
Mapping quantum circuits to modular architectures
with QUBO

Medina Bandic †∗, Luise Prielinger †∗, Jonas Nüßlein ¶, Anabel Ovide ‡, Santiago Rodrigo §, Sergi Abadal §,
Hans van Someren ∗, Gayane Vardoyan ∗, Eduard Alarcon §, Carmen G. Almudever ‡ and Sebastian Feld ∗

∗ Delft University of Technology (QuTech), The Netherlands
‡ Universitat Politècnica de Valencia, Spain
§ Universitat Politècnica de Catalunya, Spain

¶ LMU Munich, Germany

† These authors contributed equally to this work.

Abstract—Modular quantum computing architectures are a
promising alternative to monolithic QPU (Quantum Processing
Unit) designs for scaling up quantum devices. They refer to a
set of interconnected QPUs or cores consisting of tightly coupled
quantum bits that can communicate via quantum-coherent and
classical links. In multi-core architectures, it is crucial to mini-
mize the amount of communication between cores when executing
an algorithm. Therefore, mapping a quantum circuit onto a
modular architecture involves finding an optimal assignment of
logical qubits (qubits in the quantum circuit) to different cores
with the aim to minimize the number of expensive inter-core
operations while adhering to given hardware constraints. In this
paper, we propose for the first time a Quadratic Unconstrained
Binary Optimization (QUBO) technique to encode the prob-
lem and the solution for both qubit allocation and inter-core
communication costs in binary decision variables. To this end,
the quantum circuit is split into slices, and qubit assignment is
formulated as a graph partitioning problem for each circuit slice.
The costly inter-core communication is reduced by penalizing
inter-core qubit communications. The final solution is obtained
by minimizing the overall cost across all circuit slices. To
evaluate the effectiveness of our approach, we conduct a detailed
analysis using a representative set of benchmarks having a high
number of qubits on two different multi-core architectures. Our
method showed promising results and performed exceptionally
well with very dense and highly-parallelized circuits that require
on average 0.78 inter-core communications per two-qubit gate.

Index Terms—quantum circuit mapping, distributed multi-
core quantum computing architectures, Quadratic Unconstrained
Binary Optimization (QUBO), quantum compilation, full-stack
quantum computing systems

I. INTRODUCTION

A major challenge for current NISQ (Noisy Intermediate
Scale Quantum) devices is scalability. These processors suffer
from high error rates and limited qubit counts and connec-
tivity, which hinder the demonstration of the full potential of
quantum computing. Well-known quantum algorithms, such
as Shor’s algorithm for factoring large numbers and Grover’s
algorithm for searching an unsorted database, are expected
to provide significant speedups over classical algorithms, but
these benefits will likely only be realized with quantum com-
puters that have far more qubits than current systems, which

are typically limited to hundreds of qubits. Most present-
day quantum computers are implemented as single-processor
devices, i.e., a single chip that contains all qubits. These
designs are hard to scale mostly due to crosstalk [1] and
limitations related to control electronics [2]. An alternative
architectural design to scale quantum computers, similar to
classical computing, lies in multi-processor (multi-core) com-
puters, which have already been proposed by various quantum
processor manufacturers. [3–6].

These new architectures will enable distributed multi-core
quantum computing, that is, executing a large algorithm con-
sisting of more qubits than there are in a single processor
by distributing it over different cores. In this case, similarly
to the resource-constrained NISQ devices, a quantum circuit
mapping process [7] is required to ensure the efficient use
of hardware resources and in turn to maximize the algorithm
success rate. Considering that qubit interactions within a core
are negligible when compared to those in between cores in
terms of operation time and fidelity [8], quantum circuit map-
ping in the multi-core regime is mainly focused on minimizing
the amount of inter-core communications (operations between
qubits that are in different processors). This is mostly achieved
by finding a good assignment or allocation of the logical
qubits (qubits in the circuit) to the physical qubits in different
cores and by optimally performing inter-core operations when
required.

Finding an optimal solution for the mapping problem can be
computationally infeasible for a large number of qubits, even
for single-core devices [9]. To address this challenge, various
mapping algorithms have been proposed [10]. However, due to
the early-stage development of modular quantum computing
architectures, just a few quantum circuit mapping techniques
[8, 11] have been explored, and they are only tested on archi-
tectures with a small number of qubits and simple, unrealistic
all-to-all connectivity between qubits with limited benchmark
sets.

In contrast to prior approaches, we address the circuit
mapping problem for multi-processor devices using a quadratic
unconstrained binary optimization (QUBO) formulation. This

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI 10.1109/QCE57702.2023.00094

novel approach is employed for solving qubit allocation, as
well as inter-core qubit communication and routing. Among
the advantageous properties of this QUBO-based approach,
four stand out:

i. The QUBO formulation a priori encompasses the entire
solution landscape for the quantum circuit mapping prob-
lem, and therefore does not exhibit limitations stemming
from a reliance on look-ahead functions. The latter or
other local estimates are a common strategy for decision-
making regarding qubit placement and transfer [8].

ii. Unlike previous mapping solutions, the optimization pro-
cess is decoupled from the objective function, thereby
enabling the selection of a tailored optimization method,
depending on the size and scope of the problem at hand.
More precisely, the method can be flexibly adapted to a
use case by choosing a suited exact or heuristic solver
without reformulating the method, for a small or large
quantum circuit to be mapped, respectively.

iii. The aforementioned separation between the objective
function and finding its optimal solutions allows for the
latter to evolve with the development of new solving
approaches. This development includes not only even
more powerful software-based solvers [12] for QUBO
instances, but also the construction of single-purpose
quantum hardware, a so-called quantum annealer [13].

iv. The k-partitioning problem [14], which is often used
in qubit mapping for multi-core systems [8], can be
expressed as a quadratic objective function and has been
well-defined in the literature [15]. This makes it an ideal
candidate for a QUBO formulation.

The aim of our method is to find the optimal placement of
qubits for all circuit slices (Fig. 1) to a multi-core system by
representing the per-slice qubit allocation as a k-partitioning
problem and penalizing the cost of any inter-core communi-
cation simultaneously. This method is tested by mapping an
extensive set of benchmark circuits, that cover a substantial
range of parameters, including the number of qubits, circuit
depth, gate density and structure, to two different multi-core
architecture topologies. We hope that this work represents a
stepping stone for the development of new mapping techniques
for modular architectures that will be essential components of
future full-stack quantum systems [16].

The paper is organized as follows: Sec. II introduces the
quantum circuit mapping problem, discusses the challenges of
multi-core quantum computation, and presents the concept of
QUBO in general. In Sec. III our QUBO-based approach for
mapping quantum circuits to multi-core devices is described in
detail, including the method’s objectives, definition and proofs
of the objective function. Sec. IV presents the experimental
setup, the benchmark set used and the chosen hardware
platforms. Sec. V discusses the obtained results. Finally in Sec.
VI we describe possible future directions including potential
solutions to overcome current limitations and conclude the
paper.

II. BACKGROUND AND RELATED WORK

A. Mapping of quantum circuits: from single to multiple cores

Fig. 1. Graphical outline of Ex. 1. A quantum circuit is split into three
circuit slices t = {1, 2, 3} (where the circuit slices’ borders are marked
by solid vertical lines in orange) represented by the respective interaction
graphs Gt(V,Et). The partitioned circuit is mapped to a k = 2 core system
(two blue shaded rectangles below each circuit slice), each with a capacity of
c1 = c2 = 4 physical qubits. a) Logical qubits (black circles) sharing a gate
interaction are assigned to the same core (dashed rectangles). The first gate
(0, 1) of the circuit is assigned to core 1 marked in blue dashed rectangles,
while the three-qubit gate involving qubits (2,4,5) is assigned to core 2. b) If
a qubit is assigned to a different core in subsequent slices, it must undergo a
state transfer, i.e., an inter-core communication, shown by red arrows. Hence,
the solution shown requires three inter-core qubit communications.

