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Abstract—Near-term quantum computations are limited by
high error rates, the scarcity of qubits and low qubit connectivity.
Increasing support for mid-circuit measurements and qubit reset
in near-term quantum computers enables qubit reuse that may
yield quantum computations with fewer qubits and lower errors.

In this work, we introduce a formal model for qubit reuse
optimization that delivers provably optimal solutions with respect
to quantum circuit depth, number of qubits, or number of swap
gates for the first time. This is in contrast to related work
where qubit reuse is used heuristically or optimally but without
consideration of the mapping effort. We further investigate reset
errors on near-term quantum computers by performing reset
error characterization experiments. Using the hereby obtained
reset error characterization and calibration data of a near-term
quantum computer, we then determine a qubit assignment that
is optimal with respect to a given cost function. We define this
cost function to include gate errors and decoherence as well as
the individual reset error of each qubit.

We found the reset fidelity to be state-dependent and to range,
depending on the reset qubit, from 67.5% to 100% in a near-
term quantum computer. We demonstrate the applicability of
the developed method to a number of quantum circuits and
show improvements in the number of qubits and swap gate
insertions, estimated success probability, and Hellinger fidelity of
the investigated quantum circuits.

I . INTRODUCTION

Quantum computing promises significant speedup for prob-
lems in cryptography [1] and chemistry [2]. However, in near-
term quantum computers, the greatest challenges of effective
quantum computations are a lack of qubits and the corruption
of quantum states due to errors. The limited connectivity of
qubits in contemporary quantum computers aggravates these
challenges further [3–7] as additional operations, e.g. swap
gates [3, 7–11], need to be inserted. While the technology
enabling quantum computing continuously progresses [12],
optimizing the executed quantum computations, i.e. quantum
circuits, improves the performance and can extend the compu-
tational reach of near-term quantum computers [13–16].

The reset operation combined with mid-circuit measurements
offers a venue for quantum circuit optimization by allowing to
reuse a qubit of a quantum computer after the computations on a
previously assigned quantum circuit qubit have concluded. The
reset operation and mid-circuit measurements are essential for
quantum error correction protocols [17, 18] and have recently
started to be supported with increased fidelity by quantum
computer vendors such as IBM, Google and Honeywell [19–21].
In general, reusing qubits offers the following improvements
to a given input quantum algorithm:

• Reduction of the qubit count requirement of a quantum
algorithm; A quantum algorithm that requires n qubits
may be transformed into a quantum algorithm that requires
n− i qubits at the cost of a longer computation duration.

• Simplified connectivity requirements of a quantum algo-
rithm; A reused qubit may require less effort than a new
qubit to satisfy the required connectivity.

• Reduction of error; First, less stringent connectivity re-
quirements lead to fewer errors [11, 22–24]. Furthermore,
the quality of qubits in near-term quantum computers
varies significantly [25–27]—a subset of qubits incurs less
error. Reducing the required amount of qubits may allow
to avoid qubits with a higher error rate.

However, reusing qubits may come at the cost of increased
quantum circuit duration, hence potentially increasing the
errors due to decoherence. Paired with high variability in reset
operation error (see this work in Section IV), this requires
to carefully optimize the quantum circuit with qubit reuse
for improving the result quality yielded by near-term quantum
computers. The quantum circuit optimization method developed
in this work improved the Hellinger fidelity by up to 4.3x on
the near-term quantum computer ibm_hanoi and replaced
swap gate insertions by qubit reuse at minimal quantum circuit
depth. The paper at hand addresses the optimization of quantum
circuits via qubit reuse by:

• Characterizing and reporting the error of reset operations
on a 27-qubit quantum computer for the first time while
considering state-dependent errors and errors due to
concurrent reset operations.

• Introducing a novel SAT-based quantum circuit optimiza-
tion method that determines the optimal application of
swap gate insertions and qubit reuse to produce a quantum
circuit conforming to a target quantum computer.

• Combining the heavy-weight but optimal SAT-based ap-
proach with an efficient at-runtime qubit assignment [26,
27] based on the previous reset error characterization.

• Optimizing the number of reset repetitions for each qubit
depending on the obtained reset error characterization.

• Evaluating optimized quantum circuits on IBM quantum
computers to investigate the improvement in fidelity and
quantum circuit characteristics yielded by the developed
quantum circuit optimization method.

The remainder of this work is organized as follows. Section II
introduces the background for this work and Section III outlines
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Figure 1: Quantum circuit optimization of a) a 7-qubit Bernstein-Vazirani quantum circuit with qubit reuse where, b) one qubit
was reused, c) swap gates are not necessary due to qubit reuse, and d) the maximum of qubits (all but two) are reused.

the related work. Section IV describes the experiments used
for reset error characterization and evaluates them on an
IBM quantum computer. Then, the novel quantum circuit
optimization method and qubit assignment are introduced in
Section V. The introduced quantum circuit optimization method
is evaluated in Section VI and the work is concluded in
Section VII.

II . QUBITS , RESET AND REUSE

Depending on an external signal, an n-qubit quantum
computer can manipulate, store and measure an n-qubit state
given by:

|ψ⟩ =
∑

x∈{0,1}n
αx |x⟩ , (1)

where αx are complex probability amplitudes, i.e. they represent
probabilities with

∑
x |αx|

2 = 1. Measuring the complete state
|ψ⟩ in the standard basis yields a measurement outcome k
corresponding to the basis state |k⟩ with probability |αk|

2; the
state |ψ⟩ collapses to the basis state |k⟩. When a part of the
quantum state is measured, the quantum state partially collapses
according to the yielded measurement outcome. Before reusing
a qubit, the qubit must be in a known and expected state—
typically the |0⟩ state. Yielding the |0⟩ state on a previously
used qubit in an unknown state is achieved using the reset
operation.

