
mapping through the circuit, updating it and adding SWAP
gates as necessary to connect interacting logical qubits. While

4

these two steps are distinct in our framework, the same circuit
sweep methods that utilize circuit partitions and permutation-
aware synthesis implement both. As such, we first describe our
partitioning and resynthesis steps and then detail our heuristic
circuit sweep. After proposing the full algorithm, we provide
an analysis of PAM’s computational complexity.

A. Circuit partitioning

The PAM algorithm first partitions a logical circuit verti-
cally into k-qubit blocks. Vertical partitioning groups together
gates acting on nearby qubits into blocks and is commonly
implemented by placing gates into bins as a circuit is swept
left to right. This method contrasts horizontal partitioning
techniques [1] used in distributed quantum computing to
best separate qubits. The binning approach to partitioning
is excellent for our algorithm due to its scalability. These
partitioners are linear with respect to gate count, O(M), and
we found that alternative partitioning techniques showed little
variance in experimental results.

B. Permutation-aware resynthesis

After partitioning a circuit, we represent it as a sequence
of k-qubit logical blocks containing the original gates. Later,
layout and routing will replace these blocks with one of many
permutated versions. Having all block permutations accessible
enables our heuristic to compare the quality of each and select
the one that best balances its gate count with its effect on
mapping. To discover all possible block permutations, we use
permutation-aware synthesis.

If we perform permutation-aware synthesis online during
mapping, we would serialize the required block synthesis. For
very large circuits, this will become intractable very quickly.
To overcome this, we perform the resynthesis step across all
blocks in parallel offline. While this is an embarrassingly
parallel problem, performing it offline has the added challenge
of not knowing the block’s final physical position and, there-
fore, its required topology. As a result, we will also need to
synthesize for different topologies in addition to permutations.

We now resynthesize each block once for each possible
permutation and connectivity requirement. We synthesize for
all topologies because it allows us to identify extra connections
provided by the hardware. For example, as shown in Figure 2,
every three-qubit block will have six possible input permu-
tations, six possible output permutations, and four different
possible connectivities. Naively, this totals 144 synthesis calls
for every three-qubit block.

We can dramatically reduce the number of required syn-
thesis calls in two ways. First, we can perform a quick sub-
topology check of the target architecture to eliminate possible
connectivities. For example, if the target architecture is only
linearly-connected, we do not need to consider the all-to-
all connectivity requirement during block resynthesis. This is
because no possible placement of a 3-qubit block on a linearly-
connected topology can ever be fully-connected. Although
not intuitive, it is common to eliminate some required sub-

topologies when targetting realistic architectures with 3-qubit
blocks.

The second way to reduce the number of synthesis calls
is to recognize equivalent permutations. One can permute a
resynthesized circuit to produce a new circuit implementing
the same unitary with different input and output permutations
and a rotated topology. Since there are n! ways to permute
a circuit, we can reduce the number of synthesis calls re-
quired for permutation-aware resynthesis by that many. After
applying this optimization to 3-qubit blocks, we only need to
synthesize a max of 24 different unitaries.

C. Heuristic circuit sweep

PAM’s layout and routing algorithms utilize the same circuit
sweep responsible for evolving a given logical-to-physical
qubit mapping through a circuit. This section describes how
we augment the SABRE algorithm [20] to leverage block-level
permutations.

We follow the SABRE convention in dividing the logical
circuit into a front layer F and E, an extended set. The front
layer consists of gates with no predecessors, and the extended
set consists of the first |E| successors of the front layer,
where |E| is configurable. The extended layer E is defined for
lookahead analysis. As the sweep builds the physical circuit,
it removes gates from the logical circuit and updates F and
E.

In our first change from the SABRE algorithm, we general-
ized the heuristic cost function from [50] to support arbitrary-
sized gates given by:

F(π) = 1

|F |
∑
b∈F

∑
i,j∈b

D[π(b.i)][π(b.j)]

E(π) = WE

|E|
∑
b∈E

∑
i,j∈b

D[π(b.i)][π(b.j)]

H(π) = F(π) + E(π)

Here b is a gate block. D is the distance matrix that records
the distance between physical qubits. |F | and |E| are the size
of the front and extended layers, respectively. Minimizing this
heuristic requires bringing all front layer gates’ logical qubits
physically closer together. To add lookahead capabilities, the
operations in the extended set also contribute a term weighted
by a configurable value WE .

It is essential to note some challenges with heuristic map-
ping algorithms when generalizing from two-qubit to many-
qubit gates. There are many ways to bring more than two
qubits together on a physical architecture, creating many
local minimums in a heuristic swap search. To combat this,
we disabled swaps between any pair of logical qubits if an
operation exists in the front layer containing both.

The second change we make to the SABRE algorithm is
adding a step when removing an executable gate from the
front layer and placing it in the physical circuit. In our case,
the gates are blocks, and we have already pre-synthesized their
permutations. The current mapping determines the block’s

5

input permutation and sub-topology, leaving the block’s output
permutation to be freely chosen. For 3-qubit blocks, we will
have six possible choices for output permutation.

Two factors determine which output permutation to select
for a given block. The chosen permutation will alter the
ongoing mapping process potentially for the better. Also, the
circuits associated with each permutation will have differing
gate counts. We want to choose an output permutation that
balances the resulting block’s gate count with the overall effect
on mapping. We modify the swap search heuristic to select the
best permutation, producing the following heuristic:

P (π) =WP × C[b][Gb][(Pi, Po)] +H(Po(Pi(π)))

Here C[b][Gb][(Pi, Po)] is the 2-qubit gate count for the
block b with subtopology Gb and permutations (Pi, Po). The
WP weights the gate cost with the mapping cost and has been
empirically discovered to be 0.1. Note that after applying the
permuted block, the mapping cost function is evaluated using
mapping updated by both input and output permutations.