Due to the previously mentioned limitations of current
NISQ devices, algorithms (in the form of quantum circuits)
may need to be modified in order to be executed, through
a process called quantum circuit mapping [10]. This process
involves: i) assigning the logical qubits of the quantum circuit
to the physical qubits of the quantum chip, an example of
which is provided in Fig. 1; ii) moving (routing) the logical
qubits that need to interact in form of two-qubit gates to
adjacent positions on the chip. Note that this is necessary as
physical qubits for most quantum technologies are not all-
to-all connected; and in some cases includes iii) scheduling
operations to maximally parallelize them with the aim of
lowering the execution time, which is important due to the
decoherence of qubits [16]. The quantum circuit mapping
process can vary from device to device due to differences
in technology and qubit connectivity. It is essential to per-
form this task to guarantee the effective utilization of scarce
hardware resources and to decrease the likelihood of errors
that may arise during the execution of quantum operations
by minimizing the number of additional gates and the cir-
cuit latency. However, solving the quantum circuit mapping

problem for a large number of qubits can be computationally
unfeasible, even for contemporary single-core devices. To
tackle it, diverse mapping algorithms have been proposed,
including heuristic or brute-force strategies, graph-theoretical
techniques, dynamic programming algorithms, and machine
learning-based solutions [2, 7, 10, 17–24].

These mapping techniques used in single-processor NISQ
devices are however not applicable to multi-core quantum
computing architectures, which have emerged as a promising
approach to scale-up quantum computing systems. In the
multi-core architectural approach, cores (QPUs) are connected
with classical and quantum communication links. Quantum
links allow to ‘move’ quantum states from one core to another
or to perform inter-core quantum gates [25] (e.g., remote
extended CNOT) making use of entanglement. Classical links
are required to assist core coordination and job distribution
[26]. The architectural complexity involving the communica-
tion channels and traffic make it more difficult to perform
quantum circuit mapping when compared with mapping to
single-core devices [27, 28].

This consequently led to the development of new techniques
for multi-core architectures whose main aim is to reduce the
number of expensive inter-core operations. To achieve this, an
optimal assignment of the logical qubits to the physical qubits
of different cores is crucial. The literature on this topic is
limited: some proposals focused on the quantum compilation
for distributed quantum computing [11, 29], whereas others fo-
cused only on the quantum circuit mapping part of compilation
[8], which is closer to our work. In [8], the quantum circuit
is split into smaller partitions. Interaction graphs representing
operations within a circuit slice are then mapped onto cores
by grouping the qubits with the highest amount of interactions
together, and while taking into account different look-ahead
approaches. This was one of the first proposals for mapping
quantum algorithms to multi-core devices, but it was only
tested on a very simple all-to-all architecture and with a limited
set of benchmarks.

In order to improve their initial approach in terms of circuit
and graph partitioning with an overly-restricting local look-
ahead function, we rely on previous subgraph isomorphism-
[21, 24, 30–32] and QUBO optimization-based single-core
solutions [33, 34] where now instead of mapping logical qubits
to optimal subsets of coupling graph representing the physical
qubits and their connections (Fig. 1) we map qubits to different
cores. In our approach, we use a k-partitioning-based QUBO
formulation, which is, together with the mapping procedure
explained in more detail in the following sections.

B. Quadratic unconstrained binary optimization

The introduction of Quadratic Unconstrained Binary Opti-
mization, termed QUBO or UBQP in literature, goes back to
the 1960s [35]. We will use the following definition

Definition 1 (Quadratic unconstrained binary optimization).
Quadratic Unconstrained Binary Optimization (QUBO) for-
mulation presents a NP-hard [12] mathematical problem to be

optimized. The objective function to be minimized is expressed
by the formula:

min
x

xTQx = min
x

∑
i<j

Qijxixj +
∑
i

Qiixi, (1)

where x is a vector of binary decision variables of size N ,
i.e., x = {0, 1}N and Q is a symmetric, square matrix of
N ×N real valued constants [12].

In recent years the QUBO model gained scientific attention
which led to the development of a wide range of applica-
tions in combinatorial optimization, as well as of effective
solver techniques [36–41]. Unlike many other optimization
formulations, a QUBO instance can be solved with a quan-
tum annealer, as for example the one constructed by the
hardware provider D-Wave Systems Inc.[13]. Even though
the computational solving ability of these devices is still
restricted to small problem sizes, the rapid evolution of these
systems provides hope that more realistic problems can be
addressed in the near to mid-term future [42, 43]. Therefore
QUBO instances are in practice still solved with either exact
or approximate classical procedures on classical computers.
Unlike heuristics or approximation algorithms, exact QUBO
solvers guarantee that the solution found is optimal. However,
the NP-hard nature of a QUBO problem implies that exact
solvers result in infeasible running times for large problem
sizes [44]. Therefore, approximate or heuristic methods are
often used to find near-optimal solutions within reasonable
time limits. Prominent examples are simulated annealing, tabu
search and steepest descent, but also commercial cloud-based
solvers [45]. A comprehensive literature review of QUBO
applications and solving methods can be found in [12, 44, 46].

III. SOLVING THE MAPPING PROBLEM FOR DISTRIBUTED
MULTI-CORE QUANTUM COMPUTING WITH QUBO

In this section, we will introduce our mapping approach
and explain its objectives in detail including an illustrative
example. We will then give the required proofs and see how
solutions can differ due to a simple scalar weighting factor λ,
which we use to scale the different components of the objective
function.

A. Objectives of the QUBO mapping

The quantum circuit to be mapped is split into circuit
slices, each consisting of a sequence of gates. This partition is
generated via a recursive slicing procedure, for which we will
provide more details in Sec. III-D. A circuit slice comprises
a set of quantum gates that can be performed without the
use of inter-core communication1. A circuit slice t, therefore,
presents an interaction graph Gt(V,Et), in which the logical
qubits of the circuit form the node set V and set specific qubit
interactions2 form edge set Et. Each edge e ∈ Et denotes at
least one gate operation between qubits present in circuit slice

1The definition of a circuit slice is specific to this study and may not match
the concept of a time slice in other publications.

2Only qubit interactions with n > 1 are relevant to the mapping procedure
since single-qubit gates are not core-dependent.

t. The objective function should then a) find an assignment
for each time-slice graph, i.e., all qubits involved in the same
gate should be assigned to the same core without exceeding
the core’s capacity cj the maximum number of logical qubits
a core j can hold; and b) minimize inter-core communications
between assignments, where the latter refers to the relocation
of a logical qubit state between two different cores of a
distributed quantum system. Tab. I summarizes the notation
used in this study.