As noted in [28], the state of a qubit is only required between
the initialization and measurement of the qubit. This gives rise
to the optimization of quantum circuits as shown in Figure 1
where the qubit state is reset after interactions on that qubit are
concluded and a measurement is performed. The reset qubit
is then able to store the state and perform the interactions of
a different qubit in the quantum circuit. These optimizations
require fast high-fidelity reset and mid-measurement operations.

In Figure 1, a 7-qubit Bernstein-Vazirani (BV) quantum
circuit is optimized using qubit reuse. As visible in Figure 1,
there are multiple options for using qubit reset that improve
the target quantum circuit in different ways. Not using the
qubit reuse optimization, as displayed in Figure 1a), yields the
quantum circuit with the smallest depth if all-to-all connectivity
is available. However, with the limited qubit connectivity of
near-term quantum computers, swap gates need to be inserted

into the quantum circuit, further increasing the quantum circuit
depth. For instance, three swap gates would be required for
quantum circuit Figure 1a) on the heavy-hex qubit connectivity
of IBM quantum computers.

In Figure 1b), one qubit is reused by applying one reset and
mid-circuit measurement operation. This reduces the number
of swap gates in the quantum circuit by one (assuming heavy-
hex qubit connectivity) while not increasing the depth of the
quantum circuit.

The optimization option depicted in Figure 1c) reuses three
qubits and does not require swap gates assuming heavy-hex
qubit connectivity. However, the quantum circuit depth is
increased by 40% compared to Figure 1a).

The qubit reuse option depicted in Figure 1d), requires
the least amount of qubits and no swap gates even at linear
connectivity. However, the quantum circuit depth is also
significantly increased.

This example demonstrates the degrees of freedom when
improving quantum circuits using qubit reuse and sets the stage
for the remainder of the work. A quantum circuit optimization
method based on qubit reuse must allow optimizing for quantum
circuit depth, inserted swap gates and number of qubits.

III . RELATED WORK

A number of works investigate the optimization of quantum
circuits with regards to the minimization of swap insertions
using heuristic [9, 10, 23] and optimal methods [8, 11]. Further-
more, the variety of hardware modalities used in the nascent
field of quantum computing gives rise to further optimizations
using operations native to a specific hardware modality [15,
29].

As quantum computers support mid-circuit measurements
and qubit resets with increasing fidelity [17, 19–21, 30], recent
approaches investigate quantum circuit optimization through
exploiting qubit reuse [28, 31–33]. These works can be divided
into highly-scalable heuristics that are able to target large-scale
quantum circuits [28, 31, 32] and optimal less-scalable SAT-
based approaches to qubit reuse [33] where the focus is in
general on investigating optimization opportunities given by
qubit reset and on providing a baseline for scalable heuristic
approaches.



In this work, we developed an optimal approach to qubit reuse
that, unlike in recent optimal approaches [33], simultaneously
considers the quantum circuit depth and the mapping effort,
quantified by the number of required swap gates. Thus, the
method developed in this work produces a quantum circuit
that considers the connectivity of a quantum computer and can
therefore directly be executed on the quantum computer. In [33],
a swap gate insertion algorithm [3, 8–11] must be performed
independently, thus inserting swap gates that could have been
addressed by qubit reuse. In contrast to heuristic approaches [28,
31, 32], this work optimally improves a quantum circuit using
qubit reuse with respect to quantum circuit depth, the number
of inserted swap gates, or the number of required qubits.

The characterization of errors in quantum computers has
been investigated in numerous works [17, 19, 34–42]. The reset
error of single qubits in IBM Quantum computers has been
investigated in [17, 19]. In [42], the reset operation on 5-qubit
quantum computers has been characterized from a security
point of view where the focus lies on secure reset operations
that do not leak information to an attacker. In this work, we
characterize and report reset errors on a 27-qubit quantum
computer for the first time while investigating state-dependent
errors and errors due to concurrent reset operations.

IV. RESET CHARACTERIZATION EXPERIMENTS

In this work, we perform three types of characterization
experiments to quantify the per-qubit variability, the impact
of the initialized state of the qubit, and the number of reset
repetitions on the reset error. Figure 2 gives an overview of the
three experiments. For the first two reset error characterization
experiments, W random single-qubit gates U1, ...,UW are
drawn for each repetition of the characterization experiments. In
the first experiment, each random single-qubit gate, r ∈ {1, ...,R}
reset operations, and a measurement operator are applied
successively to each qubit q ∈ P of the quantum computer.
In the second experiment, the same operations are applied
simultaneously to each qubit of the quantum computer, rather
than sequentially. In the third characterization experiment, the
random gates are replaced by the single-qubit Pauli-X quantum
gate and, as in the second experiment, applied simultaneously
on all qubits of the quantum computer. For each of these
characterization experiments, the reset error is derived from the
frequency of non-zero measurement outcomes. The first reset
error characterization experiment (left in Figure 2) requires
|P| ·W · R, the second (middle in Figure 2) requires W · R
and the third (right in Figure 2) requires R quantum circuit
executions, where |P| is the number of qubits on the device,
R is the maximum considered number of successively applied
reset operations for one reset and W is the maximum number
of evaluated random gates.

We expect state-dependent reset errors to be observable
in this set of characterization experiments. First, through the
random state preparations performed by the random single-
qubit gates and second through any difference in outcome
between the first two and the third characterization experiments.

Figure 2: The three reset error characterization experiments
investigated in this work, ordered by the number of required
quantum circuits.

