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Abstract—In the near-term noisy intermediate-scale quantum
(NISQ) era, high noise will significantly reduce the fidelity of
quantum computing. What’s worse, recent works reveal that
the noise on quantum devices is not stable, that is, the noise
is dynamically changing over time. This leads to an imminent
challenging problem: At run-time, is there a way to efficiently
achieve a consistent high-fidelity quantum system on unstable
devices? To study this problem, we take quantum learning (a.k.a.,
variational quantum algorithm) as a vehicle, which has a wide
range of applications, such as combinatorial optimization and
machine learning. A straightforward approach is to optimize
a variational quantum circuit (VQC) with a parameter-shift
approach on the target quantum device before using it; however,
the optimization has an extremely high time cost, which is not
practical at run-time. To address the pressing issue, in this paper,
we proposed a novel quantum pulse-based noise adaptation
framework, namely QuPAD. In the proposed framework, first,
we identify that the CNOT gate is the fidelity bottleneck of the
conventional VQC, and we employ a more robust parameterized
multi-qubit gate (i.e., Rzx gate) to replace CNOT gate. Second,
by benchmarking Rzx gate with different parameters, we build
a fitting function for each coupling qubit pair, such that the
deviation between the theoretic output of Rzx gate and its on-
device output under a given pulse amplitude and duration can
be efficiently predicted. On top of this, an evolutionary algorithm
is devised to identify the pulse amplitude and duration of each
Rzx gate (i.e., calibration) and find the quantum circuits with
high fidelity. Experiments show that the runtime on quantum
devices of QuPAD with 8-10 qubits is less than 15 minutes,
which is up to 270× faster than the parameter-shift approach.
In addition, compared to the vanilla VQC as a baseline, QuPAD
can achieve 59.33% accuracy gain on a classification task, and
average 66.34% closer to ground state energy for molecular
simulation.

Index Terms—Quantum Learning, Quantum Noise, Unstable
Noise, Noise Adaptation, Pulse Calibration.

I. INTRODUCTION

Quantum learning has a wide range of applications with the-

oretic proof of quantum speedup over classical computing [1]–

[4], such as molecular simulation [5]–[7], combinatorial opti-

mization [8]–[11], and machine learning [12]–[16]. However,

such quantum speedup can dismiss when deploying to actual

quantum devices. Specifically, as We are currently in the Noisy

Intermediate-Scale Quantum (NISQ) era, the high level of

noise in quantum computing is a roadblock to unleashing the

power of quantum learning for real-world applications. One

promising solution is quantum error correction (QEC) [17],

Date

Accuracy

0

0.05

0.1

0.15
Error Rate

8/10/21 10/10/21 12/10/21 2/10/22 4/10/22 6/10/22 8/10/22

Optimizer

Evaluate

(a) Gate error on qubit pair (0,1) on ibm_belem (b) Influence of unstable noise on application

(c) Adapt to new noise by adjusting parameters

QEA process On-device Execution (OE)

(d) Proposed adaptation based on in-situ calibration

Date

Pluse-to-Gate Assignment

Duration!

Amp!

Duration*

Amp*

8/10/21 10/10/21 12/10/21 2/10/22 4/10/22 6/10/22 8/10/22

1.0

0.8

0.6

0.4

0.2

0

original pulse in-situ calibration

Entire

VQC

w/ Para.

(q)

Bench.

Critical

Gates in

VQC

Qiskit

Pulse

Generator
VQC

w/ new

Para.

(q¢)

P
u
ls

e 
o
f 

V
Q

C

P
u
ls

e 
o
f 

V
Q

C

QEA process OE

Figure 1. Illustration of unstable noise, its influence, and solutions: (a)
unstable noise leads to fluctuating error rates of the two-qubit gate over one
year; (b) influence of unstable noise on quantum learning-based classification;
(c) straightforward applying the existing technique to address unstable noise;
(d) the proposed lightweight adaptation using in-situ calibration.

[18] for fault-tolerant quantum computing, which however

requires thousands or even more physical qubits for one perfect

qubit; this is not practical in the near-term NISQ systems.

Another possible solution is Quantum Error Mitigation (QEM)

[19]–[21]; however, a recent work [22] reveals the scalability

issue of QEM, which has exponentially growing overhead

with circuit depth. The scalability issue is magnified in near-

term quantum devices, where the noise is not stable [23].

It, therefore, calls for a more lightweight noise suppression

technique to deal with temporal varied quantum noise, called

Quantum Error Adaptation (QEA) in this paper.
Recently, there are growing research works [23]–[28] no-

ticed that the quantum noise exhibits considerable variability

over time, which can result in the system fidelity being

inconsistent at different times. As an example, we trace the

error rate on IBM’s actual quantum processors for one entire

year and tested the performance of a quantum circuit for a

classification task. Figure 1(a) show the error rate of a pair of

qubits, which varies from 0.005 to 0.13 in a year. As a result,

the accuracy of the classification task changed from 0.82 to

0.2, as shown in Figure 1(b). In realistic applications, users are

usually blind to the application’s performance caused by noise,

since quantum vendors only provide noise data. Therefore, it is

critical to have a systematic approach to transparently ensure

a stable performance of a quantum learning system.

