
A Substrate Scheduler for Compiling Arbitrary
Fault-tolerant Graph States

Sitong Liu∗§, Naphan Benchasattabuse∗§, Darcy QC Morgan¶,
Michal Hajdušek∗§, Simon J. Devitt¶, and Rodney Van Meter‡§

∗Graduate School of Media and Governance, Keio University Shonan Fujisawa Campus, Kanagawa, Japan
‡Faculty of Environment and Information Studies, Keio University Shonan Fujisawa Campus, Kanagawa, Japan

§Quantum Computing Center, Keio University, Kanagawa, Japan
¶Centre for Quantum Software and Information, University of Technology Sydney, Sydney, NSW 2007, Australia

{sitong,whit3z,michal,rdv}@sfc.wide.ad.jp, darcy.qc.morgan@gmail.com, simon.devitt@uts.edu.au

Abstract—Graph states are useful computational resources in
quantum computing, particularly in measurement-based quan-
tum computing models. However, compiling arbitrary graph
states into executable form for fault-tolerant surface code ex-
ecution and accurately estimating the compilation cost and the
run-time resource cost remains an open problem. We introduce
the Substrate Scheduler, a compiler module designed for fault-
tolerant graph state compilation. The Substrate Scheduler aims
to minimize the space-time volume cost of generating graph
states. We show that Substrate Scheduler can efficiently compile
graph states with thousands of vertices for “A Game of Surface
Codes”-style patch-based surface code systems. The results show
that our module generates graph states with the lowest execution
time complexity to date, achieving graph state generation time
complexity that is at or below linear in the number of vertices
and demonstrating specific types of graphs to have constant gen-
eration time complexity. Moreover, it provides a solid foundation
for developing compilers that can handle a larger number of
vertices, up to the millions or billions needed to accommodate a
wide range of post-classical quantum computing applications.

Index Terms—Quantum compiling, Fault-tolerant quantum
computation, Graph states, Surface code

I. INTRODUCTION

Spanning almost half a century, the development of quantum
computing, which leverages the principles of quantum me-
chanics, has progressed dramatically [1]. Quantum computing
has the potential to solve some problems that are either impos-
sible or extremely difficult to solve with classical computers.
However, an inevitable problem with quantum computers is
that they are still small and highly susceptible to noise [2].
In order to fully realize the potential of quantum comput-
ing and achieve the so-called “quantum advantage”, it is of
vital importance to guarantee the high-fidelity execution of
large-scale quantum programs. In the long term, the pressing
challenge is how to transition from the current generation of

This research was developed in part with funding from the Defense
Advanced Research Projects Agency [under the Quantum Benchmarking (QB)
program under award no. HR00112230007 and HR001121S0026 contracts]

This work was supported by MEXT-Quantum Leap Flagship Program Grant
Number JPMXS0118067285, JPMXS0120319794.

DM acknowledges support from the Sydney Quantum Academy.

noisy quantum devices to fault-tolerant quantum computing
with quantum error correction (QEC).

The number and fidelity of qubits, both physical and logical,
will remain a constraint on applications for the foreseeable
future. In the meantime, significant resources must be allocated
to error correction, as implementing quantum error correction
involves using large numbers of physical qubits to encode a
single fault-tolerant logical qubit [3]–[5]. As such, in order
to hasten the advent of the scalable, fault-tolerant quantum
computing era [2], efficient compilers that can implement
applications using quantum error correction with minimal
space-time cost are critical.

In recent years, engineers have gradually started to focus
on how to construct and optimize fault-tolerant quantum com-
puters and the related quantum error correction protocols [6].
One problem that needs to be solved is that current research
is focused either on the logical level, assuming all operations
are already fault-tolerant, or on constructing fault-tolerant
qubits [7], i.e., how to encode and decode them. However,
there is no integrated description to guide us on how to run
programs on a fault-tolerant quantum computer.