Furthermore, we investigate the impact of errors due to con-
current reset operations by comparing the first characterization
experiment, where operations and measurements are applied
individually on each qubit, to the second characterization
experiment where all operations are applied simultaneously
on all qubits of the quantum computer. While the third reset
characterization experiment is much more efficient, i.e. requires
fewer quantum circuit executions than the first two experiments,
we will validate whether this experiment is sufficient to quantify
the individual reset error of a qubit.

In the remainder of this section, the introduced reset error
characterization experiments are conducted on the 27-qubit
quantum computer ibmq_ehningen. To counteract a bias
due to shifting error rates during reset error characterization, the
reset error characterization experiments are interspersed, i.e. the
first reset error characterization experiment is performed with
r ∈ R reset repetition and random single-qubit gate U1, ...,UW ,
followed by the second and third reset error characterization
experiment using the same experimental parameters before
continuing with the next set of parameters. We investigated
the impact of up to R = 5 reset repetitions on the reset fidelity
and performed W = 50 arbitrary state initializations.

A. Comparison of Reset Characterization Experiments

In Figure 3, the fidelity of resetting one qubit of the 27-qubit
quantum computer ibmq_ehningen by applying one reset
operation is depicted on the y-axis while the x-axis indicates
the respective qubit. A red line marks the average reset fidelity
for a qubit and reset error characterization experiment. Except
for qubits 8, 12, 15, 19, and 22, the reset fidelity shows little
variance apart from the respective outliers (depicted as gray
circles). Qubit 24 demonstrated the best average reset fidelity of
98.98% while qubit 20 shows the best worst-case behavior with
a minimal reset fidelity of 96.6% for all reset characterization
experiments. Qubit 21 was the only qubit that reached a reset
fidelity of 100% occasionally during our experiments. Qubit 8
exhibited the worst average reset fidelity of 88.57% while the
worst overall reset fidelity of 67.55% was reported for qubit
0, which also demonstrated the largest rate of outliers (18%).
More than half of the qubits showed an outlier rate of 8.6%
or higher.

In general, individual qubit preparation of arbitrary state,
reset, and measurement (Reset Rand.) yields the highest
best-case reset fidelity followed by simultaneous resets of
arbitrary states (Reset Rand. (Simul.)) and simultane-
ous resets of the |1⟩-state. For most qubits, the reset charac-



Figure 3: Fidelity of individually resetting an arbitrary single-qubit state (Reset Rand.), simultaneously resetting all qubits
after preparing each of them in an arbitrary single-qubit state (Reset Rand. (Simul.)) and simultaneously resetting all
qubits after preparing each of them in the |1⟩-state (Reset X (Simul.)). A red line marks the respective mean value.
Experiments were conducted on the 27-qubit quantum computer ibmq_ehningen.

terization Reset Rand. performs better or as well as for
Reset Rand. (Simul.) with |1⟩-state reset characteriza-
tion Reset X (Simul.) performing worst. However, the
average reset fidelity is slightly better for the characterization
experiment Reset Rand. (Simul.) at 97.7% (+-3.2%)
compared to the characterization experiment Reset Rand.
with 97.5% (+-3.8%).

We concluded that reset error due to concurrent reset
operations is negligible for quantum circuit optimization and
that the |1⟩-state reset characterization Reset X (Simul.)
can serve as a quick reset fidelity lower bound for quantum
circuit optimization purposes.

B. Impact of Reset Repetitions on Fidelity

Figure 4 shows the impact of repeated reset operations on the
reset fidelity (y-axis) reported by the Reset X (Simul.)
characterization experiment for each qubit (x-axis) of the
ibmq_ehningen quantum computer. The reset operation
is applied one to five times on each qubit, outliers are omitted.
The reset fidelity of qubits 8, 12, 15, 19, and 22 are registered
on the second y-axis and ranges from 78% to 99.9% while
the remaining qubits had a reset fidelity ranging from 93.3%
to 100%. For more than 80% of the qubits, the worst reset
fidelity can be observed at one single reset operation application.
Repeating the reset operation once improves the fidelity
dramatically, even halving the reset infidelity for some qubits
such as qubit 17. Increasing the reset repetition further does not
improve the reset fidelity for all qubits. For instance, qubit 23
exhibits the largest reset fidelity at 3 reset operation applications
with a diminishing at further reset repetitions.

We conclude that the reset fidelity varies significantly per
qubit with each qubit having an optimal number of reset
repetitions on average. Thus, it appears essential for the
application of qubit reuse in near-term quantum computers
to employ a low-latency adaptation of a mapped quantum

circuit to up-to-date reset fidelities and to select the optimal
number of reset repetitions for each qubit.

C. Impact of Initialized State on Reset Fidelity

In Figure 5, we investigate the impact of the qubit state
on reset fidelity. Here, the (Reset Rand. (Simul.))
characterization experiment was conducted on all qubits of
the ibmq_ehningen quantum computer. The y-axis shows
the reset fidelity of all qubits as a boxplot for an initialization
state with an |0⟩−state overlap that is indicated on the x-axis.

The reset fidelity ranges from roughly 70% for states
that have almost no overlap with the |0⟩-state to 100% for
initialization states that strongly overlap with the |0⟩-state. For
an increasing |0⟩-state overlap, the reset fidelity of all qubits
increases gradually while the variance of the reset fidelity
between different qubits decreases significantly. Furthermore,
the number and magnitude of reset fidelity outliers decrease.
The correlation between the overlap with the |0⟩-state and the
reset fidelity is largest when only one reset operation is applied.
This is quantified by a Pearson correlation coefficient of 0.33
that halves to 0.15 for two reset applications and further reduces
to 0.13 for the maximum of five considered reset applications.