TABLE I: Notation used in this study.
Symbol Description

n Number of logical qubits in a quantum circuit
k Number of cores in the multi-core system
cj Capacity, number of qubits that a core j can hold
T Total number of circuit slices

Let us consider the following example:

Example 1 (Qubit assignment and inter-core communication).
Given a six-qubit circuit with seven multi-qubit3 gates depicted
in Fig. 1 split into circuit slices t = {1, 2, 3} (details on slicing
are given in III-D). The objective is to map the former to a
two-core system, each core with a capacity of c1 = c2 = 4.
We can write the circuit interactions as follows:

t Qubits
1 (0, 1), (2, 4, 5), 3
2 (0, 4), (2, 5), (1, 3)
3 (0, 3, 5), (2, 4), 1

(2)

where each row holds the six logical qubits, and tuples hold
qubits involved in the same multi-qubit gate. In each circuit
slice, all n qubits need to be assigned to cores, such that
qubits sharing a tuple also share the same core j, and the
core‘s capacity cj is not exceeded. Possible assignments are

t Assignment
1 (0, 1), 3 7→ core1; (2, 4, 5) 7→ core2

2 (0, 4), (1, 3) 7→ core1; (2, 5) 7→ core2

3 (0, 3, 5), 1 7→ core1; (2, 4) 7→ core2

(3)

where figures in red indicate inter-core quantum state transfers
of qubits 4 and 5. Namely,

t Qubit 4 Qubit 5
1− 2 core2 → core1

2− 3 core1 → core2 core2 → core1

. (4)

The assignment portion of the problem can be cast into an
instance of the k-partitioning problem, a well-known graph
theoretical problem [14] where k denotes the number of
subsets in the partition. We accomplish this as follows:

Definition 2 (Qubit Assignment). Let Gt = (V,Et) be an
interaction graph of a circuit slice t with logical qubit set
V and edge set Et, where an edge e ∈ Et denotes at least

3The method is in general not restricted to how many qubits the gates of the
circuit involved. Note, however, that most quantum processors only support
up to two-qubit gates.

one gate operation between qubits present in circuit slice t.
For fixed integers k and cj , the problem is to find a partition
Φt = (Φt

1, . . . ,Φ
t
k), of the qubit set V into at most k subsets,

such that the subsets |Φt
j | ≤ cj , and the number of cut edges is

minimized. A cut edge is defined as an edge whose endpoints
are in different subsets Φj ,Φl, where j 6= l.

B. The objective function

In order to define the objective function, we first need to
introduce binary decision variables:

Definition 3 (Binary Solution Array x). A solution vector x
comprises T circuit slices x = [x1, ...,xT], where a solution
xt for time slice t presents a qubit assignment. The latter is
again comprised of k subsets

xt = [xt
1, ...x

t
k] (5)

where a vector xt
j holds n = |V | solution variables. A solution

variable xtij = 1 indicates that qubit i ∈ V is assigned to core
j in circuit slice t and xtij = 0 if it is not assigned to the core
j. This yields a problem size of N = T · k ·n, where T, k and
n are the numbers of circuit slices, cores and logical qubits,
respectively.

In order to impose core capacities cj during the mapping of
logical qubits, we will make use of so-called slack variables.
Using slack variables is a well-established technique for re-
placing inequalities with equations in mathematical program-
ming problems [47]. Let us consider the following example:

Example 2. Assume we are given a circuit slice t of a
three-qubit circuit and that core j has capacity cj = 2. The
inequality constraint

3∑
i=1

xtij ≤ 2 (6)

states that we can assign no more than two qubits to core j. In
order to write the inequality constraint as an equation, which
we can then use as a quadratic objective function term, we
introduce two slack variables, yti′j ∈ {0, 1}2, where yti′j = 1
signifying a physical qubit i′ being occupied by a logical qubit
and yti′j = 0 otherwise. We can then write

3∑
i=1

xtij − (yt1j + yt2j) = 0. (7)

Eqs. (6) and (7) are equivalent. One can always ensure
compliance of the solution variables to (6) by choosing suit-
able slack variables in (7). As an example, if xt1j = xt2j =
0, xt3j = 1, then one of the slack variables is set to one,
e.g., yt1j = 1, yt2j = 0. If Eq. (6) is violated, however, i.e.,
xt1j = xt2j = xt3j = 1, Eq. (7) cannot be satisfied either, since
the sum of the slack variables cannot exceed two.

With Defs. 2 and 3, we can set up the first part of the
quadratic binary objective function, namely the assignment
part. To do so, we adapt the k-partitioning instance given by
[15] for a circuit slice t, termed F (xt). The latter encodes the
optimal solution(s) xt∗ at its minimum.

min
xt

F (xt) = min
xt

S(xt) + P (xt) +R(xt) (8)

with

S(xt) :=
n∑

i=1

 k∑
j=1

xtij − 1

2

, (9)

R(xt) :=

k∑
j=1

(
n∑

i=1

xtij −
cj∑

i′=1

yti′j

)2

, (10)

P (xt) :=

k∑
j=1

xtT
j Ltx

t
j , (11)

where xt
j ∈ {0, 1}n is the binary solution vector of a circuit

slice t belonging to a core j and the superscript T in xtT

denotes the transposed version of the vector xt. A minimum
value of S ensures that a qubit i is assigned to exactly one core,
R penalizes an assignment that exceeds the core’s capacity
with cj additional binary slack variables yt

j = {0, 1}cj for
each core j, and lastly, P serves to penalize any cut edge
between cores using the graph Laplacian Lt of circuit slice t.
Given an undirected interaction graph Gt = (V,Et), the graph
Laplacian Lt is the n× n matrix

Lt = Dt −At (12)

where Dt is the degree matrix and At is the adjacency matrix
of the graph Gt [48].

Lemma 1. If xt
opt is a binary solution vector for which

F (xt
opt) = 0 then xt

opt represents an assignment of all logical
qubits with the following properties: each qubit is mapped to
exactly one core j; each adjacent pair of qubits in the graph
Gt(V,Et) is assigned to the same core; and ∀j ∈ {1, . . . , k}
no more than cj qubits are assigned to core j. We refer to
xt
opt as a valid assignment.

Proof. Since S only consists of sums comprising quadratic
terms with a minimum value of zero, S is zero, iff for each
i ∈ V exactly one variable {xtij |1 ≤ j ≤ k} has value 1. We
call this property s.
R is zero iff for each 1 ≤ j ≤ k

n∑
i=0

xtij =

cj∑
i′=0

xtij .

This can only hold, if cj or fewer variables of {xtij |i ∈ V }
have a value of 1. Otherwise

∑n
i=0 x

t
ij > cj and R exhibits a

value greater. We call this property r.
P is zero iff for each 1 ≤ j ≤ k

xT
j Lxj =

n∑
i=1

dix
2
ij −

n∑
i=1

∑
v∈Vi

xijxvj = 0.

where Vi denotes the set of adjacent vertices of vertex i. The
above can only hold if for each i,

∑
v∈Vi

xijxvj = |Vi| = di.
Otherwise, if there is less than dj adjacent vertices assigned
to core j,

∑
v∈Vi

xijxvj < |Vi| and xT
j Lxj exhibits a

penalization value greater zero. We term this property p, where
we left out the superscript t for better readability.

Together, properties s, r and p are equivalent with xt

encompassing a solution where each qubit i ∈ V is mapped
to exactly one core j, where less or equal to cj qubits are
assigned to a core j and where each adjacent pair of qubits
in the graph Gt(V,Et) is assigned to the same core. The said

properties require S,R, P to be zero implying the same for
F . Thus if F is zero the properties s, r and p hold.

The final step for the qubit assignment part is to generalize
the objective function for the qubit assignment F (xt) in Eq.
(8) to all circuit slices T , i.e., x := [x1, . . . ,xT], which we
term Ha

min
x
Ha(x) = min

x

T∑
t=1

F (xt) (13)

resulting in a solution to the qubit assignment problem for all
circuit slices.

Proof. Since Ha only consists of functions F with a minimum
value of zero, Ha is zero iff F is equal to zero for all circuit
slices t. This is equivalent to the property that x presents a
valid assignment for all circuit slices.

b) Minimizing inter-core communication: As discussed in
Ex. 1, the other task of the objective function is to minimize
potential inter-core communication between every pair of
assignments (Ft−1, Ft).