In summary, our circuit sweep iterates over a partitioned
circuit inserting swaps according to a swap search with a
generalized heuristic to make blocks in the front layer exe-
cutable. At this point, they are moved to the physical circuit
and assigned a permutation according to a novel heuristic that
updates the mapping state as the algorithm advances.

D. Layout and routing

Both of PAM’s layout and routing algorithms are built
trivially using the circuit sweep method previously described.
Similar to SABRE, layout is conducted by randomly starting
with an initial mapping and evolving it via the heuristic circuit
sweep. Once complete, layout evolves the resulting mapping
through the reverse of the logical circuit. This back-and-forth
process is repeated several times until a stable mapping has
been discovered. Routing then performs a single forward pass
of the circuit sweep starting from the mapping that layout
found.

Some corner cases exist where the heuristic may not select
the best permutation. After routing the circuit, we can catch
these corner cases by repartitioning and resynthesizing the
circuit. The repartitioning process will group newly placed
SWAP gates with other operations. This process is termed
as gate absorption in some prior works [27], [38]. However,
these works primarily discussed the absorption of SWAP gates
with SU(4) gates. In our case, repartitioning and resynthesis
of many-qubit blocks and swap networks allow us to reduce
circuit gate count further.

E. Complexity analysis

The PAM framework is scalable in terms of both the number
of qubits N and the total 2-qubit gate count M . It has the same
level of time complexity as SABRE, which is O(N2.5M).

The PAM framework consists of four compilation steps.
First, a circuit is partitioned into gate blocks with the par-
titioning algorithm. The default quick partition algorithm [45]

in BQSKit has complexity of O(M). Second, we use PAS to
synthesize the permutations for each block. Since we limit the
block size to less than three, the synthesis time for each block
is bounded by a constant time limit O(C). In the worst case,
the total number of block equals the total number of gates
M over the constant block size. Therefore, the PAS step has
time complexity of O(M). The layout step and the routing
step in the worst case have the same time complexity as does
the SABRE routing algorithm, O(N2.5M). By adding all the
steps together, the PAM framework has time complexity of
O(N2.5M), which is as scalable as that of other heuristic
routing algorithms.

VI. EXPERIMENTAL SETUP

The permutation-aware synthesis and mapping algorithms
are implemented by using the BQSKit framework [45].
We compared the proposed algorithms with the original
SABRE algorithm and three industrial compilers: Qiskit [7],
TKET [35], and BQSKit. When possible, we additionally
compared the algorithms with an optimal mapping algorithm
OLSQ [37] followed by Qiskit optimizations.

A. Benchmarks

We used two sets of benchmarks to evaluate the proposed
permutation-aware algorithms. When evaluating algorithms at
the block level, we used a collection of small 3-, and 4-qubit
circuits, which are either commonly used as building blocks
in larger quantum programs or represent a smaller version
of standard programs. These are listed in Figure 4a. Qiskit
generated all of them except for the QAOA circuit, which
was generated by Supermarq [39]. The Toffoli and Fredkin
gates are well studied, and often compilers will be able to
handle them through optimized workflows. To ensure a diverse
benchmark set, we included some less-optimized gates: the
singly and doubly controlled-MS XX gate [25]. QFT and
QAOA circuits were included because they have been used
extensively in past benchmark sets. Supermarq [39] generated
the 4-qubit, fermionic-SWAP QAOA circuit.

Benchmark CNOT Gates
ccx3 6

cswap3 8
cxx3 22
ccxx4 118
qft3 6
qft4 12

qaoa4 18

(a) small block benchmarks

Benchmark CNOT Gates
adder63 1405
mul60 11405
qft5 20
qft64 1880

grover5 48
hub18 3541
shor26 21072
qaoa12 198
tfim64 4032
tfxy64 4032

(b) large quantum benchmarks

Fig. 4: Two-qubit gate counts for the small block and large quantum program
benchmark suites. The number of qubits in the circuit is given as a suffix.

To evaluate the qubit mapping and circuit optimization capa-
bilities of our proposed algorithm against full-scale compilers,
we used a benchmark suite consisting of 10 real quantum

6

cc
x

cs
w

ap

cx
x

qf
t3

qf
t4

qa
oa

4

cc
xx

Qiskit 9 10 31 7 17 18 270
TKET 9 10 29 9 21 17 172

OLSQ+Opt 9 10 21 9 17 18 184
Qsearch 8 8 5 6 16 18 15
SeqPAS 7 8 4 6 14 14 13
FullPAS 7 8 4 5 13 12 10

(a) CNOT counts

cc
x

cs
w

ap

cx
x

qf
t3

qf
t4

qa
oa

4

cc
xx

2.43 2.43 2.61 2.41 2.51 2.46 3.76 Qiskit
0.05 0.07 0.16 0.07 0.13 0.15 0.92 TKET
2.66 2.66 5.51 2.68 3.40 2.72 19325.55 OLSQ+Opt

10.21 7.51 1.78 3.23 90.45 216.25 54.33 Qsearch
23.73 29.45 7.47 7.98 5188.93 2705.54 5974.15 SeqPAS
23.83 83.38 7.49 9.80 46733.13 16582.57 36676.70 FullPAS