Recent work has demonstrated that arbitrary quantum cir-
cuits can be compiled into graph states that are believed to be
amenable to further optimization and efficient execution [8].
As a generalization of cluster states, graph states [9], [10] have
a variety of applications in quantum information, in particular
as algorithmic resources in the context of measurement-based
quantum computing (MBQC) [11], [12]. Recognizing their
importance and flexibility, a group of researchers has proposed
an end-to-end compilation toolchain based around the concept
of fault-tolerant graph states, named benchq 1, which consists
of four stages (see Fig. 1). The first stage, as studied by
Vijayan et al., involves compiling quantum circuits/algorithms
into graph states [8]. The main focus of this paper is on
bridging the gap in Stage 2 of the toolchain, addressing how to
map algorithmic graph states onto the surface code, a crucial
step in achieving fault-tolerance.

1https://github.com/zapatacomputing/benchq

1

ar
X

iv
:2

30
6.

03
75

8v
2

 [
qu

an
t-

ph
]

 4
 S

ep
 2

02
3

https://github.com/zapatacomputing/benchq

Fig. 1: The workflow for generating fault-tolerant graph states. Stage 1 converts the quantum circuit as input into a
circuit/algorithm-specific graph state (i.e., the work of Jabalizer [8]). The second stage, which is the focus of this paper,
involves compiling the graph state into a set of operations that can be executed on the surface code base. Stage 3 involves
operations and optimization at the surface code level, and after final integration with the hardware, operations can be executed
to generate the graph state.

In this paper, we present our implementation of Stage 2, the
Substrate Scheduler, a compiler module that performs a fault-
tolerant compilation of a graph state from the adjacency matrix
to an optimized schedule of stabilizer measurement along with
the logical qubit allocation. The Substrate Scheduler is based
on the surface code [13]–[15], one of the most promising
quantum error correction codes, with lattice surgery [16], using
the rules introduced by Litinski’s paper, “A Game of Surface
Codes”, called GoSC [17] (see Section II).

GoSC uses a space-time resource model for evaluating
performance. The primary space-time trade-off we observe
is between the number of logical qubits (measured in units
of “tiles”) and the code cycles (known as “Tocks”) spent
in generating the graph state. Similar evaluations involving
resource overhead related to time and space have been applied
in various quantum computing studies [18]–[20]. Therefore,
this work also adopts the same overhead evaluation metric.
The primary goal of the Substrate Scheduler is to minimize the
space-time volume cost. We analyzed and optimized the layout
design used to generate the graph state. The stabilizer formal-
ism [21] (see Section II), which was originally developed for
the analysis and design of quantum error correction codes, is
used to further optimize the generation process. Our module
consists of three parts: stabilizer generator reduction, heuris-
tic algorithms for mapping graph vertices to logical qubits
of surface code, and scheduling of the stabilizer generator
measurements.

In summary, this paper makes the following contributions:

• We investigate two methods of generating fault-tolerant
quantum graph states based on surface codes and find that
the minimum time step cost required for using stabilizer
parity checks on the surface code is lower than that of

preparing the graph state with CZ gates. We provide a
demonstration of the required time and space costs based
on the two-tile patch one-bus layout and analyze the
relationship between space and time.

• We developed optimization techniques for generating
graph states via the stabilizer formalism, and show that
they can be used to reduce time costs.

• Our compiler module optimizes the process of synthesiz-
ing fault-tolerant graph states and allows for generating
graph states with the lowest generation time complexity
to date, achieving graph state generation time complexity
that is at or below linear in the number of vertices and
enabling specific types of graphs to have constant creation
time complexity.

The rest of the paper is organized as follows: Section II
provides an introduction to the key concepts of graph states,
stabilizer formalism, and basic surface code operations that are
utilized in this study. Section III provides an overview of the
framework for the Substrate Scheduler and demonstrates the
compiling process in detail. This includes pre-mapping opti-
mization, scheduling of stabilizer measurement, and heuristic
vertex-to-qubit mapping techniques. In Section IV, we present
the results obtained from experiments conducted using the
Substrate Scheduler. Finally, in Section V, we discuss future
work and conclude.

II. PRELIMINARIES

In this section, we give a brief overview of the required
concepts and notation used throughout this manuscript.