Let us consider an arbitrary qubit i in two subsequent times
slices: xt−1

ij = xtil = 1. If j 6= l, then i is assigned to core j in
circuit slice t−1 and to a different core l in circuit slice t, and
thus a state transfer is necessary between cores (j, l). Hence,
we can define the following penalization objective function for
inter-core communication:

min
x
Ht(x) = min

x

T∑
t=2

d(xt−1,xt) (14)

where

d(xt−1,xt) :=
n∑

i=1

djlx
t−1
ij xtil (15)

where djl is the hop count between cores (j, l), i.e. the number
of links a state traverses in order to travel from core j to
l. E.g., in the simplest case, each core is connected to all
other cores (all-to-all) via a link over which quantum state
teleportation can take place, then djl = 1 ∀(j, l) where i 6= j
and trivially djj = 0. In order to count the number of inter-
core communications M , we can readily use Eq. (14):

Example 3 (Count inter-core communications). Given the
assignments of Ex. 1, qubit 4 is the only qubit that requires a
state transfer between circuit slices 1-2. Using Eq. (15) yields

d(x1,x2) = d11︸︷︷︸
0

x101x
2
01 + d11︸︷︷︸

0

x111x
2
11 + d22︸︷︷︸

0

x122x
2
22

+ d11︸︷︷︸
0

x131x
2
31 + d12︸︷︷︸

1

x141x
2
42 + d22︸︷︷︸

0

x152x
2
52

= 1

as expected.

Combining objectives (13) and (14) gives the final form
of the quadratic objective function. The QUBO model for
quantum circuit mapping to multi-core quantum devices thus
reads

min
x
H(x, λ) = min

x
[Ha(x) + λ ·Ht(x)] (16)

where λ ≥ 0 is a weighting parameter to scale Ht.

Remark. The proof of Ha shows that if Ha > 0 at least one
assignment is not valid and the circuit cannot be executed.
Let us assume, for example, for a solution x1, the objective
function results in Ha = 1 and Ht = 1. For another solution
x2, the sums result in Ha = 0 and Ht = 3. In total the
objective functions for x1 and x2 yield 2 and 3, respectively.
Even though the solution x1 yields a wrong assignment, i.e.,
Ha = 1 (with one inter-core communication Ht = 1) and x2

yields a correct assignment (with 3 inter-core communications
Ht = 3), the total objective function would decide in the favor
of x1, which is undesirable.

We therefore choose λ, such that 0 ≤ λ ·Ht . 1. with

λ . (Tn)−1 (17)

hence

max
xt

Ht = max
xt

T∑
t=2

d(xt−1,xt) < T · n

in the all-to-all case, which favors correct assignments with
a higher likelihood. Further, we calculate Ha(x) in order to
verify the correctness of x, i.e., we only consider a solution
to be valid, if Ha(x) = 0.

C. Toy-model example

In order to gain an intuitive understanding of how the
weighting parameter λ impacts the mapping solution, we
show the outcome of the mapping of a simple circuit (Fig.
2) to a three-core quantum system, each core with a capacity
of two physical qubits. We assume the cores are all-to-all
connected, i.e., dij = 1 ∀ij where i 6= j and trivially djj = 0.
The overview of the given parameters is listed in Tab. II.

TABLE II: Parameter overview of toy-model example
Parameter Value

n (# qubits) 5
T (# circuit slices) 5

λ (penalization parameter) 0.001, 0.1
k (# cores) 3

cj = c ∀j (capacity) 2

We can determine the size of the solution array
N = T · k · n = 5 · 3 · 5 = 75, i.e., x = {0, 1}75. Further,
the problem requires T · c · k = 5 · 2 · 3 = 30 slack variables,

t = 1 2 3 4 5

Fig. 2. Toy-model quantum circuit consisting of nine two-qubit gates in five
circuit slices t ∈ [1, 5] labeled in orange.

co
re

1 1
3

t = 1

2

t = 2

0
2

t = 3

2

t = 4

1 3

t = 5

co
re

2

4 1
0

4
4

1
0

co
re

3

02 43 1
3 3

0 2
4

Fig. 3. λ1 = 0.001 mapping solution of the QUBO model, where the x-axis
is the timeline and the y-axis marks the different cores. Red-colored nodes
signify that these qubit states have been transferred from the previous slice.
This mapping hence resulted in 15 inter-core communications.

co
re

1 4

t = 1

2

t = 2

0
2

t = 3

2

t = 4

0

t = 5

co
re

2

2

0
1

0 3
1

0 3 1
3

co
re

3

1
3 4 3 4 1

4
2

4

Fig. 4. λ2 = 0.1 mapping solution of the QUBO model, where the x-axis
is the timeline and the y-axis marks the different cores. Red-colored nodes
signify that these qubit states have been transferred from the previous slice.
This mapping hence resulted in 10 inter-core communications.

i.e., y = {0, 1}30, yielding 105 variables in total. We can
assemble the graph Laplacians. Considering the interaction
graph G1(V,E1), L1 reads

L1 =

1 0 −1 0
0 1 0 −1 0
−1 0 1 0 0
0 −1 0 1 0
0 0 0 0 0

 .

It is a simple exercise to determine the remaining Graph
Laplacians, which is left to the reader. Given all the constants
we can assemble the QUBO problem (see Eq. 16), which
we then solve with a simulated annealing heuristic for two
different λ settings, λ1 = 0.001 and λ2 = 0.1.

Both mapping solutions are displayed in Figs. 3 and 4
are valid mappings, since all two qubits are placed such that
they can conduct their two-qubit gates (Fig. 2). The mapping
with λ1 resulted in 12 inter-core communications, while the
model using λ2 resulted in 8 inter-core communications. As
expected, but still significant, a higher λ parameter yielded
33% improvement in the number of inter-core communica-
tions. Note that the weighting of λ is restricted by the validity
of an assignment (Eq. 17); meaning, even though the optimal
(highest) λ, which still gives a valid assignment (Ha = 0), is
not a priori known, we do know that a weight set too high
can jeopardize the feasibility of the solution, which is why the
method must verify Ha = 0 to guarantee a valid assignment.

D. Time Slices of a Quantum Circuit

Solving the quantum circuit mapping problem for multi-core
systems with the introduced formulation requires a quantum
circuit to be partitioned into smaller blocks of gate sequences,
where each so-called circuit slice t is represented by an
interaction graph Gt(V,Et). The objective is to generate

graphs, where each can represent as many gates of the circuit
as possible, provided that all gates in a slice can be executed
without moving qubits between cores. To do so, we use a
recursive procedure, outlined in Alg. 1.

Given a list of gates Ψ of a quantum circuit and a list of
empty graph objects stored in the list slices, we iterate over
all gates and apply the function ADDGATE in each step. The
graph objects are initially empty and are filled over the course
of the iterations, with every iteration variable t is updated
accordingly, marking the number of non-empty graph objects
in slices, i.e., the number of graph objects, which contain at
least one edge. ADDGATE then decides to which graph in the
list the gate is assigned. Let us consider some arbitrary gate
Ψl = (i1, i2) involving qubits i1, i2 ∈ V , one of the following
four cases is about to happen:
(1) the function returns immediately if the gate is already

present in the current slice t;
(2) the gate needs to be assigned to the subsequent slice t+1

if either or both of the qubits i1, i2 are involved in the
current slice in least one other gate. In other words a
gate (i1, i2) cannot be added to a slice, if another gate
(i1, .) or (i2, .) is already present, as then the gates are
not concurrently executable;

(3) the gate is simply added to current circuit slice t, if it is
the first slice t = 0 and 1) and 2) are False, i.e., if the
gate is not present and none of the qubits has been used;

(4) the function is called again using the previous slice t−1,
if the current slice is not the first, i.e., t > 0 and 1) and
2) are False.