http://arxiv.org/abs/2309.06327v1


To battle against unstable noise, a QEA process on the

target quantum device is essentially needed before the on-

device execution (OE), as shown in Figure 1(c)-(d). For

quantum learning applications, a straightforward QEA process

is to optimize VQC with a parameter-shift approach [29],

as shown in Figure 1(c); however, the optimization has an

extremely high time cost. For one thing, the entire quantum

circuit needs to be executed. In addition, the optimization

needs to be iteratively executed between quantum and classical

computing, bringing high timing costs. As an example, the cost

of optimizing a VQC with 27 parameters on 150 samples for

one epoch is about 6.75 hours. Although there exists recent

work to reduce the frequency of optimization in the QEA

process by using a clustering method based on historic data

[26], it is prohibitive to conduct optimization at run-time when

the level of noise changes significantly. Therefore, a more

efficient solution is needed for the QEA process.
Unlike the existing work to adapt new noise from the

software level by changing the parameters in the quantum

circuit, we propose to perform quantum error adaptation from

the pulse control level. Our main hypothesis is that the unstable

noise makes the pulse needing to be calibrated again to

maintain high performance, instead of changing parameters

only. In this paper, we make the observation that pulses with

different configurations (i.e., duration) will theoretically have

the same function, but, due to control precision and interaction

with the environment, the on-device results are quite different.

More importantly, for the same qubits with varied noise levels

at different time points, the optimal configuration for the

highest gate fidelity changes. Therefore, instead of optimizing

the parameters, we propose to perform in-situ pulse calibration

and assign the pulse with the same function but with higher

fidelity to the quantum gates in VQC.
Specifically, we proposed a novel quantum pulse-based

noise adaptation framework, namely QuPAD, which is a two-

stage optimization framework. The first stage is performed

offline: We propose a duration-aware training that takes the

circuit duration into consideration when optimizing parameters

in quantum circuit ansatzes; after this stage, the parameters of

ansatzes will be fixed, which will be used in the second stage.

The second stage is performed online: we will establish a look-

up table (LUT) to record the fitting function for each coupling

qubit pair, such that the deviation between the theoretic output

of target gate and its on-device output under a given pulse

amplitude and duration can be efficiently predicted; based

on LUT, we employ Covariance Matrix Adaptation Evolution

Strategy (CMA-ES) to calibrate the pulse amplitude and dura-

tion of each Rzx gate and find the quantum circuits with high

fidelity. The calibration is performed right before executing the

quantum circuit, and we call this process “in-situ calibration”.
The main contributions of this paper are as follows.

• We reveal the optimal pulse parameters (i.e., duration and

amplitude) for the same function quantum gate changes

over time because of the unstable noise in quantum

devices. On top of this, we propose an in-situ pulse

calibration to improve the fidelity of quantum learning.
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Figure 2. Pulse schedule and pulse parameters, where ‘D0, D1’ means the
drive channel on qubit 0 and qubit 1, ‘U0’ means the control channel on qubit
0.

• We show that the continuous cross-resonance-based gate

(i.e., Rzx gate) can provide higher fidelity than the CNOT

gate, but the value of parameters in Rzx gate will affect

the duration. Correspondingly, we propose a duration-

aware optimization to tune parameters with a bi-objective

on minimizing the duration and maximizing accuracy.

• A holistic framework, namely QuPAD, is proposed to

transparently optimize the quantum system implementa-

tion based on the duration-aware optimization at offline

and the in-situ calibration at run-time.

Experiment results on molecular simulation and classifica-

tion tasks show the duration reduction by over 3× and perfor-

mance improvements on duration-aware training and QuPAD.

Specifically, QuPAD can maintain the entire performance on

MNIST-6, which has 59.33% performance improvement over

villain VQC. Furthermore, the in-situ calibration method is

15× to 270× faster than the parameter shift method, in terms

of circuit complexity.
The remainder of the paper is organized as follows. Section

II provides observations and motivations. Section III and

Section IV present the proposed framework and the detailed

implementation. Experimental results are provided in Section

V. Related work is discussed in Section VI and conclusion

remarks are given in Section VII.

II. PRELIMINARY, OBSERVATION AND MOTIVATION

A. Preliminary

Preliminary 1: Pulse-efficient circuit compilation
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of 1-qubit gate duration and 2-qubit gate duration in different circuits.

A pulse-efficient circuit compilation workflow was proposed

by IBM Quantum [30]. This work first decomposes a large

circuit to a series of SU(4), then decomposes arbitrary SU(4)

to an Rzx-based set, ’id, u1, u2, u3, Rzx’. As shown in

Figure 2(a), the approach generates the pulse of RZX(θ) by

composing a series of pulses, in which the GaussianSquare

pulse can be obtained by scaling the driven pulse of the CNOT

gate without necessitating re-calibration.
As illustrated in Figure 2(b), GaussianSquare are flat-top

pulses with amplitude A, width w, risefall rf and Gaussian

flanks exhibiting standard deviations σ. The pulse area is then

given by

α = |A|[w +
√
2πσ × erf(

rf√
2× σ

)]. (1)

Specifically, RZX(θ) can be obtained by scaling the area

of the GaussianSquare pulse according to

α(θ) =
θα∗

π/2
(2)

where α∗ denotes the original area of the GaussianSquare

pulse of the CNOT gate. It is worth noting that the amplitude

is exclusively scaled when w = 0, circumventing additional

calibration as the relation between θ and w is linear. The

detailed implementation of scaling GaussianSquare in CNOT

pulse can be found in Appendix D of the work [31].

Preliminary 2: Different pulses for the same function
The rotation angle θ of the Rzx gate is dependent on the area

under the pulses, as mentioned in [31]. In order to maintain the

function of RZX(θ), we can alter the durations and amplitudes

of the GaussianSquare pulse while keeping the area fixed,

which is shown in Figure 2(c). We define the ratio of the

new duration to the original duration as duration stretch ratio,

(dsr), which is

dsr =
durationnew

durationoriginal
(3)

and the detailed method to scale the GaussianSquare pulse is

outlined in Section IV.