A. Graph State and Stabilizer Formalism

We begin with the notion of a graph G = (V,E) [22], which
is a pair of two sets, a vertex set V = {1, 2, 3, . . . , n} and an

2

edge set E ⊂ V 2. We also denote |V | = n and |E| as the
number of vertices and the total number of edges, respectively.
Two vertices a, b ∈ V are adjacent if they are connected by an
edge, {a, b} ∈ E. In this work, we only consider connected
simple graphs where only at most one edge is allowed per
pair of vertices with no self-loops and there exists a path
between any pair of vertices. This gives rise to the notion
of an adjacency matrix Γ = [Γa,b] ∈ {0, 1}n×n with elements

Γa,b =

{
1, if {a, b} ∈ E
0, otherwise.

(1)

We also make repeated use of the neighborhood ngbr(a) of a
vertex a ∈ V ,

ngbr(a) = {b ∈ V |{a, b} ∈ E}. (2)

The neighborhood is the set of vertices adjacent to a given
vertex. A subset of vertices U ⊂ V is independent if no two
of its vertices are adjacent. The maximum independent set,
α(G), is the largest such set.

Central to our discussion is the notion of graph states [9],
[10], a particular class of multipartite entangled states. The
vertices correspond to the qubits in the system while edges
correspond to interactions between pairs of qubits. For a given
graph G, we can construct its corresponding graph state |G⟩
by first initializing all qubits in the state |+⟩ = (|0⟩+|1⟩)/

√
2,

and for each pair of qubits which represent adjacent vertices
in G, an entangling two-qubit controlled-phase gate,

CZ = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ Z, (3)

is applied.
Since graph states are a subclass of more general stabilizer

states [21], there is a compact description of a state using only
n operators of length at most n, in contrast to the full state
vector representation, which requires a complex amplitude for
each of the 2n basis states. The stabilizer formalism describes
quantum states in terms of operators that stabilize the state.

A state |ψ⟩ is stabilized by an operator K if K|ψ⟩ = |ψ⟩,
that is, the state |ψ⟩ is a +1 eigenstate of the operator K. For
example, state |+⟩ is stabilized by the Pauli operator X since
X|+⟩ = |+⟩. We associate a multi-qubit Pauli operator with
qubit i of a graph state with the following form,

gi = Xi

⊗
j∈ngbr(i)

Zj . (4)

The n-qubit graph state |G⟩ is then uniquely identified as
the simultaneous +1 eigenstate of all n stabilizer operators
from Eq. (4). These stabilizer operators generate an Abelian
group referred to as the stabilizer S = ⟨g1, . . . , gn⟩. Stabilizer
generators of Eq. (4) lead to an efficient description of the
graph state in terms of n commuting operators.

We will make repeated use of measuring the stabilizer
generators. Measurement of stabilizer generator gi corresponds
to the application of a projection operator onto the even/odd
parity subspace for the stabilizer generator,

Π±(gi) =
1

2
(I ± gi). (5)

If the measured parity is even, that is, we have projected
onto the positive eigenspace of the stabilizer generator, we do
not need to take further action. Projections onto the negative
eigenspace can be further corrected to flip their parity, but in
general, this is classically tracked without applying quantum
gates during the generation process.

Once the generation of the graph state is complete, in
the absence of decoherence, it is clear from our previous
discussion that measurement of any of the stabilizer generators
of the graph state |G⟩ produces a +1 outcome with unit
probability. Similarly, projecting any initial state onto the
common even parity eigenspace of all the stabilizer generators
prepares the desired graph state |G⟩.

B. Surface Code

We employ the surface code [13]–[15], which encodes
logical qubit states into the collective state of a lattice of
physical qubits, as the method for quantum error correction.
The surface code’s nearest neighbor interaction structure in a
two-dimensional plane offers natural and practical realizability
compared to non-local codes or codes that require transversal
operations. Additionally, its high tolerance to errors [23], [24]
makes it an ideal candidate for error correction in quantum
computing.

There are many variations of surface codes, such as the
defect-based [13], the twist-based [25], or the patch-based [16]
encodings. We focus on the patch-based with the simplified
rules of tile-based board games introduced in [17]. The board
is partitioned into a number of tiles where they can host
patches representing qubits. The basic rules of this tile game
can be summarized as follows.