(b) Compile time in seconds

Fig. 5: Common quantum circuit building blocks compiled to a linear topology using varying methods.

cc
x

cs
w

ap

cx
x

qf
t3

qf
t4

qa
oa

4

cc
xx

Qiskit 6 7 17 6 12 18 114
TKET 6 7 17 6 12 12 95

OLSQ+Opt 6 7 17 6 12 18 114
Qsearch 6 7 5 6 12 13 11
SeqPAS 6 7 5 6 13 12 9
FullPAS 6 7 4 5 10 9 9

(a) CNOT counts

cc
x

cs
w

ap

cx
x

qf
t3

qf
t4

qa
oa

4

cc
xx

2.42 2.39 2.47 2.40 2.45 2.44 3.20 Qiskit
0.06 0.07 0.15 0.07 0.13 0.15 0.92 TKET
2.61 2.61 2.81 2.59 2.75 2.73 5.27 OLSQ+Opt
7.40 11.34 2.61 6.45 1683.54 2752.78 336.55 Qsearch

19.73 46.65 5.88 9.79 4117.27 1793.36 1232.44 SeqPAS
25.64 65.95 8.85 13.46 234174.05 101642.08 20775.23 FullPAS

(b) Compile time in seconds

Fig. 6: Common quantum circuit building blocks compiled to a fully-connected topology using varying methods.

programs of various types ranging in size from 5 to 64 qubits.
We included two commonly used arithmetic circuits [5], [43],
which contain long chains of 2-qubit gates. These chains
are worst-case scenarios for partitioning compilers and are
useful to evaluate. We included a 5-qubit Grover and 26-qubit
Shor circuit generated by Qiskit [11], [34]. The suite also
included two variational quantum algorithms: Supermarq’s 12-
qubit fermionic-SWAP QAOA circuit [9], [39] and an 18-qubit
circuit simulating a spinful Hubbard model generated with
OpenFermion [13], [23]. Moreover, we included two real-
time evolution circuits: a transverse-field ising (TFIM) [33]
and a transverse-field XY (TFXY) model. The constant-depth
F3C++ compiler [2], [3], [18] produced these circuits, which
before PAM were the best implementations. Figure 4b lists
all large quantum program benchmarks alongside their gate
counts.

B. Experiment platform

All experiments were executed with Python 3.10.7 on a 64-
core AMD Epyc 7702p system with 1 TB of main memory
running Ubuntu 20.04 as the operating system. We used
versions 1.0.3, 0.38.0, 1.6.1, and 0.0.4.1 for the BQSKIT,
Qiskit, PyTKET, and OLSQ packages, respectively.

C. Algorithm configuration

Unless otherwise specified, we used the Qsearch algorithm
for 3-qubit synthesis and the LEAP algorithm for 4-qubit
synthesis. For both, we used the BQSKit implementation
configured with the recommended settings: 4 multistarts and
the default instantiater with a success threshold of 10−10. The
default BQSKit partitioner handled all circuit partitioning.

Similarly to the original SABRE evaluation, we configured
PAM with a maximum extended set size |E| of 20 and a weight
WE of 0.5. We used a decay delta of 0.001 and reset the decay
every five steps or after mapping a gate. When discovering
the initial layout, we performed two complete forward-and-
backward passes. PAM’s gate count heuristic weight WP is

Fig. 7: Comparison of OLSQ+Opt, Qsearch, and FullPAS on ibm_oslo

set to 0.1. We used the BQSKit implementation and the
same values for common parameters when evaluating the
original SABRE algorithm. For the Qiskit, BQSKit, and TKET
compilers we used the recommended settings with maximum
optimization level.

The experimental results are verified with classical sim-
ulation and numerical instantiation based error upper-bound
verification [29], [44]. The error upper bounds on all outputs
were less than 10−8.

VII. EVALUATION

A. Block mapping

We first evaluated the mapping and optimization potential
for synthesis and our permutation-aware synthesis framework
at the block level. We selected two architectures to evaluate the
different methods: a line with only nearest-neighbor connectiv-
ity and a fully connected topology. Figures 5 and 6 respectively
detail the final CNOT counts and total compile time for the
two different target architectures.

Fully permutation-aware synthesis (FullPAS) produced
shortest circuits in all cases. FullPAS built circuits with an
average of 42%, 43%, 42%, and 21% fewer gates than
did Qiskit, TKET, OLSQ, and QSearch, respectively, where

7

TABLE I: Mapping and optimizing a quantum circuit benchmark suite to a fully connected topology.

SABRE Qiskit TKET BQSKit PAM3
benchmark #CX time(s) #CX time(s) #CX time(s) #CX time(s) #CX time(s)

adder63 1405 3.23 1405 9.98 484 14.45 1195 34.41 442 187.08
mul60 11405 24.09 11403 72.27 4144 428.55 9926 225.75 3938 1493.63
qft5 20 0.28 20 2.42 20 0.49 20 4.04 18 18.59

qft64 1880 3.78 1720 10.74 1784 24.61 1771 188.87 1665 771.31
grover5 48 0.35 48 2.69 46 0.79 48 10.82 44 51.80
hub18 3541 6.87 3529 22.86 3428 76.35 3498 50.59 3459 524.00
shor26 21072 42.01 21072 109.30 20884 836.27 16319 1020.94 14950 9976.45
qaoa12 198 0.58 198 3.15 132 2.03 191 8.43 129 75.93
tfim64 4032 9.79 4030 31.17 4032 107.38 4013 169.91 2820 2232.45
tfxy64 4032 9.84 4032 31.00 4032 108.84 4014 170.04 3294 1791.33