We conclude that state-dependent reset errors occur on near-
term quantum computers. These state-dependent errors can be
reduced by repeatedly applying the reset operation.

V. QUANTUM C IRCUIT OPTIMIZATION THROUGH QUBIT
REUSE

Figure 6 describes the individual steps of the developed
quantum circuit optimization method that is utilizing reset
operations to reuse a qubit at runtime. The method is divided
into an offline part (colored orange) which can be performed
well ahead of the intended quantum circuit execution time and
an at-runtime part (colored green) which is performed shortly,
within minutes or seconds, before the execution of the quantum



Figure 4: Fidelity of simultaneously applying the reset operation on the qubits of the 27-qubit quantum computer
ibmq_ehningen one to five times, after preparing each qubit in the |1⟩-state (Reset X (Simul.), outliers omitted). The
reset fidelity on qubits 8, 12, 15, 19, 22 is plotted on the second y-axis. A red line marks the respective mean value.

Figure 5: The fidelity of resetting a single-qubit state by applying one reset operation for various overlaps with the |0⟩-state on
the quantum computer ibmq_ehningen (Reset Rand. (Simul.)). A red line marks the respective mean value.

circuit. This division into an offline and at runtime part follows
the approach introduced in [27].

During the offline part, the quantum circuit can be optimized
heavily, e.g. with complete methods, at a high runtime cost
without necessarily incurring a delay during the at-runtime
phase. Here, a satisfiability modulo theories (SMT) model M
is derived from the input quantum circuit, an optimization
objective function, a swap insertion model (e.g. [8]), and the
optimizations available through qubit reset operations and
subsequent qubit reuse. The SMT model M is then input to the
Z3-SMT solver [43] that computes a mapped quantum circuit,
i.e. a quantum circuit that satisfies the connectivity requirements
given by the coupling map of the quantum computer, is
derived from a satisfying assignment to the model M. These
optimizations are conducted with respect to static quantum
circuit properties that are not changed by a re-calibration of
the quantum computer. The three properties investigated in this
work are quantum circuit depth, and the number of required
swap gates or qubits.

During the at-runtime part, the quantum circuit is quickly

adapted to the current error characteristics of the target quantum
computer before it is computed. The error characteristics are
given by error characterization experiments (see Section IV) and
calibration data [44] obtained by the operator of the quantum
computer e.g. IBM Quantum. In this work, the quick adaptation
is performed by using a custom cost function in conjunction
with the method introduced in [26], where a mapped quantum
circuit is efficiently placed onto a subset of qubits on the
quantum computer depending on a given cost function.

In the remainder of this section, we will describe the
construction of the SMT model (see Section V-A) and the
performed qubit placement (see Section V-B) in detail.

A. SAT-Based Quantum Circuit Mapping with Qubit Reuse

The constructed SMT model M is derived from the input
quantum circuit, the ability to exploit reset operations for
quantum circuit optimization, an optimization objective function
and the swap insertion model S introduced in [8]. In fact, the
model M is a union of the swap insertion model S and the
qubit reset-reuse model R introduced in this section. The swap



Figure 6: The individual steps of the developed SAT-based
quantum circuit optimization method exploiting qubit reset-
reuse and mid-circuit measurements.

insertion model S represents the resolution of connectivity
requirements imposed by the coupling graph of the quantum
computer by using swap gates. The qubit reset-reuse model R
represents qubit reuse opportunities after the computation on a
qubit has been completed.

Essentially, the model R must extend typical swap insertion
models [8, 11] with the notion of ’unassigned’ qubits. Swap
insertion models represent changes to the qubit assignment by
the insertion of one or more swap gates. For this, each qubit
in the quantum circuit has an initial assignment to a qubit
of the quantum computer. This assignment changes through
swap gates whenever a two-qubit gate occurs that requires
interactions not included in the coupling graph of the quantum
computer. Model R extends this notion of qubit assignment by:

• Allowing a qubit in the quantum circuit to start without
an assignment to a qubit on the quantum computer.

• Not applying swap gates on unassigned qubits.
• Enforcing the change of the assignment status of a

qubit through the reset operation: The qubit on which
a reset operation was applied becomes unassigned while
a previously unassigned qubit becomes assigned.

• Only allowing reset operations after a qubit in the quantum
circuit has been measured.

This requires a set of new model variables and model constraints
explained in the remainder of this section.

Constructing and solving model M that combines a swap
insertion model with the qubit reset-reuse model allows to
optimally determine the number of swap gate insertions required
for a target quantum circuit if qubit reset-reuse is available.
The combined model also allows to optimally trade-off the
usage of swap gates and reset operations for different costs of
reset operations and swap gates. In this work, the reordering
of quantum gates is not considered [45].

1) Model Variables: The developed qubit reset-reuse model
R for a quantum circuit with a set of qubits Q in the quantum
circuit, a set of quantum gates G, a set of physical qubits on the
quantum computer P, a set of measurement operators M ⊆ G
and the maximum considered depth T contains variables:

• A = {a1,1, ...,a|Q|,T } : the set of assignment statuses of
a qubit, i.e. aq,t evaluates to true if the qubit q in the
quantum circuit is assigned to a physical qubit of the
quantum computer at time step t else the variable evaluates
to false.

• L = {l1, ..., l|M|} : the set of potential reset locations i.e.
lm evaluates to true if a reset operation is inserted after
the operation m ∈M else the variable evaluates to false.
In this work, reset operations are only inserted after a
measurement operator.