B. Observation and Motivation

Observation 1. Two-qubit gates dominate the overall du-

ration of VQCs while compilers with different basis gates

can significantly affect the duration of a two-qubit gate
Figure 3(a) is a typically used ansatz, which is composed

of single-qubit rotation gates and two-qubit control-rotation

TABLE I
THE DURATION AND ACCURACY COMPARISON OF CNOT-BASED

COMPILER AND Rzx-BASED COMPILER ON IBM BACKEND

‘IBMQ MONTREAL’, AND THE AVERAGE T1 = 112.36us AND

T2 = 91.21us.

Benchmark1
# of

qubits

Acc. on

simulator

CNOT-based compiler Rzx-based compiler

duration(us) Accuracy duration(us) Accuracy

MNIST-6 8 73.50% 57.62 52.50% 22.13 67.50%

MNIST-8 10 70.00% 60.67 14.00% 22.54 59.00%

1 ’MNIST-n’ represents an n-class classification task.

gates. In order to implement the circuit to actual quantum

devices, it will be decomposed to basis gates. The standard

IBM quantum computer supports a set of basis gates {id,

u1, u2, u3, cx} [32], called a CNOT-based compiler. On

the other hand, the CX (or CNOT) gate can be replaced by

the parameterized cross-resonance-based gate (e.g., Rzx gate)

to form a basis of {id, u1, u2, u3, Rzx}, called Rzx-based

compiler.
Figures 3(b)-(c) make a comparison between these two

kinds of compilations. It is clear that the Rzx-based compi-

lation will significantly reduce the system duration. For the

circuit in Figure 3(a), the cycle time is reduced from 13,513

using CNOT to 3,830 using Rzx. More overall, as shown in

Figures 3(d), no matter which compilation to be used, the two-

qubit gates will always dominate the overall duration.
Motivation 1. Employing the continuous cross-resonance-

based gate (e.g., Rzx) as the basic gate to improve fidelity.
Based on the above observation, it motivates us to apply the

Rzx gate in compiling and designing the variational quantum

circuit. We verify the effectiveness of using Rzx compiler

by the widely used quantum learning task on MNIST sub-

datasets. Table I reports the results on IBM ‘ibmq montreal’

quantum backend. It clearly shows that Rzx-based compiler

can reduce the duration by over 2.5×, which leads to a much

higher accuracy on the actual quantum device, compared with

the CNOT-based compiler. However, as we can observe from

the results, even using Rzx compiler, the accuracy is still far

lower than the results on perfect simulation, e.g., 6% and

11% accuracy drop for MNIST-6 and MNIST-8, respectively.

Therefore, we have the statement that only replace CNOT-

based compiler by Rzx-based compiler is not enough, and

more optimization is needed.
Observation 2. The value of the parameter in a cross-

resonance-based gate will lead to different gate duration.
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Figure 5. Accuracy and fidelity comparison of different approach on perfect
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On a pair of qubits, the CNOT gate has the same duration

at the pulse level; however, different gate parameters in cross-

resonance-based gates may cause the corresponding pulse

to have a different duration. We test Rzx(θ) on two IBM

Quantum backends, i.e., ibmq belem and ibmq montreal.
Figure 4 reports the results, where x-axis represents different

value of θ ranging from −π to π, and y-axis stands for the

corresponding duration. We observe common patterns of the

duration variation on these two backends: Duration curves

exhibit symmetry and the duration reaches its maximum when

θ is around −π
2 ,

π
2 , and minimum around −π, 0, π.

To investigate the root cause, we found that the duration

curves exhibit symmetry with respect to θ = 0 because for a

pair of θ and −θ, the pulse direction (upward or downward)

will be inverted while the shape will not be changed. Then,

for θ ∈ (0, π), the duration would be theoretically directly

proportional to the magnitude of θ; however, with the objective

of minimizing the duration, the compiler can decompose the

gate. For θ ∈ [π2 , π], Rzx(θ) can be implemented by using

Rzx(β) where β ∈ (0, π
2 ) and single qubits gates. Therefore,

we can observe the inflection point at π
2 . Due to symmetry,

another inflection point is at −π
2 .

Motivation 2. Developing duration-aware circuit optimiza-

tion to reduce the overall duration and improve fidelity.
Based on the above observation, duration-agnostic circuit

optimization may prolong circuit duration, and in turn, reduce

fidelity. Moreover, the crosstalk among qubits can cause noise

[33], and it is also meant to reduce the crosstalk noise. In the

duration-aware optimization, even the overall circuit duration

may not be reduced due to the schedule, optimizing one

gate can reduce the time period for crosstalk. For example,

if gate Gi and gate Gj on different qubits are scheduled to

Value

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θπ/8 2π/8 3π/8 4π/8 5π/8 6π/8 7π/8

dsr

Theoretical Value Measured Value

0.6 1.0 1.5 0.6 1.0 1.50.6 1.0 1.50.6 1.0 1.50.6 1.0 1.50.6 1.0 1.50.6 1.0 1.5

Figure 6. Measured values of |00〉 with θ and duration changes on qubit pair
(0,1)

be executed at the same time, and duration d(Gi) < d(Gj).
The reduction in the duration of Gi cannot reduce the overall

duration, but it is still useful since it can reduce crosstalk noise.
Figure 5 further show that the duration-aware optimization

can indeed improve fidelity on two MNIST sub-datasets (e.g.,

MINST-6 with 6 classes). In these figures, the x-axis is the

overall circuit duration while the y-axis is the classification

accuracy. The circle and triangle represent accuracy on an

actual quantum computer and perfect quantum simulator.