TABLE II: Mapping and optimizing a quantum circuit benchmark suite targeting Rigetti’s Aspen M2 chip

SABRE Qiskit TKET BQSKit PAM3
benchmark #CX time(s) #CX time(s) #CX time(s) #CX time(s) #CX time(s)

adder63 3931 6.62 3250 23.90 1798 15.51 3801 85.62 1566 301.63
mul60 30386 38.24 24832 196.47 14708 441.12 25580 514.29 11172 2400.01
qft5 41 0.39 34 2.68 35 0.26 29 4.18 28 24.23

qft64 6383 10.38 5107 34.19 4970 25.40 5575 293.78 3861 1194.87
grover5 108 0.49 110 3.05 82 0.57 63 13.57 59 89.74
hub18 15151 10.58 13031 67.51 11680 77.20 12236 187.58 11785 1089.22
shor26 44907 33.39 39171 220.17 46192 862.52 32110 795.92 29055 15528.36
qaoa12 303 0.55 198 4.34 253 1.96 219 13.29 302 (188) 100.12
tfim64 8403 25.13 4032 95.63 4032 109.26 6040 170.96 4532 (2804) 4014.57
tfxy64 8403 24.52 4032 138.95 4032 110.24 7884 292.50 5963 (3319) 5577.72

The numbers in brackets represent the experimental results of PAM3 with extra isomorphism check.

SeqPAS produced circuits with an average of 37%, 37%, 36%,
and 12% fewer gates.

An optimal decomposition is not always precomputed and
available or trivial to compute by hand, however, as in the case
of the controlled MS gates. FullPAS resulted in a cxx circuit
with 19% and 24% of the gates in the best nonsynthesized re-
sult when compiling to the linear or fully connected topology,
respectively. This improvement is even more pronounced in the
case of the ccxx circuit, where FullPAS produced circuits with
as much as 27 times fewer gates; however, improvements over
Qsearch are much more modest. Nonetheless, these modest
gains are still significant. FullPAS compiled a 5-CNOT qft3
circuit for all topologies; this is, to the best of our knowledge,
the new best-known implementation of this essential circuit.

These significant improvements in quality require many
synthesis calls and, as a result, more runtime than other
methods require. Since FullPAS calls for synthesizing all
pairs of input and output permutations, its scaling is limited.
SeqPAS, however, is much more palatable, with an average
runtime of 24.25 seconds for 3-qubit blocks and 3175 seconds
for 4-qubit blocks.

We evaluate the cxx and ccxx benchmarks on a 27-qubit
ibm_oslo computer. The gate counts are reported in Fig-
ure 5. As shown in Figure 7, FullPAS generates the circuit that
has the highest success rate. In the ccxx example, permutation-
aware synthesis reduces the CNOT gate count from 15 to 10,
resulting in a 3.5x success rate boost.

B. Large circuits

To evaluate the mapping methods, we chose four real quan-
tum architectures implemented in state-of-the-art quantum
processors: Rigetti’s Aspen M2 80-qubit chip [31], Google’s

72-qubit Bristlecone chip [10], IBM 127-qubit Eagle chip [14],
and a 64-qubit fully-connected topology similar to trapped-ion
architectures [15], [30].

The 3-qubit version of the PAM algorithm (PAM3) produced
the shortest circuits in the most trials, with an average of 35%,
18%, 9%, and 21% fewer gates than SABRE, Qiskit, TKET,
and BQSKit. The results are demonstrated in Table I,II,III,IV.
OLSQ cannot find any solution for the benchmarks with
tens of qubits. Therefore we exclude it in the large circuit
comparison. PAM3 built the shortest circuit in 29 out of the
40 trials (10 circuits and 4 architectures). Three out of the
eleven cases where PAM3 was not the shortest were with the
18-qubit Hubbard, where PAM3 built circuits with 0.9%, 0.9%
and 5.2% more gates than TKET did. By adding isomorphism
check, PAM3 produces the shortest circuit in 37 trials. The
data with isomorphism check is presented in brackets.

QAOA, TFIM, and TFXY: In the remaining eight times
PAM3 produced a longer circuit, the cases invovled QAOA,
TFIM, or TFXY circuits. This result is due to placement.
These three circuits all require only linear connections. Theo-
retically, they can be mapped to all four chips without routing.
Qiskit and TKET do a subgraph isomorphism check, which
sometimes catches a perfect placement. This extra check high-
lights the downside of comparing our experimental mapping
algorithm with complete commercial compilers with max set-
tings. A lot of extra bells and whistles can divert compilation
flow in specific cases. However, in the cases where they did
not catch the isomorphism check, we produced shorter circuits.
Additionally, if we implement the same isomorphism check,
we can outperform them because we can often further reduce
the circuit depth on a line. For example, suppose we pick a
perfect placement and map the QAOA to a line with PAM3.