Algorithm 1: Slicing the quantum circuit
Input Ψ, slices . list of quantum circuit gates, list of empty graphs

Output slices . list of interaction graphs Gt

function ADDGATE(quantum circuit gate, t) . defines cases (1)-(4)
if gate in slices[t] then

return;
else if any(gatei used in slices[t]) then
t← t + 1
slices[t] ← gate
return;

else if t is 0 then
slices[t]← gate
return;

else
return ADDGATE(gate, t− 1);

end
end function

global slices . list of empty graph objects

for gate in Ψ do
. main iteration, conducts slicing

t← N.o. non-empty graphs in slices
ADDGATE(gate, t)

end

IV. EXPERIMENTAL SETUP

All tests were run on an Intel(R) Xeon(R) Silver 4210 CPU
@ 2.20GHz with 256 GB of RAM and 16 cores running
Debian GNU/Linux 11. The method is implemented with
Python 3.9.2 using Qiskit’s framework [49] to generate the
benchmark programs and to (pre-)process the circuits. We

used dwave-neal version 0.5.9 [13] simulated annealer [50]
as our dedicated solver heuristic, as it comes with the open
source package of D-Wave Systems and can compete with
commercial QUBO solvers [45]. It is worth noting that the
selected solver can be easily replaced with any other solv-
ing method for quadratic programming. Due to the memory
allocation limits of our system, we implemented a divide-and-
conquer approach to divide and solve more amenable subsets
of the problem before adding them back together. Considering
the largest 50% of our problem sizes, up to four divisions
are necessary (where one division was sufficient for 62% of
them). Divide-and-conquer allows us to solve arbitrarily large
QUBO instances, with the trade-off of adding some locality
to the search process. Since 50,000 variables span about 80
time slices on average in our benchmarks, the added locality
is still far from what is typically used for a local estimate.

A. Benchmarks

Similar to previous works [8, 26], we use as benchmarks:
• Subroutines which are building blocks of larger circuits

(e.g., Shor’s algorithm) such as the Quantum Fourier
Transform (QFT), the Multi-Target Gate, Draper’s QFT
Adder [51] and Cuccaro’s Ripple-Carry Adder [52] (both
in their fixed version) utilized as Qiskit circuit implemen-
tations4.

• Four instances of randomly generated circuits to fill
the gap in structured circuits in terms of the following
parameters: i) the number of gates and qubits; ii) circuit
depth; and iii) circuit density, that is the average number
of two-qubit gates divided by the circuit depth. In this
last category, we also include Quantum Volume [53],
which is a circuit having equal values for width and
depth used to evaluate the overall performance of a
quantum computer. Note that quantum volume circuits
are by definition challenging to map due to their high
gate density.[53].

We generated a total of 407 benchmark instances for these
nine circuits, which parameters are shown in Fig. 5. Note that
they cover qubit counts ranging from 50 to 100 qubits, circuit
depths from 13 to more than 1,100, and gate densities ranging
from 0.67 to 21.42. Our QUBO-based mapping framework
as well as benchmark instances are available in an open-
source format and can be accessed via github. We employed
Qiskit-based routines in order to ensure reproducibility by the
scientific community.

It is important to note that we observed rather large dif-
ferences between the circuit instances we used and the ones
in [8]. For instance, the QFT adder of the same number of
qubits in [8] has significantly lower circuit depth, and random
circuits of the same number of qubits and depth have a much
higher number of gates. Therefore, our benchmark instances
are similar to the benchmarks from [8] in terms of functionality
and structure, but the results are not directly comparable.

4https://qiskit.org/documentation/apidoc/circuit library.html#
module-qiskit.circuit.library, 18.04.2023

https://github.com/Luisenden/map-quantum-circuits-to-multi-core
https://qiskit.org/documentation/apidoc/circuit_library.html##module-qiskit.circuit.library
https://qiskit.org/documentation/apidoc/circuit_library.html##module-qiskit.circuit.library

102

103

104

Gate Count

102

103

Depth

100

101

Gate Density

Random XS

Random S

Random M

Random L

Quantum Volume

QFT

DraperAdder

Multi-Target

CuccaroAdder

Fig. 5. Range of relevant circuit parameters of our benchmark set. Circuits
between 50 to 100 qubits have been generated using Qiskit’s circuit library
and decomposed into CNOT gates. Random XS, S, M and L refer to the
different depth intervals 13-19, 38-54, 88-120, 529-596, respectively. Note
that all random circuits have an average circuit density of ∼ 10 two-qubit
gates relative to depth, whereas Multi-Target Gate and Cuccaro Adder show
a much lower density, 1 and 0.5 respectively.

a) All-to-all architecture

b) Grid architecture

Core node
Physical qubit (capacity)

Fig. 6. Two different multi-core architectures considered in our experiments:
a) All-to-all connected cores and b) 2D Grid core connectivity. Each node in
the two graphs represents a core and the edges correspond to communication
links between the cores. On the right, the intra-core qubit topology is shown,
consisting of 10 all-to-all connected qubits.

B. Multi-core quantum computing architecture

We consider two multi-core architecture topologies compris-
ing 10 cores, each of them consisting of 10 all-to-all connected
qubits. We assume all-to-all qubit connectivity within the
cores since intra-core communication is negligible compared
to inter-core communication. The first topology (Fig. 6a)
is similar to the one considered in [8], with all-to-all core
connectivity. The second topology (Fig. 6b) showcases more
realistic inter-core connectivity for future developments in
modular quantum computing as shown in [4]. In order to have
the same number of cores in both topologies, we choose a
2 × 5 grid layout. Our method is, however, easily adaptable
to include more complex architectures as well, which would
include intra-core qubit routing like already existing modular
architectures shown in [4]. In addition, note that our method
is not restricted to any particular size of the architecture.

C. Performance metrics

Our main performance metric is the number of inter-
core communications M between cores, also termed non-
local communications, required for executing a circuit on the
quantum multi-core system. They are calculated using Ht

as previously shown in Ex. 3. In addition, we provide the
execution time for all mapping attempts.

V. RESULTS AND DISCUSSION

A. Number of inter-core communications

In this section, we analyze and discuss the results of our
experiments, in which we tested our method with the circuits
as described above on the two different multi-core architec-
tures depicted in Fig. 6. As we just mentioned, we use as
performance metrics the number of inter-core communications
and execution time and analyze how they relate to the structure
of the circuits, in particular circuit density, and how they scale
with a larger number of qubits, gates and depth.

1) Layout all-to-all: Fig. 7 depicts the results of all bench-
marks in this study. We ran 50-100 qubit-sized circuits for each
benchmark circuit (except DraperAdder and CuccaroAdder,
which exhibit only even or odd numbers of qubits in their fixed
version). We obtained a success rate of 87%, which means a
valid assignment could be found in the first attempt for 354
out of 407 circuits.

Fig. 7.a) shows the number of inter-core communications
for all benchmark circuits. The best performers are clearly
Random XS, Random S, Random M and Multi-Target, which
stayed below 5,000 inter-core communications. This is not sur-
prising, as they cover the lower range of gate count and depth
(Fig. 5), i.e., smaller circuits require smaller numbers of inter-
core communications. On the higher end of the performance
measure lie the adders, QFT, Random L and Quantum Volume,
which yielded inter-core communications between 2,000 and
17,000. The trend of circuits with more gates and higher depth
resulting in higher inter-core qubit communications is quite
clear. However, the QFT and Quantum Volume benchmarks
displayed an opposite tendency, as the Quantum Volume
benchmark resulted in 2,800 less inter-core communication on
average compared to QFT, even though Quantum Volume has
about 2, 000 more two-qubit gates, 1.7 times higher density
and similar depth.