Therefore, for each approach, the distance between circle and

the triangle reflects the fidelity, i.e., the closer of these points

the higher fidelity. It is clear that using parameterized cross-

resonance-based gates can reduce the duration and improve

fidelity. What’s more, our proposed duration-aware approach,

QuTrainer in Section III, can further reduce the duration and

improve fidelity.
Observation 3. On an actual quantum device, changing the

Duration Stretch Ratios (dsrs) of a parameterized cross-

resonance-based gate will affect fidelity. More importantly,

the optimal dsr for maximum fidelity is varied for different

noises.
In addition to duration, we observe another factor that

affects gate fidelity. As discussed in Preliminary 2, the

function of Rzx gate is determined by the area under the

Gaussian-Square pulse, and we defined Duration Stretch Ra-

tios (dsrs) to guarantee the area by changing pulse duration

and amplitude. We tested different dsrs for a set of Rzx(θ)
on the actual quantum devices and observe that different dsrs

will significantly influence fidelity when θ approaching to π
2 .

Due to the symmetry property, we test Rzx(θ) with different

dsrs for θ ∈ [0, π]. Figure 6 reports the results, where we

recorded the measured value of |00〉 when a single Rzx(θ)
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gate is placed on qubit pair (0, 1) as dsrs were varied from

0.6 to 1.5. In the figure, we also plot the theoretical value as

a reference, which can help us to measure the gate fidelity,

that is, the closer the value is to the reference value the higher

fidelity that the gate has. We observed that when θ changes,

the points of intersection are also different. This indicates that

the optimal dsr (in terms of fidelity) is different by different

parameter values θ. In addition, as θ approaches π/2, the

variation of output value is enlarged, indicating dsr has a larger

influence on fidelity.
Now, a more interesting question is whether the optimal

dsr will be changed along with noise. Since we know that

the quantum noise is not stable (see Figure 1), if the above

hypothesis is true, we cannot use the same dsr. We explore the

dsr and fidelity relationship under two scenarios where noise

level will change: (1) temporal variation, we test on the same

pair of qubits but different dates; (2) spatial variation, we test

on different pairs of qubits on the same day. Results in these

two scenarios are reported in Figure 7(a)-(b), where we can

clearly see that the optimal dsr changes.
Motivation 3. Integrating in-situ calibration in executing

VQC for consistent high fidelity.

The above observation motivates us that the performance of

an application may be affected by dsr. More importantly, we

need to identify the best dsr at different days, since the noise

changed. We apply different scales of hardware-efficient VQC

ansatz with random parameters and we change the dsr of all

Rzx gates to plot the relationship between fidelity and dsr.

Figure 8 report the results and verify the above statement.

Specifically, on April 14 and 20, the optimal dsrs for the

highest fidelity are different (marked as stars).
The consideration of unstable quantum noise and can affect

the optimal dsrs, inspires us to carry out an in-situ calibration

at run-time, which will determine the optimal dsr and in turn,

determine the pulse duration and amplitude.

III. METHODS

In this section, we introduce our proposed framework, des-

ignated as QuPAD, designed to achieve high-fidelity quantum

learning. Before exploring the details, we first present a formal

problem formulation:
Given an Rzx-based quantum learning circuit, C(θ), where

all entanglement gates are Rzx gates and θ denotes the

trainable parameters, and a quantum processor Q at sampled

time t, the objective is to identify the optimal parameter set

θ for circuit C. Additionally, we seek to adjust the pulse of

each Rzx gate, characterized by duration d and amplitude A,

with the goal of producing an output pulse schedule (PS) that

maximizes the accuracy of PS on the quantum processor Q.

A. Framework overview

Figure 9 presents an overview of our proposed two-step

framework, which comprises three primary components: (1) a

duration-aware training algorithm, (2) a look-up table (LUT)

constructor, and (3) an application-aware pulse adaptation

algorithm. The LUT constructor divides the QuPAD into two

stages, called QuTrainer and QuCalibrator.
The goal of duration-aware training is to attain a well-

trained model characterized by high accuracy and short du-

ration. Initially, we employ Rzx gates as the two-qubit gates

to construct a hardware-efficient ansatz. Subsequently, the

parameters are updated based on the task performance. The

output of duration-aware training is the well-trained model

C(θ).
The LUT constructor is crucial for in-situ calibration. Given

a quantum processor Q at time t, we determine the fitting

function for each coupling qubit pair to fit the value of Rzx(θ)
to construct the LUT T .

In the application-aware pulse adaptation algorithm, we use

the CMA-ES-based algorithm to search the optimal duration

stretch ratio dsr and amplitude A while maintaining a fixed

area for every GaussianSquare pulse in Rzx(θ) pulse series.

This adjustment aims to minimize the total circuit duration dc
and the sum of the maximum gate error rates on each qubit,

ultimately maximizing the fidelity of circuit C(θ) on quantum

processor P and time t.