8

TABLE III: Mapping and optimizing a quantum circuit benchmark suite targeting Google’s Bristlecone chip

SABRE Qiskit TKET BQSKit PAM3
benchmark #CX time(s) #CX time(s) #CX time(s) #CX time(s) #CX time(s)

adder63 3274 6.79 2726 21.22 1326 15.89 2755 65.79 925 297.99
mul60 24974 32.35 20014 171.35 11989 437.34 18396 361.08 9169 2404.43
qft5 35 0.30 30 2.54 32 0.26 31 3.49 22 25.65

qft64 5153 9.14 4304 30.27 4175 25.30 4262 228.93 3624 1195.86
grover5 108 0.36 96 3.03 82 0.58 85 3.85 62 81.08
hub18 11227 8.89 10137 55.49 9084 77.05 9064 124.58 8682 1095.16
shor26 38241 29.86 36365 204.72 38070 849.95 28624 659.49 24021 15547.82
qaoa12 198 0.36 198 64.47 237 1.94 205 12.03 243 (188) 95.88
tfim64 6591 24.35 4828 80.56 4773 156.35 5187 173.95 4344 (2804) 4312.13
tfxy64 6591 24.13 5204 78.47 4773 158.04 5814 255.63 4778 (3319) 5825.42

TABLE IV: Mapping and optimizing a quantum circuit benchmark suite targeting IBM’s Eagle chip

SABRE Qiskit TKET BQSKit PAM3
benchmark #CX time(s) #CX time(s) #CX time(s) #CX time(s) #CX time(s)

adder63 4906 9.08 4172 34.09 2318 16.02 4070 107.74 1827 316.22
mul60 37982 44.92 31284 349.58 18000 442.01 30817 612.56 14553 2493.17
qft5 41 1.37 35 2.72 38 0.26 32 6.26 28 60.02

qft64 6491 11.31 5760 46.52 5682 26.00 5511 321.04 4466 1190.36
grover5 114 1.38 122 3.14 82 0.58 60 12.00 59 79.73
hub18 17692 12.84 16990 93.66 13648 77.91 14288 222.41 14365 1161.29
shor26 50334 40.52 43705 239.15 54156 858.67 35659 978.47 34205 15684.63
qaoa12 309 1.54 198 3.38 241 1.81 276 12.60 232 (188) 96.14
tfim64 12126 41.26 4032 402.50 4032 107.16 8730 241.97 10652 (2804) 4493.52
tfxy64 12126 40.90 4032 395.86 4032 108.33 9469 297.04 8260 (3319) 5852.39

TABLE V: Quality of solutions and compile time (s) of OLSQ + opt and PAM3

Fully-connected Aspen M2 IBM Eagle
OLSQ PAM3 OLSQ PAM3 OLSQ PAM3

benchmark #CX time(s) #CX time(s) #CX time(s) #CX time(s) #CX time(s) #CX time(s)
alu-v0 17 2.8 13 15.17 28 207.36 21 27.89 28 324.10 21 27.99
qft5 20 1.58 18 18.59 28 12.20 28 24.23 28 11.86 28 60.02

grover5 48 2.25 44 51.80 76 393.67 59 89.74 76 352.52 59 79.73
qaoa8 24 1.98 23 8.1 38 66.18 35 9.33 45 666.38 47 11.75

In that case, we get a result with 188 CNOTs, which can be
directly placed on any of the four experiment architectures and
is shorter than all other compilers’ output. Similarly, TFIM
and TFXY can be compiled with 2804 and 3319 CNOTs by
adding the isomorphism check. The isomorphism check only
takes tens of seconds which is negligible compared to PAM’s
compilation time. Moreover, PAM3 gets good placement when
compiling the TFIM circuit to the Bristlecone architecture and
produces a result with fewest CNOTs.

C. Comparison with optimal layout solver

In this section, we compare the solution quality and compi-
lation time of PAM with the optimal solver OLSQ to evidence
the effectiveness of permutation-aware mapping. Table V
demonstrates the final gate count and the compile time. We use
OLSQ for routing followed by Qiskit optimizations. OLSQ
finds the optimal mapping and routing that minimizes the
number of inserted SWAP gates. However, since PAM directly
synthesizes the unitary based on hardware connectivity, the
resulting circuit is on average 10.7% smaller than OLSQ.
Moreover, the optimal solver have scalability issue, it cannot
find any solution on the coupling map of Google’s Bristlecone.
As shown in the table, when compiled with limited backend
connectivity(Aspen-M2, IBM-Eagle), PAM has shorter com-
pilation time than OLSQ for most benchmarks.

D. Scaling beyond the NISQ era

To evaluate the scalability of the mapping algorithms past
the capabilities of quantum hardware today, we generated a
set of QFT circuits ranging from 128 qubits to 1024 qubits
and mapped them to a proposed heavy-hexagonal chiplet
architecture [19]. We built an architecture following the tree-
of-grids approach with a 3-node tree containing a 4 × 4-grid
of 27-qubit chiplets. The results are shown in Figure 8. As
the number of qubits increases, PAM always generates the
circuit with the fewest gate count, and the gaps between the
compilation time of PAM and other compilers are narrowing.
This highlights the scalability of our routing framework and
the capability to handle future hardware designs. For the 1024
qubit QFT algorithm, PAM generates the smallest circuit with
206310 CNOTs, with 8159 CNOT gate reduction compared to
the next best result from TKET.