1) Correspondence to surface code lattice surgery: Assum-
ing that we are using the surface code with a code distance
d, a tile on the board represents ∼ 2d2 physical qubits.
Approximately half of these qubits are used for the data state,
while the other half are used for error syndrome extraction.
The solid and dashed edges of a patch correspond to the logical
Z and X operators on the boundaries of the surface code.
The performance metric of this tile-based game is the space-
time volume which corresponds to the board area and the unit
of time corresponding to the d error-check code cycles. To
describe the time required for operations on patches, a unit of
time called Tock is introduced, which is exactly d rounds of
code cycles. 0 Tock is a special case that does not mean 0 code
cycles; rather, it represents operations that have a constant time
cost and does not scale with the code distance d. However, it
should be noted that the constant time cost may be non-zero.

2) Logical qubit representation: A patch is a contiguous
area, which can span over multiple tiles, used to represent one
or more logical qubits (see Fig. 2). In this work, we will only
use one logical qubit per patch. On the boundary of the patch,
there can be solid or dashed edges representing the Pauli Z
and X operators, respectively. The point at which the solid
and dashed edges meet is called a corner or X/Z corner, even
if the two edges are on the same line, for historical reasons.

3

Fig. 2: Examples of two different kinds of one-qubit patches in
a 2×2 grid of tiles. A patch (logical qubit) can occupy one or
more tiles. Patches have dashed and solid edges representing
Pauli operators. The dashed edges represent the qubit’s X
operator, solid edges represent the qubit’s Z operator.

We will see their importance when we discuss operations on
patches.

3) Patch operations: We will now describe the native
operations available in this tile-based game with their corre-
sponding time cost in units of Tocks.

a) Qubit initialization: One-qubit patches can be initial-
ized in the +1 eigenstates of XL or ZL basis (|+⟩L or |0⟩L)
in 0 Tocks, where subscript L is used to denote that these are
logical Pauli operations and states.

b) Single-patch measurements: One single patch can be
measured in either the X or Z basis. After the measurement,
the patch will be removed from the board, freeing up previ-
ously occupied tiles. This operation has a cost of 0 Tocks.

c) Multi-qubit Pauli product measurement/parity mea-
surement: A parity check measurement can also be measured
on multiple patches (see Fig. 3 for an example). This mea-
surement procedure is performed by first initializing an ancilla
patch. The product of the operators on the boundaries of qubit
patches can be measured only if they share a border with
(adjacent to) the ancilla patch. For two-qubit cases, we may
wish to measure any of the four possible combinations XX ,
XZ, ZX , or ZZ, but this is only possible if the corresponding
X and Z operators border the ancilla patch.

After the chosen X or Z boundaries are merged with and
then split from the ancilla patch, the ancilla patch is measured.
(Combinations with Y are also possible if both X and Z
boundaries for a patch border the ancilla.)

The ancilla patch measurement projects the qubits onto
the +1 or −1 eigenspace of the multi-qubit Pauli product
operators and removes the ancilla patch from the board. This
operation costs 1 Tock.

d) Patch deformation and rotation: A patch can also be
expanded to cover more tiles (1 Tock) or shrunk to fewer tiles
(0 Tocks). X/Z corners can be moved along the boundaries
of the patch (1 Tock). This deformation of a patch can be
useful when we want to expose more operators on the patch

Fig. 3: A multi-qubit Y |q0⟩ ⊗ Z |q1⟩ ⊗ X |q2⟩ measurement
in one time step.

boundary to perform multi-patch measurements or to switch
between solid and dashed edges.

III. OUR APPROACH

A. Framework Overview

The general approach to creating graph states is to apply
controlled-phase gates between qubits of adjacent vertices
in the graph state [26], which can be performed by two
two-party parity check measurements. The worst case, when
all controlled-phase gates are performed sequentially, would
require O(|E|) Tocks which for a dense graph will scale
on the order of O(|V |2). For this reason, we opted for the
approach of using multi-party parity check measurements to
directly project the state onto the eigenspace of each of the
stabilizer generators. In contrast to the controlled-phase gate
approach, this will scale only on the order of O(|V |) Tocks
and is more efficient than the controlled-phase gate method
(also see Table. I). The primary goal of this approach is to
minimize and parallelize these stabilizer generator projections
for optimal efficiency.