B. Duration-aware optimization

To get a short-duration QNN with high fidelity, We can

heuristically make the duration of each Rzx(θ) short. As
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Figure 9. Overview of the proposed QuPAD framework: (left) Duration-aware QuTrainer; (right) QuCalibrator with novel in-situ calibration

discussed in Motivation 2, the duration of Rzx(θ) with θ near

’−π/2, π/2’ is longer than that with θ near ’−π, 0, π’, which

is to say, we should make the model converge to a parameter

range near −π, 0, π during the training process.
To achieve the tradeoff of QNN performance and short pulse

duration, we rewrite the loss function as a combination of the

original loss function and the regularization term as follows,

which encourages some of the weights near −π, 0, π.

reguLoss(θ) =
1

n

n
∑

i=0,gi∈G

abs(θi − round(
θi

π
)× π)

(4)

newloss(θ) = loss(θ) + β × reguLoss(θ) (5)

where loss(θ) is the original loss function for the tasks, G is

the set of all Rzx gates in the given circuit, n is the number

of Rzx gates, round() is a function that takes a number as

input and returns the closest integer value to that number,

and β is a hyperparameter that needs to be tuned during the

training process, A larger value of β will result in a stronger

regularization effect, while a smaller value will lead to a lower

effect on regularization. Usually, β is less than 0.01. Note

that Equation 4 is a soft regularization, different from sparse

training, the target of which is not to prune the weight, but to

make it close to −π, 0, π.
The forward propagation process can be executed on either

a classical computer or an actual quantum device. If completed

on a classical computer, gradient descent methods such as

ADAM or SGD can be utilized for parameter updates. In

contrast, if executed on a quantum computer, parameter shift

methods [29] can be employed. Throughout the parameter

updating process, we heuristically converge the parameters

towards fixed points with short pulse durations. Note that we

can train the model using the original optimization methods

with the new loss function, which will not add additional

training costs.

C. LUT construction

We have shown in Observation 3 that the gate error rate

ranges from θ and duration stretch ratio (dsr). (The detailed

duration stretch method is shown in the next Section) In this

section, we will introduce how to build up the look-up table

of Rzx(θ) error rates.
If we initial a 2-qubit circuit as |00〉 and apply Rzx(θ) on

(q1, q0), the unitary matrix will be

RZX(θ)q1, q0 = exp

(

−i θ
2
Z ⊗X

)

(6)

and the theoretical measured state vector should be

Rzx(θ)|00〉 = cos(
θ

2
)|00〉 − isin(

θ

2
)|01〉 (7)

So the theoretical measured value of |00〉 is cos2( θ2 ) =
1+cos(θ)

2 . We assume the gate errors mainly originate from

control errors, and the measured value of |00〉 with errors can

be rewritten as

y(θ, dsr) =
cos(θ + ǫ(θ, dsr)) + 1

2
(8)

Considering that ǫ(θ, dsr) is close to 0 compared with 1,

we can approximate cos(ǫ(θ, dsr)) = 1 and approximate the

above equation as follows,

y(θ, dsr) ≈ cos(θ)− sin(θ)sin(ǫ(θ, dsr)) + 1

2
(9)

So the fitted function can be rewritten as

y(θ, dsr) =
cos(θ)− k1sin(θ)sin(ǫ(θ, dsr)) + 1

2
(10)

and the error function is

ǫ(θ, dsr) = (k2 × (dsr − 1) + b)× sign(θ − π

2
) (11)



where dsr ranges from 0.6 to 1.5, sign() is a function

that returns the sign of a real number, and k1, k2, b are the

parameters that need to be fitted.
For each coupling qubit pair, we can use n1 different θ

and n2 different dsr to fit the series of curves to describe the

measured value of Rzx(θ), where n1, n2 are constants. The

fitting accuracy increases as n1 and n2 increase.
Complexity Analysis Based on the aforementioned analy-

sis, for a given circuit C and a specified quantum processor P
at sampled time t, the time complexity of LUT construction

is O(min(Ec, Eq)×S×n1×n2), where Ec and Ep represent

the number of coupling qubit pairs in circuit C and quantum

processor P , respectively, and S denotes the number of shots

for the same circuit. In contrast, the time complexity of the

parameter shift is O(N1 × N2 × S × L × e), where N1

corresponds to the number of tuning parameters in circuit C,

N2 signifies the number of circuit samples, L represents the

circuit length, and e is the number of epochs required for the

model to converge. It is important to note that n1, n2, and

e,N2 are constants unrelated to the circuit. For a circuit, we

can deduce that min(Ec, Eq)≪ N1 × L. Consequently, LUT

construction proves to be more efficient than parameter shift

on actual quantum processors.

D. Application-aware pulse adaptation (aka. calibration)

The final step involves adjusting the pulse of Rzx(θ) in

the model according to the LUT, with the aim of enhancing

the fidelity of the entire model and ensuring that the model’s

performance does not significantly deteriorate when executed

on a actual quantum processor. Our observations indicate that

the fidelity for different circuits is related to both the circuit

duration and the gate error rate.
Let G represent all Rzx gates in the given circuit, CM

denote the set of coupling qubit pairs (i, j) in the given

quantum processor, and i, j be the qubit indices. We propose

the following objective function for this component:

min
dsr

D(θ,dsr) + α×
∑

∀i,j∈CM

max
k∈Gij

(Er(gk)) (12)

Here, D(θ,dsr) signifies the total duration of the given

circuit, Gij is the subset of all Rzx gates on the coupling

qubit pair (i,j), Er(gk) represents the gate error rate of gate

gk, and α is a hyperparameter that determines the weight of

the total duration and the sum of maximum gate error on every

qubit pair.
In this work, we employ the CMA-ES algorithm to update

parameters. The CMA-ES algorithm is a gradient-free heuristic

method, and its detailed implementation will be presented

in the next section. Ultimately, we obtain the adapted pulse

schedule, which will be executed on actual quantum proces-

sors.