E. Closer examination of the improvements

Since we have introduced a few features that improve upon
the original SABRE algorithm, we thought it necessary to
analyze how much each improves individually. In Figure 9
each additional feature is measured separately when compiling
the multiply circuit. The PrePAM and PostPAM represent the
cases where we only enable permutation on the input or output
sides. We start with the original SABRE algorithm and then

9

Fig. 8: Scaling of the QFT benchmark

Fig. 9: A breakdown of the improvements each individual feature adds on
top of the SABRE algorithm. These results are from compiling the 60-qubit
multiply circuit to the IBM Eagle architecture.

introduce the concept of partitioning. Just by mapping blocks
in a circuit rather than gates, we can see an improvement which
we believe is because this increases the lookahead factor of the
SABRE. Using synthesis to route inside the blocks improves
the results. When we introduce the concept of permutation-
aware-synthesis, we see the next big jump even if it is just
one-sided with PrePAM and PostPAM. Furthermore, doing
both sides in SeqPAM introduces the biggest jump. Repartition
and resynthesis (Gate absorption) further improve the result in
the 3-qubit case.

VIII. DISCUSSION

A. Relevance to trapped ions

We have mentioned that our permutation-aware algorithms
can leverage hardware connectivity by design. This effect is
visible when compiling the linearly connected tfim64 and

tfxy64 circuits to the fully connected topology. No other
compiler can effectively utilize the full-connectivity by design;
however, PAM3 produces a circuit with 2,820 CNOTs versus
the 4,032 tfim64 input. The next best is BQSKit with 4,013
CNOTs. These TFIM input circuits were previously the best-
known implementations of these real-time evolution circuits.

One way to quantify this concept is by using Super-
marq’s [39] program communication metric. The metric mea-
sures how sparsely or densely a circuit’s logical connectivity
is. A program communication value of 0 implies no connec-
tivity, while a value of 1 implies that every qubit requires
a connection with every other qubit. The 12-qubit QAOA
started with a communication score of 0.167 but ended with
a score of 1. This shift implies that we took the linearly
connected input and returned a fully connected output with
fewer CNOTs than any other compiler. Additionally, the scores
improved in all the other cases when compiling to an all-to-
all architecture and in most cases with the densely connected
Bristlecone architecture. Increasing program communincation
has particular significance for trapped-ion architectures. This
class of quantum processors allows a program to apply a gate
to any two pairs of qubits. PAM’s ability to fully leverage the
hardware connectivity is advantageous as an optimization pass
for these architectures.

B. Building PAM into a workflow

PAM3 produced circuits shorter than state-of-the-art com-
pilers in many trials tested; however, PAM3 is just a mapping
algorithm with good optimization potential. We can replace
the mapping algorithm inside Qiskit, TKET, and BQSKit and
sum up to a better compiler. We did this and compiled the
qft64 to the M2 chip and saw an additional reduction of 15%,
55%, and 13% CNOTs when compiling with Qiskit, TKET,
and BQSKit, respectively.

C. Tunability

PAM3 has built efficient circuits, but it always tends to take
a lot more time than other compilers. Algorithm scientists will
spend the time necessary to produce the best circuit possible,
mainly since circuits are often compiled only once, quantum
computer time is expensive, and longer circuits are more
likely to produce erroneous results. Our proposed algorithm
has many parameters one can adjust to improve runtime.
In particular, the number of multistarts for instantiation has
the most significant impact on runtime. For example, if we
decrease the number of multistart to one, the runtime of the
the shor26 reduces from 15547.82 seconds to 5908.40 seconds
for the Bristlecone architecture.

IX. CONCLUSION

In this work we built on top of both general unitary
synthesis and heuristic-based mapping algorithms by intro-
ducing the idea of permutation awareness with respect to
the mapping problem. This codesign was accomplished by
first lifting mapping from the native gate level to the block
level. This elevation led to generally good results on its own

10

but also introduced many new opportunities for optimization.
While we have shown that these algorithms are effective and
competitive, we have demonstrated the ability to leverage
hardware connectivity is particularly helpful for optimizing
the circuits for fully connected architectures. We have also
shown the implementability and tunability of our algorithms
with potential application in existing compiler frameworks.

ACKNOWLEDGEMENTS

This work was supported by the DOE under contract DE-
5AC02-05CH11231 and DE-AC02-06CH11357, through the
Office of Advanced Scientific Computing Research (ASCR)
Quantum Algorithms Team and Accelerated Research in
Quantum Computing programs.

REFERENCES

[1] J. M. Baker, C. Duckering, A. Hoover, and F. T. Chong, “Time-sliced
quantum circuit partitioning for modular architectures,” in Proceedings
of the 17th ACM International Conference on Computing Frontiers,
2020, pp. 98–107.

[2] L. Bassman, R. Van Beeumen, E. Younis, E. Smith, C. Iancu, and W. A.
de Jong, “Constant-depth circuits for dynamic simulations of materials
on quantum computers,” Materials Theory, vol. 6, no. 1, pp. 1–18, 2022.

[3] D. Camps, E. Kökcü, L. Bassman Oftelie, W. A. De Jong, A. F. Kemper,
and R. Van Beeumen, “An algebraic quantum circuit compression
algorithm for hamiltonian simulation,” SIAM Journal on Matrix Analysis
and Applications, vol. 43, no. 3, pp. 1084–1108, 2022.

[4] A. Cowtan, S. Dilkes, R. Duncan, A. Krajenbrink, W. Simmons,
and S. Sivarajah, “On the qubit routing problem,” arXiv preprint
arXiv:1902.08091, 2019.

[5] S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton, “A new
quantum ripple-carry addition circuit,” arXiv preprint quant-ph/0410184,
2004.

[6] M. G. Davis, E. Smith, A. Tudor, K. Sen, I. Siddiqi, and C. Iancu,
“Towards optimal topology aware quantum circuit synthesis,” in 2020
IEEE International Conference on Quantum Computing and Engineer-
ing (QCE). IEEE, 2020, pp. 223–234.