Fig. 4 summarizes the key components of the Substrate
Scheduler. The Substrate Scheduler uses the adjacency matrix
as input, which theoretically allows it to process any graph
state that is represented as an adjacency matrix.

Fig. 4: Flow chart for Substrate Scheduler.

4

Fig. 5: The 2-row layout design predominantly used in this
paper has a spatial cost of 4n tiles, where n is the number
of vertices in the graph. It should be noted that this spatial
cost is not optimal when utilizing the pre-mapping stabilizer
generator reduction and allowing the use of one-tile one-qubit
patches.

The first step in the process is to reduce the number of
stabilizer generators that need to be actively measured. This
is achieved by appropriately initializing the qubits so that they
are already stabilized by a subset of the stabilizer generators.
The next step is to determine an optimized mapping of the
qubits. We proposed a heuristic scheme that works well for
certain types of graphs. After that, the Substrate Scheduler
finds an optimized schedule for the stabilizer generators and
minimizes the time cost by concurrently measuring as many
stabilizers as possible. This results in the optimized schedule
and a logical qubit allocation, which can be combined with
the default layout design and passed on to the final compila-
tion phase for the target fault-tolerant quantum computer to
generate a fault-tolerant quantum graph state.

B. Design of the Layout

Given the space-time trade-offs, our primitive design is to
use the two-tile one-qubit patches (see Section II) proposed in
the paper as logical qubits to represent the vertices in the graph
state. This design enables us to measure stabilizer generators
with the ancilla patch without requiring costly patch rotations,
as demonstrated in [17], which may otherwise dominate the
graph state generation process. We assume that the ancilla
patch consists of a row (one bus) of logical qubits of the same
length as the two-tile one-qubit patches. Then the structure
we use is a block of 2 rows by 2n columns representing n
logical qubits and the corresponding ancilla patch, as shown
in Fig. 5. This configuration requires 4n tiles corresponding
to ∼ 8d2 physical qubits (see Section II). Note that the
implementation of magic state distillation is not considered
in our cost calculation for the time being.

C. Three-Phase Process of Optimization

We split our process which reduces the time steps required
to create a graph state via stabilizer formalism into 3 phases,
namely: stabilizer generator reduction, vertex-to-qubit map-
ping, and scheduling of the stabilizer generator measurements.

1) Stabilizer Generator Reduction: As mentioned in Sec-
tion II, an n-qubit graph state |G⟩ is uniquely identified as
the simultaneous +1 eigenstate of all n stabilizer operators,

Fig. 6: An example of a maximal independent set. By initializ-
ing the logical qubits corresponding to the vertice a in |+⟩, the
requirement to measure the stabilizer generator ga associated
with this vertex can be omitted.

i.e. we need to perform n stabilizer generator measurements
to generate the graph state.

From the rule set in [17], we know that the time cost to
initialize logical qubits to |+⟩ or |0⟩ are both 0 time steps.
This allows us to initialize the qubits in such a way that they
are already stabilized by a subset of the stabilizer generators.
For example, the three-vertex path graph G is stabilized by
the following generators,

g0 = X ⊗ Z ⊗ I,
g1 = Z ⊗X ⊗ Z,
g2 = I ⊗ Z ⊗X.

Initializing q0 in |+⟩ and q1 in |0⟩ prepares a state that
is automatically stabilized by g0 (here we assume that the
mapping of the vertex-to-qubit is also sequential from left to
right). We can go further and initialize qubit q2 in the state |+⟩,
which will ensure that the three-qubit state is a simultaneous
+1 eigenstate of both g0 and g2,

g0 |+0+⟩ = |+0+⟩ = g2 |+0+⟩ . (6)

This results in the reduction of total stabilizer generator
measurements that we need to perform via multi-Pauli product
measurement. In our example, the only stabilizer generator that
remains to be measured in order to prepare the three-qubit
graph state is g1.