The maximum depth T is determined by first applying a
heuristic swap insertion algorithm [9, 10, 23]. Then, inspecting
the worst-case quantum circuit depth if the maximum number
of qubit reuses were to be applied during the optimization of
the input quantum circuit. As the complete and optimal swap
insertion model S would always yield a better solution than the
heuristic swap insertion algorithm, we can use the determined
depth as an upper bound T .

The following variables in the swap insertion model S are
interacting with variables in the qubit reset-reuse model R, i.e.
they occur in the same constraints:

• Π = {π1,1,1, ...π|Q|,|P|,T } : is the set of qubit assignments,
i.e. iff the variable πq,p,t evaluates to true in a time step
t ∈ {1, ..., T }, a qubit in the quantum circuit q ∈ Q is
mapped to the physical qubit p ∈ P.

• E = {σ1,1,1, ...,σ|P|,|P|,T } : is the set of swap insertions,
i.e. iff the variable σi,j,t evaluates to true, a swap gate is
inserted between physical qubits i ∈ P and j ∈ P at time
step t ∈ {1, ..., T }. Consequently, the corresponding qubit
assignment variables π_,i,t and π_,j,t must also change.

• Xg is the set of gate locations for quantum gate g, e.g.
single qubit gates need to be executed on a physical qubit.
Thus, for single qubit gates Xg = {xg,1, ..., x|G|,|P|} with
variable xg,t evaluating to true iff gate g ∈ G is executed
at time t ∈ {1, ..., T }.

• Dg = {d1,1, ...,d|G|,T } is the set of gate timings, i.e.
variable dg,t evaluates to true iff gate g ∈ G occurs
at time step t ∈ {1, ..., T }.

2) Model Constraints: Initially, the assignment status vari-
ables a·,1 are not constrained for the first time step and can thus
be set arbitrarily. For subsequent assignment status variable
changes at time step t ∈ {2, ..., T }, we require a corresponding
reset operation to occur.

(¬aq,t ∧ aq,t+1)→
∨

m∈M,p∈P

(lm ∧ xm,p ∧ dm,t ∧ πq,p,t+1) ,

(2)
where ¬,∨,∧,→ are the logical negation, disjunction, con-
junction and implication operations. This constraint enforces
that whenever a previously unassigned qubit q ∈ Q becomes
assigned at time step t+ 1, a reset must happen at time step t
and on a physical qubit p ∈ P to which the qubit q is assigned
at time step t+ 1.

Reciprocally, if a qubit q ∈ Q becomes unassigned at time
step t+1, constraints enforce that a corresponding reset happens



at time step t (and vice versa):

(aq,t ∧ ¬aq,t+1)↔
(
lmq

∧ dmq,t
)

(3)

where mq ∈ M is the measurement operator that acts on a
qubit q ∈ Q.

An unassigned qubit q ∈ Q cannot participate in the
computation of the quantum circuit, which yields a set of
consequences. First, quantum gates can not act on unassigned
qubits as they have not been mapped to a physical qubit on
the quantum computer:

¬aq,t → ¬dg,t, (4)

where g ∈ G is a quantum gate that acts on the quantum circuit
qubit q ∈ Q.

The swap insertion model S must further be modified
to allow for changes to qubit assignment variables πq,p,t
using reset operations instead of only using swap gates [8].
Furthermore, the qubit assignment variables πq,p,t are not
necessarily injective anymore as two quantum circuit qubits
q,q ′ ∈ Q may be mapped to the same physical qubit p ∈ P as
long as one of the qubits q,q ′ are unassigned. The used swap
insertion model must be adapted to permit these non-injective
qubit assignments.

3) Evaluated Objective Functions: In this work, we evalu-
ated three objective functions that guide satisfiable assignments
to variables in model M towards preferred quantum circuits
that we expect to perform better on a quantum computer.

The first optimization objective investigated minimizes the
total depth of the quantum circuit:

minZ,Z ⩾ t∧ dg,t, ∀g ∈ G,∀t ∈ {1, ..., T }, (5)

where Z is an integer variable. The quantum circuit depth is
correlated with the duration of a quantum circuit and hence with
incurred decoherence errors. Minimizing the quantum circuit
depth, therefore, is expected to yield a quantum computation
result with fewer errors.

Another metric to be minimized using qubit reset-reuse
is the number of qubits on the quantum computer required
to execute a quantum circuit. We, therefore, formulate the
following objective function

min
∑
p∈P

(
∨q∈Q,t∈{1,..,T}πq,p,t

)
, (6)

where the number of qubits required by a target quantum circuit
is determined by the qubit assignment variables πq,p,t, i.e. each
physical qubit p that a qubit in the quantum circuit q is assigned
to at least once counts towards the number of required qubits
on the quantum computer.

Finally, the number of inserted swap gates can be reduced
using qubit reset-reuse by minimizing∑

e∈E

e, (7)

where E is the set of swap insertions.

4) Deriving the Optimized Quantum Circuit: A satisfiable
assignment to the variables in model M yields a valid quantum
circuit, i.e. each physical qubit on the quantum computer is
used at most once for the computation of a quantum gate
during a specific time step. Furthermore, any connectivity
requirements of the quantum circuit that are not directly satisfied
by the coupling graph of the quantum computer are resolved
by either inserting swap gates or inserting reset operations
into the quantum circuit. The inserted quantum gates can be
derived by inspecting the changes to qubit assignment variables
πq,p,t, qubit assignment status variables aq,t and inserted reset
operations lm.