[7] Q. Developers, “Qiskit: An Open-source Framework for Quantum
Computing,” Jan. 2019. [Online]. Available: https://doi.org/10.5281/
zenodo.2562111

[8] C. Duckering, J. M. Baker, A. Litteken, and F. T. Chong, “Orchestrated
trios: compiling for efficient communication in quantum programs with
3-qubit gates,” in Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2021, pp. 375–385.

[9] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.

[10] “A Preview of Bristlecone, Google’s New Quantum Processor,”
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-
new.html, accessed: 2020-10-09.

[11] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, 1996, pp. 212–219.

[12] T. Häner, T. Hoefler, and M. Troyer, “Assertion-based optimization of
quantum programs,” arXiv preprint arXiv:1810.00375, 2018.

[13] J. Hubbard, “Electron correlations in narrow energy bands,” Proceedings
of the Royal Society of London. Series A. Mathematical and Physical
Sciences, vol. 276, no. 1365, pp. 238–257, 1963.

[14] “Ibm quantum breaks the 100-qubit processor barrier,” https://research.
ibm.com/blog/127-qubit-quantum-processor-eagle, accessed: 2022-11-
20.

[15] “Unveiling ionq forte: The first software-configurable quantum com-
puter,” https://ionq.com/posts/may-17-2022-ionq-forte, accessed: 2022-
05-30.

[16] R. Iten, R. Moyard, T. Metger, D. Sutter, and S. Woerner, “Exact
and practical pattern matching for quantum circuit optimization,” ACM
Transactions on Quantum Computing, vol. 3, no. 1, pp. 1–41, 2022.

[17] T. Itoko, R. Raymond, T. Imamichi, and A. Matsuo, “Optimization of
quantum circuit mapping using gate transformation and commutation,”
Integration, vol. 70, pp. 43–50, 2020.

[18] E. Kökcü, D. Camps, L. B. Oftelie, J. K. Freericks, W. A. de Jong,
R. Van Beeumen, and A. F. Kemper, “Algebraic compression of quantum
circuits for hamiltonian evolution,” Physical Review A, vol. 105, no. 3,
p. 032420, 2022.

[19] N. LaRacuente, K. N. Smith, P. Imany, K. L. Silverman, and F. T. Chong,
“Short-range microwave networks to scale superconducting quantum
computation,” arXiv preprint arXiv:2201.08825, 2022.

[20] G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem
for NISQ-era quantum devices,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 1001–1014.

[21] J. Liu, L. Bello, and H. Zhou, “Relaxed peephole optimization: A
novel compiler optimization for quantum circuits,” in 2021 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO).
IEEE, 2021, pp. 301–314.

[22] J. Liu, P. Li, and H. Zhou, “Not all SWAPs have the same cost: A case
for optimization-aware qubit routing,” in 2022 IEEE International Sym-
posium on High-Performance Computer Architecture (HPCA). IEEE,
2022, pp. 709–725.

[23] J. R. McClean, N. C. Rubin, K. J. Sung, I. D. Kivlichan, X. Bonet-
Monroig, Y. Cao, C. Dai, E. S. Fried, C. Gidney, B. Gimby et al.,
“Openfermion: the electronic structure package for quantum computers,”
Quantum Science and Technology, vol. 5, no. 3, p. 034014, 2020.

[24] A. Molavi, A. Xu, M. Diges, L. Pick, S. Tannu, and A. Albarghouthi,
“Qubit mapping and routing via MaxSAT,” in 2022 55th IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2022,
pp. 1078–1091.

[25] K. Mølmer and A. Sørensen, “Multiparticle entanglement of hot trapped
ions,” Phys. Rev. Lett., vol. 82, pp. 1835–1838, Mar 1999. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevLett.82.1835

[26] L. d. Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2008, pp. 337–340.

[27] G. Nannicini, L. S. Bishop, O. Günlük, and P. Jurcevic, “Optimal qubit
assignment and routing via integer programming,” ACM Transactions
on Quantum Computing, vol. 4, no. 1, pp. 1–31, 2022.

[28] S. Niu, A. Suau, G. Staffelbach, and A. Todri-Sanial, “A hardware-
aware heuristic for the qubit mapping problem in the NISQ era,” IEEE
Transactions on Quantum Engineering, vol. 1, pp. 1–14, 2020.

[29] T. Patel, E. Younis, C. Iancu, W. de Jong, and D. Tiwari, “QUEST: sys-
tematically approximating quantum circuits for higher output fidelity,” in
Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2022, pp.
514–528.

[30] “Quantinuum completes hardware upgrade; achieves 20 fully connected
qubits,” https://www.quantinuum.com/news/quantinuum-completes-
hardware-upgrade-achieves-20-fully-connected-qubits, accessed:
2022-06-30.

[31] “Rigetti systems aspen-m-2 quantum processor,” https://qcs.rigetti.com/
qpus, accessed: 2022-10-20.

[32] M. Saeedi, M. Sedighi, and M. S. Zamani, “A library-based synthesis
methodology for reversible logic,” Microelectronics Journal, vol. 41,
no. 4, pp. 185–194, 2010.

[33] D. Shin, H. Hübener, U. De Giovannini, H. Jin, A. Rubio, and N. Park,
“Phonon-driven spin-floquet magneto-valleytronics in mos2,” Nature
communications, vol. 9, no. 1, pp. 1–8, 2018.