When we look at the inter-core qubit communications
relative to the number of two-qubit gates in a circuit 7.b), the
ranking of benchmarks changes significantly. In this picture,
the benchmark Multi-Target, though presenting one of the
smaller absolute outcomes, yields up to five inter-core commu-
nications per two-qubit gate, similar to our largest benchmark,
the CuccaroAdder. The structure of these circuits can serve
as an explanation, as both of them are hardly parallelizable:
a circuit layer comprises only at most one two-qubit gate.
This circuit structure implies circuit slices where |Et| is
small and qubit assignments between circuit slices are almost
identical. This is a disadvantage for the proposed method, as
it performs better when a significant number of changes is

required between circuit slices(which is typically the case for
dense, i.e., highly parallelized circuits): considering the 50%
of the circuits with the highest density, the relative inter-core
communications stay below 0.8 on average (less than one
communication per two-qubit gate), while the other half of
the circuits exhibit 19 inter-core communications per gate on
average. The Quantum Volume benchmark accentuates these
findings further: with 8,000 two-qubit gates it has by far the
highest gate count and highest parallelization, and it is the
second-best performer in the relative picture 7.b) with one
inter-core communication every second two-qubit gate. 7.c).
depicts the weighting factors λ (17), chosen between 0.7 and
0.006. As the term Ht increases proportionally to the circuit
size, we choose λ accordingly to achieve λHt . 1, we can
see this trend clearly. It can be observed, that on the selected
value, the number of inter-core communications increases,
which is the expected behavior. For the sake of a high success
rate and efficiency in producing the first mapping results,
we determined a conservative selection of these weighting
parameters.

2) 2D-Grid layout: In this experiment we tested the method
for qubit sizes n ∈ [50, 75, 100] on a 2 × 5 grid quantum
architecture layout as depicted in Fig. 6b). Tab. III lists
the results, showing a similar dependency on the problem
size in terms of inter-core communications of the circuit to
the all-to-all layout experiment. The number of inter-core
communications is however higher than the results of the first
experiment due to longer hop distances between cores; for
all 50-qubit circuits, for example, the number of inter-core
communications is about twice as high compared to the all-to-
all layout. With both layouts, we can detect better performance
values for random circuits. Our selected quantum circuits
were characterized in terms of standard parameters, such as
the number of qubits and depth. However, there are other
parameters, such as the percentage of two-qubit gates, and
interaction graph characteristics, which were shown to have
correlations to what can be expected from a mapping outcome
[54]. Since random and real circuits can differ significantly in
their inherent circuit structure, the latter is expected to have
an impact on the performance as well.

B. Execution Time

Since execution time depends on the problem size
N = T · n · k (i.e., the circuit size and multi-core system
size), but not on the factors in the core-distance matrix d, dis-
tinguishing between the two architecture-layout experiments
is not required. Fig. 8 shows the execution runtimes which
resulted in values between 0.1 and 138.36 minutes, where 3/4
of the circuits were successfully compiled in 30 minutes or
less. Although these execution times are high for a compiler
method, we must highlight that this method is classical by na-
ture. One can therefore justify usage of our compilation strat-
egy, as savings of even a few milliseconds are consequential in
the success probability of a quantum algorithm [55], especially
in the case of inter-core communication [56]. Furthermore, for
ease of reproducibility and comparability, there were no HPC

50 60 70 80 90 100

102

103

104

#
In

te
r-

co
re

co
m

m
u

n
ic

at
io

n
sa)

50 60 70 80 90 100

100

101

#
In

te
r-

co
re

co
m

m
.

p
er

tw
o-

qu
b

i
ga

te

b)

50 60 70 80 90 100
Qubits n

10−2

10−1

P
en

liz
at

io
n

fa
ct

or
λ

c)

Random XS

Random S

Random M

Random L

Quantum Volume

QFT

DraperAdder

Multi-Target

CuccaroAdder

Fig. 7. Results for all benchmarks run on an all-to-all multi-core layout.
a) and b) summarize the inter-core communications in absolute and relative
values to two-qubit gates, respectively, for successful mappings between 50
and 100 qubits. The tendency for higher amounts of inter-core communication
for larger circuits is clearly detectable. However, from a relative to two-qubit
gate point of view, the circuits with high density yield lower outcomes, i.e.,
random circuits and QFT. c) depicts the penalization factor λ chosen for each
run.

resources or similar performance-improving tools employed,
which are typically accessible for commercial use.

VI. CONCLUSION AND FUTURE WORK

Multi-core quantum computing architectures are one of
the most promising approaches towards large-scale quantum
computers, for which it is required to develop new quantum
circuit mapping techniques that consider the inter-core com-
munication requirements.

In this study, we proposed a novel approach for mapping
quantum circuits to multi-core quantum architectures based

TABLE III: Results for selection of benchmarks on a 2×5-grid
architecture.

Benchmark # Qubits Depth
Two-qubit
gate count λ

Number of
inter-core comms.

50 350 3750 0.1020 3036
Quantum Volume 75 150 8325 0.0450 7646

100 700 15000 0.0100 17940
50 49 49 0.2041 1261

Multi-Target 75 74 74 0.0541 5097
100 99 99 0.0101 13218

50 28 171 0.2333 182
Random S 75 26 253 0.2222 273

100 30 344 0.1000 540
50 65 412 0.1333 723

Random M 75 61 647 0.1778 923
100 65 867 0.0667 1888

50 350 2474 0.0225 7308
Random L 75 357 3730 0.0150 11789

100 344 5004 0.0112 15778
49 577 384 0.0389 7450

CuccaroAdder 75 889 592 0.0163 19827
99 1177 784 0.0046 45275
50 394 2525 0.0816 3947

QFT 75 594 5661 0.0450 7443
100 794 10050 0.0025 36800

50 484 1850 0.0610 7769
DraperAdder 76 744 4294 0.0287 16675

100 984 7450 0.0017 54384

50 60 70 80 90 100
Number of qubits n

100

101

102

E
xe

cu
ti

on
T

im
e

(m
in

)

Random XS

Random S

Random M

Random L

Quantum Volume

QFT

DraperAdder

Multi-Target

CuccaroAdder

Fig. 8. Execution times of the QUBO method, which resulted in a valid
mapping solution. The results span a range from the smallest circuit (50-
qubits Random XS) of about 12 seconds up to over 138 min for the largest
instance (100-qubits CuccaroAdder).

on QUBO. The main strengths of our method lie in the
formulation of the QUBO itself, as the structure permits i) the
decoupling of the problem definition from the solver, as well
as ii) superseding limitations of look-ahead approaches used
in previous solutions. We tested the method’s functionality
for a wide range of benchmarks on two different multi-core
architecture layouts composed of 10 cores with a capacity of
10 qubits each. Taking stock of the analysis of our benchmark
experiments, we expect a success rate of 87% to find a
solution, where the most promising results could be achieved
with circuits exhibiting high density and shallow circuits [57].
Note that highly-parallelized circuits are usually the most
challenging to run on quantum devices and are therefore often
used as benchmarks to test them, which makes them most
relevant to quantum computing of the near- to mid-term future
[58]. Furthermore, our method is easily adjustable to different

architecture layouts as these changes require only altering the
factors in the objective function. As a direct and positive
consequence, these adjustments do not affect the execution
time of the method.