Algorithm 1: Qubit assignment with reset operations
Input: A mapped quantum circuit C, the coupling

graph of the target quantum computer H
Output: A mapped quantum circuit with optimized

qubit assignment
1 begin
2 ξgx

← retrieve gate fidelities from calibration;
3 ξr,p ← determine adapted reset fidelity from

characterization;
4 Rp ← determine the number of repetitions for one

reset operation per qubit from ξr,p;
5 Ā← subgraph_isomorphism(graph(C), H);
6 for ā ∈ Ā do
7 Kā ← cost(ā, ξ,Rp);
8 end
9 āf ← ā with lowest cost Kā;

10 O← assign qubits in C as defined in āf, repeat
reset operations according to Rp;

11 return O
12 end

B. Qubit Assignment using Reset Error Characterization
After determining a mapped quantum circuit that can be

performed on the target quantum computer in principle, the
assignment of the quantum circuit qubits to the physical qubits
of the quantum computer is adapted to the current reset error
characterization and calibration data provided by the quantum
computer operator.

This adaptation is performed with a low classical runtime
overhead such that most recent calibration and reset error data
can be used. Furthermore, this step does not incur a further
insertion of swap gates: even though a set of physical qubits
is determined while computing a feasible assignment to the
developed SMT-model (see Section V-A), current and near-term
quantum computers have a regular qubit layout and connectivity.
For instance, the inter-qubit connectivity in [4] is represented by
a two-dimensional grid and in [23, 46] by a heavy hex lattice.
This regular qubit layout and connectivity allows a mapped
quantum circuit to be placed on different sets of physical qubits
on the quantum computer after mapping.

This is exploited by methods such as [26], where the mapped
quantum circuit is assigned to a set of physical qubits that does



not incur the insertion of further swap gates and optimizes the
cost of a physical qubit assignment as shown in Figure 7. In this
work, we extend this approach by considering the reset errors
yielded by the reset error characterization experiments and by
allowing a repetition of reset operations if this is expected to
reduce errors.

Optimizing over the possible qubit assignments of a quantum
circuit is performed by the steps in Algorithm 1. First, the
calibration data ξgx

is retrieved from the quantum computer
operator. The calibration data ξgx

contains the fidelity of each
supported gate g that is applied to the location x in the quantum
computer. The location x can either be a qubit in the quantum
computer or the connection between two qubits. Then, the reset
error characterization experiments are executed on the target
quantum computer, yielding reset error Rr,p per qubit p and
reset repetitions r. In this work, we use the third reset error
characterization experiment introduced in Section IV. Let ϵr,p
be the duration of performing r reset operations on qubit p,
then

ξr,p := e−ϵr,p/T · (1 − Rr,p) (8)

indicates the fidelity of repeating the reset operation r times
on qubit p including the incurred decoherence on other qubits
for a decoherence time T of the target quantum computer. In
a subsequent step, the number of repetitions Rp yielding the
highest fidelity ξr,p for qubit p is stored as Rp. Lines 5-7 in
Algorithm 1 are performed by invoking the method introduced
in [26] with the cost function:

cost(ā, ξ,Rp) := 1 −
∏
gx∈C

ξgx

∏
rp∈C

ξRp,p, (9)

where C is the mapped quantum circuit gx is a quantum gate in
circuit C applied to location x according to qubit assignment ā
and rp is a reset operation applied to qubit p Rp times. Finally,
the qubit assignment āf ∈ Ā with minimal cost Kā is applied
to the mapped target quantum circuit C with reset operations
on qubit p repeated Rp times to yield the quantum circuit O
with optimized qubit assignment.

C. Example: 7-Qubit Bernstein-Vazirani with Qubit Reuse

Given a 7-Qubit Bernstein-Vazirani as the target quantum
circuit, a coupling graph of a 27-qubit quantum computer
provided by IBM Quantum (see Figure 1) and the objective to
minimize the number of swap gates, the developed method first
generates and solves an SMT-model based on these inputs. The
result is a satisfying assignment to the generated SMT-model
from which the mapped quantum circuit shown in Figure 1c)
will be derived.

Then, the steps outlined in Algorithm 1 are performed.
First, the gate fidelities are extracted from the calibration data
by inspection [44] and the third reset error characterization
experiment (Reset X (Simul.)) described in Section IV is
performed yielding the data in Table I.

Given reset operation durations and a decoherence time by
the quantum computer operator, applying Equation (8) may
yield the values given in rows two, four, and six in Table I.
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Figure 7: Mapping a 7-qubit Bernstein-Vazirani quantum circuit
with three reused qubits (left, also see Figure 1c)) to the
coupling graph of ibmq_ehningen (right).

Table I. Reset error data considered for qubit assignment.

From these values, we can extract an optimized number of
reset repetitions (last row in Table I) and an optimized qubit
assignment. The mapped quantum circuit with the minimal
number of swap gates in Figure 1 requires four qubits where
three qubits are connected to one common qubit. The coupling
graph given in Figure 7 has eight sets of qubits on which this
quantum circuit can be assigned without incurring a further
insertion of swap gates. Computing the function given by
Equation (9) on each of these qubit sets yields the set of
qubits with the least cost, i.e. with the highest expectation of
successful computation. Let the set of qubits (10, 13, 15, 12)
yield the lowest cost. The qubits in the mapped quantum circuit
(0, 1, 2, 3) are assigned to (10, 13, 15, 12) respectively, and each
reset operation occurring on the assigned qubit is repeated as
given by the last row in Table I before the quantum circuit is
submitted to the target quantum computer for computation.

VI. EVALUATION OF QUBIT REUSE OPTIMIZATION

In this section, the developed qubit reuse optimization
method is evaluated on Bernstein-Vazirani (BV) [47] quantum
circuits, Hadamard ladder (H-ladder) [37] quantum circuits,
and a quantum circuit computing the exclusive-or (XOR)
function (xor5_254) using up to ten qubits [48]. In contrast
to the Bernstein-Vazirani quantum circuit and the exclusive-or
quantum circuit, the Hadamard ladder quantum circuit does only
require linear qubit connectivity. Thus, no swap gate insertions
are required to compute Hadamard ladder quantum circuits
on near-term quantum computers, while the other types of
quantum circuits require swap gate insertions depending on
the size of the quantum circuit.