[34] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM Review, vol. 41,
no. 2, pp. 303–332, 1999.

[35] S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington, and
R. Duncan, “t— ket¿: a retargetable compiler for NISQ devices,”
Quantum Science and Technology, vol. 6, no. 1, p. 014003, 2020.

[36] E. Smith, M. G. Davis, J. M. Larson, E. Younis, L. B. Oftelie,
W. Lavrijsen, and C. Iancu, “Leap: Scaling numerical optimization
based synthesis using an incremental approach,” ACM Transactions on
Quantum Computing, 2021.

[37] B. Tan and J. Cong, “Optimal layout synthesis for quantum comput-
ing,” in 2020 IEEE/ACM International Conference On Computer Aided
Design (ICCAD). IEEE, 2020, pp. 1–9.

[38] B. Tan and J. Cong, “Optimal qubit mapping with simultaneous gate
absorption,” arXiv preprint arXiv:2109.06445, 2021.

[39] T. Tomesh, P. Gokhale, V. Omole, G. S. Ravi, K. N. Smith, J. Viszlai, X.-
C. Wu, N. Hardavellas, M. R. Martonosi, and F. T. Chong, “SupermarQ:

11

https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.5281/zenodo.2562111
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://research.ibm.com/blog/127-qubit-quantum-processor-eagle
https://research.ibm.com/blog/127-qubit-quantum-processor-eagle
https://ionq.com/posts/may-17-2022-ionq-forte
https://link.aps.org/doi/10.1103/PhysRevLett.82.1835
https://www.quantinuum.com/news/quantinuum-completes-hardware-upgrade-achieves-20-fully-connected -qubits
https://www.quantinuum.com/news/quantinuum-completes-hardware-upgrade-achieves-20-fully-connected -qubits
https://qcs.rigetti.com/qpus
https://qcs.rigetti.com/qpus

A scalable quantum benchmark suite,” arXiv preprint arXiv:2202.11045,
2022.

[40] R. R. Tucci, “An introduction to Cartan’s KAK decomposition for QC
programmers,” arXiv preprint quant-ph/0507171, 2005.

[41] Y. S. Weinstein, M. Pravia, E. Fortunato, S. Lloyd, and D. G. Cory,
“Implementation of the quantum Fourier transform,” Physical Review
Letters, vol. 86, no. 9, p. 1889, 2001.

[42] R. Wille, D. Große, G. W. Dueck, and R. Drechsler, “Reversible
logic synthesis with output permutation,” in 2009 22nd International
Conference on VLSI Design. IEEE, 2009, pp. 189–194.

[43] X.-C. Wu, M. G. Davis, F. T. Chong, and C. Iancu, “Reoptimization
of quantum circuits via hierarchical synthesis,” in 2021 International
Conference on Rebooting Computing (ICRC), 2021, pp. 35–46.

[44] E. Younis and C. Iancu, “Quantum circuit optimization and tran-
spilation via parameterized circuit instantiation,” arXiv preprint
arXiv:2206.07885, 2022.

[45] E. Younis, C. C. Iancu, W. Lavrijsen, M. Davis, E. Smith et al.,
“Berkeley quantum synthesis toolkit (bqskit) v1,” Lawrence Berkeley
National Lab.(LBNL), Berkeley, CA (United States), Tech. Rep., 2021.

[46] E. Younis, K. Sen, K. Yelick, and C. Iancu, “Qfast: Conflating search
and numerical optimization for scalable quantum circuit synthesis,”
in 2021 IEEE International Conference on Quantum Computing and
Engineering (QCE). IEEE, 2021, pp. 232–243.

[47] C. Zhang, A. B. Hayes, L. Qiu, Y. Jin, Y. Chen, and E. Z. Zhang, “Time-
optimal qubit mapping,” in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2021, pp. 360–374.

[48] X. Zhou, S. Li, and Y. Feng, “Quantum circuit transformation based
on simulated annealing and heuristic search,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 39,
no. 12, pp. 4683–4694, 2020.

[49] P. Zhu, Z. Guan, and X. Cheng, “A dynamic look-ahead heuristic for
the qubit mapping problem of NISQ computers,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 39,
no. 12, pp. 4721–4735, 2020.

[50] A. Zulehner, A. Paler, and R. Wille, “An efficient methodology for map-
ping quantum circuits to the ibm qx architectures,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 38,
no. 7, pp. 1226–1236, 2018.

12

	I Introduction
	II Background and Motivation
	II-A Qubit mapping and routing
	II-A1 Heuristic Algorithms
	II-A2 Optimal algorithms

	II-B Synthesis for mapping

	III PAM Overview
	IV Permutation-Aware Synthesis
	IV-A Permutation-aware synthesis
	IV-B Permutation search space

	V Permutation-Aware Mapping
	V-A Circuit partitioning
	V-B Permutation-aware resynthesis
	V-C Heuristic circuit sweep
	V-D Layout and routing
	V-E Complexity analysis

	VI Experimental Setup
	VI-A Benchmarks
	VI-B Experiment platform
	VI-C Algorithm configuration

	VII Evaluation
	VII-A Block mapping
	VII-B Large circuits
	VII-C Comparison with optimal layout solver
	VII-D Scaling beyond the NISQ era
	VII-E Closer examination of the improvements

	VIII Discussion
	VIII-A Relevance to trapped ions
	VIII-B Building PAM into a workflow
	VIII-C Tunability

	IX Conclusion
	References