IV. IMPLEMENTATION

In this section, we will introduce how the GaussianSquare

Pulse is scaled and how to leverage CMA-ES to update

parameters in detail.

Algorithm 1: CMA-ES based dsr search

Data: look-up table LUT , circuit C, initial stretch

ratio for all coupling qubit pairs dsr0, loss

function f (Equation 12), the maximum number

of generations G, the size of population K
Result: Optimal duration stretch ratio dsr

′

1 dsr← dsr0 // Initialization optimizing variable

2 Initialize(mu, σ,M ) // Initialize state variables, mean

mu, variance σ and covariance matrix M
3 for g ← 1 to G do

4 for k ← 1 to K do

5 dsrk = sampling dsr (dsr,mu, σ,M )

6 lossgk ← Evaluate f(LUT,C,dsrk)
7 end

8 Update (dsr) // dsr with minimum loss.

9 Update(mu, σ,M ) // Update state variables

10 end

A. Scaling the GaussianSquare Pulse

In this paper, we divide the scaling of GaussianSquare

Pulse into two steps: First, we obtain Rzx(θ) by scaling the

width so that the area α(θ) = θ
π/2αcx, where αcx is the

area of GaussianSquare Pulse of the CNOT Gate [31]. We

implement Qiskit’s functions EchoRZXWeylDecomposition()

and RZXCalibrationBuilderNoEcho() to achieve them.
The second step involves adapting the amplitude and dura-

tion so that the area of GaussianSquare Pulse can be fixed,

in order to achieve Rzx(θ). Recall that the GaussianSquare

Pulse function in Qiskit is defined as follows:

f
′(x) =















exp
(

− 1
2

(x− rf )2

σ2

)

x < rf

1 rf ≤ x < rf +w

exp
(

− 1
2

(x−(rf+w))2

σ2

)

rf + w ≤ x

(13)

f(x) = A×
f ′(x)− f ′(−1)

1− f ′(−1)
= A× g(x), 0 ≤ x < durat

(14)

where w is width, rf is risefall and σ defines the shape of

gaussian function. We define f0(x) as the original function

and f1(x) as the scaled function. To keep the area fixed, let

∫ durat0

0

f0(x)dx =

∫ durat1

0

f1(x)dx (15)

We define dsr as the stretch ratio of duration. Considering

the AWGs can only generate pulses with a duration that is a

multiple of m = 16 dt, we will get

durat1 = [
durat0 × dsr

m
]×m dt (16)

and the round dsr becomes rdsr = durat1
durat0

So the new width,



TABLE II
THE COMPARISON OF QUPAD WITH A BASELINE ON LIH AND MNIST-6.

Tasks Reference VQE/VQC QuTrainer QuPad

Ground

Energy

Duration

(us)
Energy

Energy

Gap

Duration

(us)

Dur.

Red.
Energy

Energy

Gap

Improve

vs.VQE

Duration

(us)

Dur.

Red.
Energy

Energy

Gap

Improve

vs.VQE

LiH-0.4 -6.52 7.53 -6.32 -0.2 2.57 2.93× -6.4 -0.12 40.00% 2.49 3.02× -6.42 -0.1 50.00%

LiH-1.2 -7.84 7.53 -7.52 -0.32 3.03 2.49× -7.67 -0.17 46.88% 2.88 2.62× -7.7 -0.14 56.25%

LiH-2.0 -7.83 7.53 -7.5 -0.33 2.76 2.73× -7.71 -0.12 63.64% 2.83 2.66× -7.74 -0.09 72.73%

Avg. - - - -0.29 - - - -0.12 57.56% - - - -0.10 66.34%

Acc.

Simulation

Duration

(us)
Acc.

Acc.

Drop

Duration

(us)

Dur.

Red.
Acc.

Acc.

Drop

Improve

vs.VQC

Duration

(us)

Dur.

Red.
Acc.

Acc.

Drop

Improve

vs.VQC

MNIST-6 76% 52.1 17.33% 58.67% 17.38 3× 58.67% 17.33% 41.34% 15.63 3.33× 76.66% 0.66% 59.33%

rise-fall, σ and amplitude of g1(x) will become

w1 = rdsr × w0,

rf1 = rdsr × rf0,

σ1 = rdsr × σ0,

A1 = A0 ×
∫ durat0
0

g0(x)dx
∫ durat1
0 g1(x)dx

(17)

B. CMA-ES based dsr search

Covariance Matrix Adaptation Evolution Strategy (CMA-

ES) [34] is a derivative-free optimization algorithm, which has

also been used for searching hyperparameters of deep neural

networks [35]. The objective function is shown in Equation

12, where D(θ,dsr) is obtained from the pulse generator in

Qiskit. In this component, θ is fixed, and our goal is to find the

approximate optimal dsr to minimize the objective function.
To improve efficiency, we reduce the search space by setting

the dsr of Rzx gates on the same coupling qubit pair to the

same value. Let dsrij represent the dsr of the Rzx gate on

the coupling qubit pair (i, j). Consequently, the search space

becomes dsr = [dsrij ∀i, j ∈ S], where S is an application-

related subset of the set of all possible coupling qubit pairs

CM.
The pseudocode for this approach is shown in Algorithm 1.

Ultimately, we obtain the optimized dsr
′.

V. EXPERIMENTAL EVALUATION

A. Experiments setup

Benchmark. In this work, we evaluate our proposed frame-

work on two different tasks: (1) Machine learning classifica-

tion task using VQC ansatzes on the sub-dataset of MNIST, for

example, MNIST-6 indicating the classification with 6 classes

from MNIST which uses 8 qubits. We use 150 samples from

the dataset to perform the test on IBM quantum compupters.