Our method, on the other hand, faces some challenges with
the scalability of quantum circuits in terms of circuit depth.
In order to improve our approach, including its scalability
capabilities, in our future work we will be focused on:
• Finding a suited weighting parameter λ, which is, in

general, a non-trivial task and is a matter of ongoing
research [59]. Based on these methods we can employ an
existing technique that fits our problem instances, which
will be our first solution for improving the circuit success
rate.

• Differentiating between remote two-qubit gates (opera-
tions between two separate qubits in different cores) and
qubit state transfers. This will help to better optimize
the amount of inter-core communication, by doing the
qubit transfers only when necessary, and also make more
realistic multi-core architecture when combined with in-
vestigating other inter-core communication links [25, 27].

• Solving the scalability limitations related to circuit depth
by decreasing the number of decision variables via an
alternative problem formulation to a gate assignment
version instead of the qubit assignment. This alternative
problem approach in its prototype state is already in the
testing phase.

• Improving the runtime performance by parallelizing the
algorithm execution (the algorithm is carried out sequen-
tially at the moment) and by using the commercial QUBO
problem solvers with superior computational power. The
latter will also help to handle larger problem sizes (up to
106 variables) [45].

Besides the described areas of improvement, an interesting
direction for further experiments will be different layouts in
both multi-core architecture and intra-core couplings, which
will include topologies that are already proposed in [4]. In
addition to that we plan to perform an in-depth scalability
analysis regarding the number of cores, physical and logical
qubits as well as circuit depth, to find the actual limits of our
algorithm as in [28].

In summary, we expect that the introduced method exhibits
potential for future qubit mapping tasks. It already demon-
strates promising results for especially challenging mapping
tasks to multi-core quantum architectures and exhibits the
capability to be easily adjusted to both problem size and multi-
core layout.

ACKNOWLEDGMENTS

MB and SF would like to acknowledge funding from
Intel Corporation. EA and CGA acknowledge support from
the EU, grant HORIZON-EIC-2022-PATHFINDEROPEN-01-
101099697 (QUADRATURE). SA acknowledges support from
the EU, grant HORIZON-ERC-2021-101042080 (WINC).

REFERENCES

[1] M. Sarovar, T. Proctor, K. Rudinger, K. Young,
E. Nielsen, and R. Blume-Kohout, “Detecting crosstalk
errors in quantum information processors,” Quantum,
vol. 4, p. 321, 2020.

[2] L. Lao, H. van Someren, I. Ashraf, and C. G. Almudever,
“Timing and resource-aware mapping of quantum cir-
cuits to superconducting processors,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, 2021.

[3] C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown,
P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular
quantum-computer architecture with atomic memory and
photonic interconnects,” Physical Review A, vol. 89,
no. 2, feb 2014.

[4] N. LaRacuente, K. Smith, P. Imany, K. Silverman, and
F. Chong, “Modeling short-range microwave networks to
scale superconducting quantum computation,” Preprint at
arXiv https://arxiv. org/abs/2201.08825 v2, 2023.

[5] H. Jnane, B. Undseth, Z. Cai, S. C. Benjamin, and
B. Koczor, “Multicore quantum computing,” arXiv
preprint arXiv:2201.08861, 2022.

[6] K. N. Smith, G. S. Ravi, J. M. Baker, and F. T.
Chong, “Scaling superconducting quantum computers
with chiplet architectures,” 2022.

[7] G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping
problem for NISQ-era quantum devices,” in Proceedings
of the ASPLOS’19, 2019, pp. 1001–1014.

[8] J. M. Baker, C. Duckering, A. Hoover, and F. T. Chong,
“Time-sliced quantum circuit partitioning for modular
architectures,” in Proceedings of Computing Frontiers
’20, 2020, pp. 98–107.

[9] M. Y. Siraichi, V. F. d. Santos, C. Collange, and F. M. Q.
Pereira, “Qubit allocation,” in Proceedings of the 2018
International Symposium on Code Generation and Opti-
mization, ser. CGO 2018, 2018, p. 113–125.

[10] M. Bandic, H. Zarein, E. Alarcon, and C. G. Almudever,
“On structured design space exploration for mapping
of quantum algorithms,” in 2020 XXXV Conference on
Design of Circuits and Integrated Systems (DCIS), 2020.

[11] D. Ferrari, A. S. Cacciapuoti, M. Amoretti, and M. Cal-
effi, “Compiler design for distributed quantum comput-
ing,” arXiv preprint arXiv:2012.09680, 2020.

[12] A. P. Punnen, The Quadratic Unconstrained Binary Op-
timization Problem. Springer, 2022.

[13] “D-Wave Systems | The Practical Quantum Computing
Company.” [Online]. Available: https://www.dwavesys.
com/

[14] S. Chopra and M. R. Rao, “The partition problem,”
Mathematical programming, vol. 59, no. 1-3, pp. 87–115,
1993.

[15] H. Ushijima-Mwesigwa, C. F. Negre, and S. M.
Mniszewski, “Graph partitioning using quantum anneal-
ing on the d-wave system,” in Proceedings of the Second
International Workshop on Post Moores Era Supercom-

puting, 2017, pp. 22–29.
[16] M. Bandic, S. Feld, and C. G. Almudever, “Full-stack

quantum computing systems in the nisq era: algorithm-
driven and hardware-aware compilation techniques,” in
2022 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2022, pp. 1–6.

[17] A. Zulehner, A. Paler, and R. Wille, “An efficient
methodology for mapping quantum circuits to the IBM
QX architectures,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2018.

[18] R. Wille, O. Keszocze, M. Walter, P. Rohrs, A. Chat-
topadhyay, and R. Drechsler, “Look-ahead schemes for
nearest neighbor optimization of 1D and 2D quantum
circuits,” in Asia and South Pacific Design Automation
Conference, 2016, pp. 292–297.

[19] T. Itoko, R. Raymond, T. Imamichi, and A. Matsuo,
“Optimization of quantum circuit mapping using gate
transformation and commutation,” Integration, vol. 70,
pp. 43–50, 2020.

[20] M. G. Pozzi, S. J. Herbert, A. Sengupta, and R. D.
Mullins, “Using reinforcement learning to perform
qubit routing in quantum compilers,” arXiv preprint
arXiv:2007.15957, 2020.

[21] H. Jiang, Y. Deng, and M. Xu, “Quantum circuit transfor-
mation based on subgraph isomorphism and tabu search,”
arXiv preprint arXiv:2104.05214, 2021.

[22] S. Li, X. Zhou, and Y. Feng, “Qubit mapping based on
subgraph isomorphism and filtered depth-limited search,”
IEEE Transactions on Computers, 2020.

[23] S. S. Tannu and M. K. Qureshi, “Not all qubits are
created equal: A case for variability-aware policies for
NISQ-era quantum computers,” in International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, 2019, pp. 987–999.

[24] M. A. Steinberg, S. Feld, C. G. Almudever, M. Marthaler,
and J.-M. Reiner, “Topological-Graph Dependencies and
Scaling Properties of a Heuristic Qubit-Assignment Al-
gorithm,” IEEE Transactions on Quantum Engineering,
vol. 3, pp. 1–14, 2022, conference Name: IEEE Trans-
actions on Quantum Engineering.

[25] D. Cuomo, M. Caleffi, K. Krsulich, F. Tramonto,
G. Agliardi, E. Prati, and A. S. Cacciapuoti, “Opti-
mized compiler for distributed quantum computing,”
ACM Transactions on Quantum Computing, vol. 4, no. 2,
2023.

[26] S. Rodrigo, M. Bandic, S. Abadal, H. van Someren,
E. Alarcón, and C. G. Almudéver, “Scaling of multi-
core quantum architectures: A communications-aware
structured gap analysis,” in Proceedings of Computing
Frontiers ’21, 2021, p. 144–151.