We evaluated the developed qubit reuse optimization method
on the investigated quantum circuits with two objective func-
tions. One of the evaluated objective functions minimizes
the number of required swap gate insertions while the other



objective function minimizes the number of qubits on the
quantum computer required by the quantum circuit. The second
objective function is also used to optimize a target quantum
circuit using qubit reuse such that its qubit requirement matches
a specified number.

The characteristics of each investigated quantum circuit is
reported after it was optimized and mapped by the method
developed in this work or by qiskit [10]. The quantum circuits
generated by qiskit are used as a basis for comparison. Among
the quantum circuit characteristics evaluated in this work are the
quantum circuit depth, number of required swap gate insertions,
number of required qubits on the quantum computer, the
Hellinger fidelity, and the estimated success probability (ESP).
The estimated success probability (ESP) [22] is computed as the
product of fidelities of the quantum gates, measurements, and
reset operations occurring in a quantum circuit. The respective
fidelities are obtained by the quantum computer operator
during calibration and by the reset error characterization
experiments introduced in this work (see Section IV) that
are run shortly before the investigated quantum circuits. The
Hellinger fidelity is determined by the overlap of measurement
outcomes determined in error-free simulation and by executing
the mapped optimized quantum circuit on a quantum computer.
The 27-qubit IBM quantum computer ibm_hanoi was used
for determining the estimated success probability (ESP) and
the Hellinger fidelity of the generated quantum circuits.

A. Impact of Qubit Reuse on Circuit Characteristics

Table II shows the impact of quantum circuit mapping and
optimization performed by qiskit and the method developed
in this work on the quantum circuit characteristics of the
investigated quantum circuits. The data obtained by applying
qiskit to the investigated quantum circuits is reported as absolute
values in the first four columns of the table. The remaining
columns contain data determined by applying the method
developed in this work with various optimization objectives to
the investigated quantum circuits. These remaining columns,
except for qubit columns, contain values relative to the data
reported by qiskit. For instance, applying the developed method
with the objective to minimize the number of swaps on a
Bernstein-Vazirani quantum circuit with 7 qubits (BV7 - second
row, columns five to eight) yields a 4-qubit quantum circuit
with a 13% reduced quantum circuit depth, a 20% improved
ESP, and no required swap gate insertions.

The columns corresponding to the minimization of swap
gate insertions in Table II (columns five to eight) show that
the developed method is able to replace the required swap
gate insertions of all investigated quantum circuits by suitably
selecting qubit reset and reuse at no quantum circuit depth
overhead compared to the quantum circuits determined by
qiskit. However, in general, qubit reuse may have no impact
on swap gate insertions or may even increase the number of
required swap gates insertion.

The largest improvement in ESP can be observed for the
10-qubit Bernstein-Vazirani quantum circuit if the maximum
number of qubits are reused (last column, third row in Table II).

While this also reduces the number of required swap gate
insertions, the quantum circuit depth is increased by 142%,
which may lead to larger errors due to decoherence.

Furthermore, reusing one qubit in the 4-qubit Bernstein-
Vazirani quantum circuit (BV4) does not reduce the number of
required swap gates insertion (row one, columns nine to twelve).
However, the adverse effect of inserting one reset operation in
the quantum circuit on the ESP can be completely mitigated
by the ability to select a set of qubits for quantum computation
that exhibit higher gate fidelities (row 1, column twelve). The
adverse effect of inserting reset operations without replacing
swap gate insertions can only be partially mitigated by qubits
with higher fidelity, in general. For instance, reducing the qubit
requirement of the 7-qubit or 5-qubit Hadamard ladder quantum
circuit to two qubits reduces the ESP by 5% while more than
doubling the quantum circuit depth.

We conclude that while qubit reuse can completely replace
the required low-fidelity swap gate insertions and enables to
use qubits with higher fidelity for some quantum circuits, it
can also have an adverse impact on the characteristics of other
quantum circuits.

B. Impact of Increasing Qubit Reuse

Table III reports the impact of increasing qubit reuse on
the quantum circuit characteristics and Hellinger fidelity of
the 10-qubit Bernstein-Vazirani quantum circuit (BV10), 7-
qubit Hadamard ladder (H-Ladder7), and the quantum circuit
implementing the exclusive-or function (xor5_254). For all of
the evaluated quantum circuits, there is a pronounced increase in
quantum circuit depth with an increase in qubit reuse. The most
significant increase in quantum circuit depth can be observed
when decreasing the qubit requirement from three qubits to
two qubits where the quantum circuit depth increases by 82%,
26%, and 33% respectively for the BV10, H-Ladder7, and
xor5_254 quantum circuits. However, by allowing a quantum
circuit depth increase of 50% compared to the quantum circuit
generated by qiskit, 7 qubits, 2 qubits, and 3 qubits can be
reused using the method developed in this work.

Furthermore, not all possible qubits must be reused for
minimizing the number of swap gate insertions. Both the XOR
and the Bernstein-Vazirani quantum circuit need no swap gate
insertions on the heavy-hex qubit connectivity when the qubit
requirement has been lowered to four while the maximum qubit
reuse lowers the qubit requirement to two for both quantum
circuits. Note that the 7-qubit Hadamard ladder quantum circuit
includes one swap gate insertion when two qubits reused. This
is a consequence of optimizing for quantum circuit depth instead
of the number of swap gates after reaching the desired qubit
requirement for a quantum circuit.