(2) Simulating Molecules using VQE ansatzes, where we

evaluate the ground state energy for LiH at various interatomic

distances. The ansatz contains two layers, and each layer has

8 Rx(θ) and 8 Rzx(θ) gates.
Environment Setting. In QuTrainer, we use the ‘Adam’

optimizer with 8 epochs for the ML task and ‘COBYLA’

with 300 iterations for Molecules Simulation. In QuCalibrator,
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Figure 10. Evaluation of fidelity. (a) The energy gap for VQE (b) The
accuracy gap between simulation and actual quantum devices

we employ two 27-qubit IBM Quantum backends, includ-

ing ‘ibmq kolkata’ and ‘ibmq montreal’ (note: the results

on ‘ibmq montreal’ are obtained before its retirement). All

simulation experiments are conducted on an Intel Core i5-

11300H (3.10GHz, 16GB RAM) computer. The machine

learning classification task is implemented on Torchquantum

[36], while other tasks are based on IBM Qiskit software.
Baseline. We compare the proposed QuPAD framework

with Vallina VQC, which is trained using the duration-agnostic

optimizer, which is set as the baseline. For QuPAD, we obtain

the results from the entire framework, and we also involve the

results of using QuTrainer only. All models are first trained in

a noise-free environment.

B. Main Results

Table II reports the experimental results on simulating LiH

using VQE and performing classifications on MNIST-6 using

VQC. Under the column “Reference”, the ‘ground energy’

for VQE is the solution obtained by SciPy minimizer; while

‘Simulation Acc.’ for VQC is the results obtained by noise-free

simulation. The “Energy Gap” and “Acc. Drop” of QuTrainer

and QuPAD are the difference between the reference value

and the obtained value from actual noisy quantum devices.

Column ‘vs. Baseline’ shows the improvement over baseline.
There are two observations. First, the performance of

QuTrainer is always better than VQC. The improvement is

mainly from the replacement of CNOT and the duration-

aware training, which significantly reduce the duration and

improve the fidelity of overall circuits. Specifically, we can



TABLE III
ACCURACY COMPARISON ON IBMQ KOLKATA

Task method duration(us)
reduction

(vs. VQC)

Acc./Energy

(ibmq kolkata)

improve

(vs. VQC)

VQE

LiH

dist =0.8

Ref.2=-7.61

VQC 7.53 1.00× -7.10 -

Rzx Comp. 3.15 2.39 × -7.40 60.00%

QuTrainer 2.79 2.70 × -7.42 62.65%

QuPAD 2.48 3.04 × -7.52 81.71%

Classification

MNIST-6

Ref.1=76%

VQC 52.10 1.00× 17.33% -

Rzx Comp. 19.48 2.67× 53.33% 36.00%

QuTrainer 17.38 3.00× 58.67% 41.34%

QuPAD 15.63 3.33× 76.66% 59.33%
1 The reference accuracy is obtained on the noise-free simulator with the objective of

maximizing accuracy.
2 The reference energy is obtained on the noise-free simulator by minimum eigen solver.

observe 2.49× to 3.00× reduction in circuit length, as a result,

QuTrainer can achieve solutions that are 57.56% on average

closer to the ground state energy on average and 41.34%

improvement on classification accuracy. Then, with the in-

situ calibration, the proposed QuPAD can further improve the

system fidelity. Specifically, for MNIST-6, it further achieves

17.99% accuracy gain. Based on the above observations, we

can verify the effectiveness of QuPAD on different tasks.

C. Development Fidelity on Actual Quantum Devices

Figure 10 further plots the reference results and results

obtained by QuPAD to investigate the fidelity. In Figure 10, the

x-axis is for different distances and the y-axis is for energy. We

found that the curve of QuPAD is closer to the reference curve

in Figure 10(a). In addition, we compare the VQC on MNIST

dataset on different quantum backends in Figure 10(b). The x-

axis is the simulation accuracy and the y-axis is the accuracy

of the actual quantum device (i.e., on-device accuracy). Ideally,

if the point is on the dashed line, then we have the on-device

equal to simulation accuracy, indicating a high fidelity for the

quantum learning task. From this figure, we can see that for

villian VQC, although the simulation accuracy can approach

0.8, its on-device accuracy is less than 0.2. On the other

hand, QuPAD can provide solutions with much higher fidelity.

These results show that QuPAD can maintain fidelity while

the circuits are deployed to noisy actual quantum devices for

different tasks.

D. Breakdown Evaluation

Now, we want to explore how the overall improvement

obtained by QuPAD, and we record the results during the op-

timization steps for different methods VQE with distance =
0.8 and VQC on MNIST-6. Table III reports the results.

The first step is to change the CNOT-based compiler to

an Rzx-based compiler only and perform duration agnostic

optimization. From Table III, we observe that the Rzx-based

compilation can reduce the pulse duration by more than 2.5×
compared to the CNOT-based compilation, while also enhanc-

ing the performance. The offline duration-aware QuTrainer can

further obtain 2.65% closer to ground state energy and 5.34%

accuracy gain on the actual quantum devices. The results

TABLE IV
ESTIMATED TIME COST FOR DIFFERENT BENCHMARKS EXECUTING ON

IBM QUANTUM PROCESSOR.

benchmark VQE-LiH MNIST-4 MNIST-6 MNIST-8

# of Coupling pairs 7 3 7 9

# of 2-qubit Gates 14 27 216 243

Time cost(QuPAD) 13.5m 4.5m 13.5m 13.5m

Time cost(Param shift [29]) 3.5h 6.75h 54h 60.75h

Speedup 15.56× 90× 240× 270×

verify that the reduction of crosstalk duration can improve

fidelity. Finally, by integrating the in-situ calibration, QuPAD

can further improve the results by 19.09% on energy and

17.99% on accuracy. These results reflect that jointly applying

the duration-aware optimization and in-situ calibration can

obtain high fidelity for quantum applications on noisy quantum

devices.