For a simple argument, to stabilize ga, we must initialize
qubit a in the state |+⟩, and all of its neighboring qubits in |0⟩.
This initialization strategy prohibits us from simultaneously
stabilizing any of the neighboring qubits in ngbr(a). However,
we can stabilize qubits inside ngbr(ngbr(a)) that are not
adjacent to a concurrently with ga.

As a result, the optimal reduction problem can be reduced
to the maximum independent set problem. Knowing the maxi-
mum independent set α(G) identifies the qubits which must be
initialized in |+⟩, while all the remaining qubits are initialized
in |0⟩. This means that the number of stabilizer generators that
need to be measured decreases to |V | − |α(G)|. In practice,
we compute a maximal independent set (see Fig. 6) using the

5

greedy algorithm in NetworkX [27] to achieve a reasonable
time complexity.

2) Scheduling of the Stabilizer Generator Measurements:
As shown in Fig. 4, the mapping of qubits to vertices is
conducted before the scheduling of the stabilizers, but here
we find it convenient to motivate the mapping problem by
explaining the scheduling problem first.

Given that each vertex in the graph is assigned to a specific
logical qubit as depicted in Fig. 7, along with a fixed stabilizer
generator reduction, we can decide the measurement sequence
for the stabilizer generators by exploiting their commutativity.
To measure a stabilizer generator, we need an ancilla that
covers all the mapped vertices of the stabilizer. This implies
that we cannot measure any two stabilizer generators whose
mapped vertices overlap between the leftmost and rightmost
qubits at the same time. In order to measure a stabilizer
generator ga, the ancilla is only required to cover patches
that represent vertices a and ngbr(a), without the need to
cover the remaining qubits. Thus, we can define an ancilla
block for measuring the generator gi by a pair of two numbers
(Li, Ri) with Li, Ri ∈ [1, 2n] where Li and Ri denotes the
leftmost and the rightmost qubits that the ancilla needs to
cover, respectively.

The problem of maximizing the number of stabilizer gener-
ators that can be measured simultaneously in a single step can
be rephrased as the problem of minimizing the total height of
the stacked ancilla blocks. An optimal solution to stabilizer
measurement scheduling can be found with a simple greedy
algorithm where we first sort the list of pairs [(Li, Ri)] in
non-decreasing order of Ri. If two pairs have the same Ri

value, we sort them in non-decreasing order of Li as well. To
find the optimal solution, for each time step, we traverse the
sorted list from the beginning while maintaining a set sett of
generators that we will concurrently measure. For each pair, if
the pair (Li, Ri) has Rj < Li for all j in sett, we can remove
it from the unmeasured list and add it to sett and proceed with
traversing the list until the end of the list. We then repeat this
until the sorted list is empty, and the sett we get at each
iteration corresponds to the stabilizer measurements we can
perform simultaneously in each time step.

We can see that this approach is optimal by simple con-
tradiction argument. Suppose our approach is not optimal:
when considering (Li, Ri), we should skip it and we could
pack more blocks, namely (Lj , Rj) and (Lk, Rk) into the
set where Ri ≤ Rj ≤ Rk. However, since we traverse the
list in non-decreasing order of R, if (Lj , Rj) and (Lk, Rk)
can be concurrently measured, (Li, Ri) and (Lk, Rk) can
also be concurrently measured, which gives a contradiction.
This contradiction proves the optimality of our approach. This
scheduling algorithm on average can be done in O(n log n)
time and O(n) space.