Using qubit reuse, the developed method improved the
Hellinger fidelity by 4.3x for the 10-qubit Bernstein-Vazirani
quantum circuit and by 1.16x for the quantum circuit computing
the XOR function. The Hellinger fidelity of the 7-qubit
Hadamard ladder quantum circuit could not be improved using
qubit reuse. The impact on the Hellinger fidelity coincidences
with the ability of qubit reuse to reduce the number of swap gate



Table II. Quantum circuit depth, ESP, as well as the number of qubits and swap gates for the investigated quantum circuits.

qiskit (absolute values) mininimal number of swaps one qubit reused most qubit reused

circuit qubits depth swap ESP qubits depth swap ESP qubits depth swap ESP qubits depth swap ESP

BV4 4 10 0 0.93 4 1.10x 0.00x 1.0x 3 1.70x 0.00x 1.00x 2 2.60x 0.00x 0.99x
BV7 7 23 4 0.70 4 0.87x 0.00x 1.2x 6 0.83x 0.50x 1.17x 2 2.30x 0.00x 1.20x
BV10 10 33 9 0.54 4 0.85x 0.00x 1.4x 9 0.82x 0.78x 1.05x 2 2.42x 0.00x 1.41x
H-ladder3 3 8 0 0.96 3 1.00x 0.00x 1.0x 2 1.88x 0.00x 0.99x 2 1.89x 0.00x 0.99x
H-ladder5 5 11 0 0.93 5 1.00x 0.00x 1.0x 4 1.27x 0.00x 0.99x 2 2.18x 0.00x 0.95x
H-ladder7 7 14 0 0.86 7 1.00x 0.00x 1.0x 6 1.14x 0.00x 1.02x 2 2.43x 0.00x 0.95x
xor5_254 6 10 2 0.84 4 1.00x 0.00x 1.0x 5 0.80x 0.50x 1.03x 2 1.60x 0.00x 1.03x

Table III. Hellinger fidelity and circuit characteristics for no
reused qubits (qiskit) to 8 reused qubits (this work).

Reused Qubits

circ. charact. 0 1 2 3 4 5 6 7 8

B
V

10

depth 33 27 24 30 28 30 28 44 80
swap 9 7 5 3 2 1 0 0 0
ESP 54% 57% 49% 51% 73% 75% 76% 75% 76%
fidelity 9% 18% 8% 11% 5% 6% 2% 12% 39%

H
-L

ad
de

r7 depth 14 16 21 27 34 - - - -
swap 0 0 1 0 0 - - - -
ESP 86% 87% 84% 83% 82% - - - -
fidelity 79% 74% 9% 2% 6% - - - -

xo
r5

_2
54 depth 10 8 10 12 16 - - - -

swap 2 1 0 0 0 - - - -
ESP 84% 86% 87% 88% 86% - - - -
fidelity 79% 88% 92% 90% 87% - - - -

insertions in a quantum circuit. While the change in Hellinger
fidelity of the XOR quantum circuit roughly correlates with the
change in ESP for increasing qubit reuse, the Hadamard ladder
and Bernstein-Vazirani quantum circuits do not exhibit such a
pattern. For the Bernstein-Vazirani quantum circuit, the ESP
increases by 40% compared to the qiskit solution while the
Hellinger fidelity improves by 330%. For the Hadamard ladder
quantum circuit, the ESP decreases by 5% while the Hellinger
fidelity decreases by 93%. We suspect this to be caused by two
potential effects. First, the reset error characterization conducted
in this work (see Section IV-A) reported a large rate of outliers
for the reset fidelity. Thus, the reset operation may fail to
realize the desired state transformation occasionally for single
quantum circuits even if the average reset fidelity is sufficiently
high. Second, the reset operation may incur additional state
manipulations, potentially to neighboring qubits, that are not
captured by a metric such as ESP where independent errors
are assumed. In this regard, we refer to [42] where crosstalk
errors are reported.

VII. CONCLUSION

In this work, we first introduced a set of reset error char-
acterization experiments and quantified the reset fidelity on
a 27-qubit quantum computer. We further introduced a novel
quantum circuit optimization method that utilizes qubit reuse
to determine a mapped quantum circuit with minimal quantum
circuit depth, minimal number of swap gate insertions, or
minimal number of qubits required on the quantum computer.
The developed SAT-based approach is augmented by an efficient

low-latency qubit assignment that takes the individual reset
fidelity of a qubit as well as quantum gate fidelities and
measurement fidelities into consideration. The developed
quantum circuit optimization method is then evaluated on a
number of quantum circuits with up to 10 qubits to determine
optimized quantum circuits ready to be executed on a near-term
quantum computer with heavy-hex connectivity.

The introduced reset error characterization experiments
revealed a high reset fidelity variance that ranges from 67.5% to
100% depending on the reset qubit. We further identified state-
dependent errors during the reset operation and the simultaneous
reset of qubits initialized to the |1⟩-state to yield a lower bound
on the reset fidelity for quantum circuit optimization purposes.
Using qubit reuse, the developed SAT-based quantum circuit
optimization method demonstrated the ability to replace swap
gate insertions and an increase in Hellinger fidelity of up to
4.3x. Furthermore, the evaluation indicated that completely
exhausting qubit reuse for quantum circuit optimization may
not yield the best quantum circuit characteristics or Hellinger
fidelity. Additional decoherence introduced by an increased
quantum circuit depth, as well as the ability to replace swap gate
insertions by qubit reuse are an important guide to determining
an improved computation performance on a near-term quantum
computer.
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