E. Efficiency Evaluation

We compare the time cost of executing different scale

benchmarks on quantum processors during both the LUT

construction process and the parameter shift process, as shown

in Table IV. Note that for QuPAD we record the elapsed time

for in-situ calibration time for comparison, and for parameter

shift, we test the elapsed time to shift one qubits gate, and

we calculate the overall time by-product to the total number

of gates. we observe that the time cost of LUT construction

is significantly shorter than that of parameter shift on actual

quantum devices. For all datasets, QuPAD can complete the

quantum noise adaptation process within 14 minutes, while

parameter shift can use over 50 hours for MNIST-6 and

MNIST-8 with over 200 two-qubit gates. Even for the small-

scale circuits, that is VQE and MNIST-4 with 14 and 27 two-

qubit gates, parameter shift needs 3.5 hours and 6.75 hours,

respectively. Moreover, the speedup becomes more remarkable

as the number of shifting parameters increases. Additionally, if

we update different benchmarks simultaneously, we only need

to establish the LUT once, which further reduces the runtime

on the actual quantum processor.

F. Ablation Study: QuCalibrator

Evaluation of LUT construction. To verify whether Equa-

tion 9 can accurately describe the gate error as θ and dsr
vary, we compared the measured value of Rzx(θ) on the

state of |00〉 on the qubit pair (0,1) and the fitting function

in Equation 9. The comparison is shown in Figure 11(a).

From this figure, we observe that the difference between the

fitting function and the original data is small in most intervals.

This demonstrates the high-accurate approximability of the

proposed fitting function to the actual results under noisy

quantum devices.
Evaluation of application-aware loss function. To demon-

strate that the combination of normalized circuit duration and

the sum of gate error in Equation 11(b) is an indicator of the

fidelity of the given circuit, we randomly initialize the param-

eters θ and dsr in the ansatz of VQE and simultaneously
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record the values of fidelity and the reciprocal of the loss.

These values are sorted according to fidelity in ascending order

and shown in Figure 11(b). Particularly, we set α = 10. From

Figure 11(b), we observe that the change in fidelity and the

change in 1
loss have a similar trend, showing that Equation 12

can accurately indicate the variance of fidelity.
Evaluation of CMA-ES. In order to illustrate the effec-

tiveness of CMA-ES, we recorded the loss decrease at each

iteration, as shown in Figure 11(c). From this, we can see that

the loss decreases sharply at the third iteration and gradually

becomes stable at the 6th iteration. This indicates that after the

second iteration of random sampling and variance calculation,

the dsr can indeed be updated in the direction of decreasing

loss, and the step size is appropriate. This demonstrates the

efficiency of the CMA-ES algorithm in optimizing the loss

function and finding the appropriate dsr.

VI. RELATED WORK

Fluctuating Noise and Methods Several studies have

addressed the issue of fluctuating noise. Dasgupta et al. [37]

evaluated the stability of NISQ devices using multiple metrics

to characterize stability. In subsequent works [23], [38], they

defined the Hellinger distance to measure the discrepancy

between ideal states and noisy measurements. These studies

emphasize the importance of replicating results during long-

term execution on quantum device. Hu et al. [26] highlighted

that QNN accuracy fluctuates with noise, necessitating re-

adaptation. To mitigate the impact of such noise, they proposed

a cluster-based algorithm to identify different noise patterns

and reuse previously obtained models with similar patterns.

However, the storage requirement for these models will con-

tinuously grow. Yamamoto et al. [39] introduced a purification-

based quantum error mitigation method, capable of mitigating

systematic errors and recovering results from unknown fluctu-

ating noise. Nonetheless, quantum devices experience various

types of noise, so it is hard to mitigate all fluctuation noise by

such mitigation.
Pulse-level optimization for VQA Liang et al. [40], [41]

were among the first to employ pulse parameter shift tech-

niques to address VQA problems. However, using gradient-

based algorithms to adjust pulse parameters on actual ma-

chines is challenging, and the circuit size is difficult to

scale, limiting the complexity of solvable problems. Recently,

Chadwick et al. [42] proposed a coordinate-based method

for rapidly adjusting pulse parameters to achieve high fi-

delity. However, this approach targets single gates rather than

application-level quantum circuits.

VII. CONCLUSION

We presented QuPAD, a holistic framework that optimizes

quantum systems by incorporating duration-aware optimiza-

tion offline and in-situ calibration at run-time to improve

the fidelity of quantum learning. We reveal optimal pulse

parameters (i.e., duration and amplitude) for the same function

quantum gate to change over time. Motivated by this, an

efficient in-situ calibration is devised to address the issue

of unstable noise in quantum devices. Experimental results

demonstrate significant improvements in both duration reduc-

tion and performance , demonstrating the effectiveness and

efficiency of the proposed framework. Specifically, QuPAD

achieves over 3× duration reduction and performance im-

provements over villain VQC. As a result, it can obtain an

accuracy gain of 59.33% over the original VQC on the MNIST

dataset. In addition, the in-situ calibration process provides a

speedup of 15×- 70× compared to the parameter shift method.
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