[27] S. Rodrigo, D. Spanò, M. Bandic, S. Abadal,
H. Van Someren, A. Ovide, S. Feld, C. G. Almudéver,
and E. Alarcón, “Characterizing the spatio-temporal
qubit traffic of a quantum intranet aiming at modular
quantum computer architectures,” in Proceedings of the
9th ACM International Conference on Nanoscale Com-

https://www.dwavesys.com/
https://www.dwavesys.com/

puting and Communication, 2022, pp. 1–7.
[28] A. Ovide, S. Rodrigo, M. Bandic, H. Van Someren,

S. Feld, S. Abadal, E. Alarcon, and C. G. Almudever,
“Mapping quantum algorithms to multi-core quantum
computing architectures,” Proceedings of the ISCAS ’23,
2023.

[29] D. Cuomo, M. Caleffi, K. Krsulich, F. Tramonto,
G. Agliardi, E. Prati, and A. S. Cacciapuoti, “Opti-
mized compiler for distributed quantum computing,”
ACM Transactions on Quantum Computing, vol. 4, no. 2,
2023.

[30] S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edg-
ington, and R. Duncan, “t$|$ket\rangle : A Retar-
getable Compiler for NISQ Devices,” Quantum Science
and Technology, vol. 6, no. 1, p. 014003, Jan. 2021.

[31] M. Y. Siraichi, V. F. d. Santos, C. Collange, and F. M.
Q. a. Pereira, “Qubit allocation as a combination of
subgraph isomorphism and token swapping,” Proc. ACM
Program. Lang., vol. 3, no. OOPSLA, oct 2019.

[32] S. Li, X. Zhou, and Y. Feng, “Qubit Mapping Based
on Subgraph Isomorphism and Filtered Depth-Limited
Search,” IEEE Transactions on Computers, vol. 70,
no. 11, pp. 1777–1788, Nov. 2021.

[33] B. Dury and O. D. Matteo, “A qubo formulation for qubit
allocation,” arXiv: Quantum Physics, 2020.

[34] L. Prielinger, “A quadratic unconstrained binary opti-
mization approach for qubit mapping,” March 2023,
unpublished, Master Thesis.

[35] P. L. Hammer and S. Rudeanu, “Pseudo-boolean pro-
gramming,” Operations Research, vol. 17, no. 2, pp. 233–
261, 1969.

[36] F. Glover, G. Kochenberger, and Y. Du, “A tutorial
on formulating and using qubo models,” arXiv preprint
arXiv:1811.11538, 2018.

[37] A. Lucas, “Ising formulations of many np problems,”
Front. Phys., vol. 2, p. 5, 2014.

[38] C. S. Calude, M. J. Dinneen, and R. Hua, “QUBO
formulations for the graph isomorphism problem and
related problems,” Theoretical Computer Science, vol.
701, pp. 54–69, 2017.

[39] F. Neukart, G. Compostella, C. Seidel, D. von Dollen,
S. Yarkoni, and B. Parney, “Traffic flow optimization
using a quantum annealer,” Frontiers in ICT, vol. 4, 2017.

[40] P. Date, D. Arthur, and L. Pusey-Nazzaro, “QUBO
formulations for training machine learning models,” Sci-
entific Reports, vol. 11, no. 1, p. 10029, May 2021.

[41] J. Nüßlein, C. Roch, T. Gabor, C. Linnhoff-Popien, and
S. Feld, “Black box optimization using qubo and the
cross entropy method,” arXiv preprint arXiv:2206.12510,
2022.

[42] S. Yarkoni, E. Raponi, T. Bäck, and S. Schmitt, “Quan-
tum annealing for industry applications: introduction and
review,” Reports on Progress in Physics, vol. 85, no. 10,
p. 104001, Oct. 2022.

[43] W. van Dam, M. Mosca, and U. Vazirani, “How powerful
is adiabatic quantum computation?” in Proceedings 42nd

IEEE Symposium on Foundations of Computer Science,
2001, pp. 279–287.

[44] G. Kochenberger, J.-K. Hao, F. Glover, M. Lewis, Z. Lü,
H. Wang, and Y. Wang, “The unconstrained binary
quadratic programming problem: a survey,” Journal of
combinatorial optimization, vol. 28, pp. 58–81, 2014.

[45] H. Oshiyama and M. Ohzeki, “Benchmark of quantum-
inspired heuristic solvers for quadratic unconstrained
binary optimization,” Scientific reports, vol. 12, no. 1,
pp. 1–10, 2022.

[46] I. Dunning, S. Gupta, and J. Silberholz, “What works best
when? a systematic evaluation of heuristics for max-cut
and qubo,” INFORMS Journal on Computing, vol. 30,
no. 3, pp. 608–624, 2018.

[47] B. A. Murtagh and M. A. Saunders, “Large-scale linearly
constrained optimization,” Mathematical programming,
vol. 14, no. 1, pp. 41–72, 1978.

[48] E. W. Weisstein, “Laplacian Matrix,” publisher: Wolfram
Research, Inc.

[49] M. S. Anis et al., “Qiskit: An open-source framework
for quantum computing,” 2021.

[50] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Opti-
mization by simulated annealing,” science, vol. 220, no.
4598, pp. 671–680, 1983.

[51] T. G. Draper, “Addition on a quantum computer,” arXiv
preprint quant-ph/0008033, 2000.

[52] S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P.
Moulton, “A new quantum ripple-carry addition circuit,”
arXiv preprint quant-ph/0410184, 2004.

[53] A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and
J. M. Gambetta, “Validating quantum computers using
randomized model circuits,” Physical Review A, vol. 100,
no. 3, p. 032328, 2019.

[54] M. Bandić, C. G. Almudever, and S. Feld, “Interac-
tion graph-based profiling of quantum benchmarks for
improving quantum circuit mapping techniques,” arXiv
preprint arXiv:2212.06640, 2022.

[55] M. Y. Siraichi, V. F. d. Santos, S. Collange, and F. M. Q.
Pereira, “Qubit allocation,” in International Symposium
on Code Generation and Optimization, 2018, pp. 113–
125.

[56] P. C. Humphreys, N. Kalb, J. P. Morits, R. N. Schouten,
R. F. Vermeulen, D. J. Twitchen, M. Markham, and
R. Hanson, “Deterministic delivery of remote entangle-
ment on a quantum network,” Nature, vol. 558, no. 7709,
pp. 268–273, 2018.

[57] R. Blume-Kohout and K. C. Young, “A volumetric frame-
work for quantum computer benchmarks,” Quantum,
vol. 4, p. 362, 2020.

[58] A. Broadbent and E. Kashefi, “Parallelizing quantum
circuits,” Theoretical computer science, vol. 410, no. 26,
pp. 2489–2510, 2009.

[59] A. Verma and M. Lewis, “Penalty and partitioning tech-
niques to improve performance of qubo solvers,” Discrete
Optimization, vol. 44, p. 100594, 2022.

	I Introduction
	II Background and related work
	II-A Mapping of quantum circuits: from single to multiple cores
	II-B Quadratic unconstrained binary optimization

	III Solving the mapping problem for distributed multi-core quantum computing with QUBO
	III-A Objectives of the QUBO mapping
	III-B The objective function
	III-C Toy-model example
	III-D Time Slices of a Quantum Circuit

	IV Experimental setup
	IV-A Benchmarks
	IV-B Multi-core quantum computing architecture
	IV-C Performance metrics

	V Results and discussion
	V-A Number of inter-core communications
	V-A1 Layout all-to-all
	V-A2 2D-Grid layout

	V-B Execution Time

	VI Conclusion and future work