3) Vertex-to-Qubit Mapping: Qubit mapping (i.e. mapping
vertices to logical qubits) affects the number of stabilizers that
can be measured simultaneously. We want to rearrange the
vertex to patch assignment in order to achieve a higher degree
of parallelism when later scheduling stabilizers such that the

Fig. 7: A schematic diagram of the mapping process. To map
the vertices in a graph to logical qubits, one can assign labels
to each logical qubit.

resulting time step after scheduling is minimized.
In mapping, we aim to minimize the overlap of stabilizer

generators (or ancilla) to maximize the potential for simulta-
neous multi-Pauli measurements. Intuitively, we position the
dense components of the graph G in adjacent positions as
much as possible to minimize the distance between the start
and end positions (L,R) of the stabilizer generators. We use an
iterative mapping method that involves finding the minimum
cut of the graph (see Appendix A). In graph theory, a minimum
cut refers to the partition of the vertices of graph G into two
sets that minimize the number of edges crossing the partition.
For the MinCut mapper, we repeat this process of cutting the
graph (the first subgraph) until we obtain a subgraph with
two or fewer vertices. We then map these vertices to adjacent
logical qubits at the end of the row and remove this subgraph.
Then, we continue processing the first subgraph until there are
no subgraphs with more than two vertices remaining.

An efficient randomized algorithm, Karger’s algorithm [28],
can be used to solve the minimum cut problem. The time
complexity of a single run is O(n2), To obtain the optimal
solution, we can run the algorithm n2 log(n) times, resulting
in an overall time complexity of O(n4 log(n)).

Further optimization can be performed after the initial
stabilizer generator reduction and the vertex-to-qubit mapping.
Any qubit a ∈ α(G) is initialized in the |+⟩ state, which
means that it will not take part in stabilizer measurements
where it needs to be measured in the X basis. This allows us

Fig. 8: The 2-row layout design after the pre-mapping stabi-
lizer generator reduction. The logical qubits are depicted by
both two-tile one-qubit patches and one-tile one-qubit patches.

6

to represent such qubits by patches that take up a single tile,
as pictured in Fig. 8. The space complexity required after this
optimization is reduced to 2× 2n− |α(G)|.

IV. EVALUATION

We conducted tests on the functionality and performance of
the Substrate Scheduler. Since in the current version the layout
has been fixed and the space cost is thus determined, our focus
in this work is on evaluating the time cost of creating the graph
state. In the stabilizer formalism, creating a graph state with
n vertices involves measuring n stabilizer generators. Without
any optimization, this would require n time steps in the worst
case as measuring a stabilizer generator takes 1 time step.
All time steps mentioned in this section refer to the time
measure known as “Tock”, which was introduced in [17] (see
Section II).

To assess the performance of our method, we will compare
the time cost of creating the graph state after applying the
Substrate Scheduler to the initial number of time steps n.
Describing algorithm-specific graph states corresponding to
different quantum circuits or algorithms can be challenging
due to their distinct characteristics, such as size and density,
especially after undergoing optimizations like local comple-
mentation [9], [29]. It is not yet clear what structural properties
we should expect from a typical instance of an algorithm-
specific graph state.

In order to gain insight into the performance of the Substrate
Scheduler, we chose the following testing strategy. We begin
by testing specific regular types of graphs to verify that
Substrate Scheduler produces the correct and expected output.
Then we move on to testing how the sparsity and size of the
graph affect the total reduction in time steps needed to prepare
the target graph state.

A. Evaluation of Specific Types of Graphs

We begin by evaluating the Substrate Scheduler’s perfor-
mance on common classes of graphs, including path graphs,
star graphs, tree graphs, and complete graphs. These classes
of graphs were chosen because they allow for analytical
optimization of the graph state preparation procedure, enabling
us to verify the correctness of the Substrate Scheduler’s output.
Understanding how our approach to reducing the overhead of
graph state preparation behaves in these simple examples also
provides useful intuition about what to expect when we test
the Substrate Scheduler on random graphs.

Fig. 9 illustrates the performance of the Substrate Scheduler
when processing these specific types of graphs. We observe
that output reproduces the expected results. The analytic
optimization is summarized in Table I. In order to test the
performance of our chosen qubit mapping algorithm, we
compared how the Substrate Scheduler performs when we
use the MinCut mapping and a random qubit assignment. For
the path graph, the qubit assignment is crucial as observed in
Fig. 9(a). The MinCut mapping clearly outperforms a random
qubit assignment.

(a) Path Graph (b) Star Graph

(c) Tree Graph (d) Complete Graph

Fig. 9: The performance of the Substrate Scheduler on four
distinct types of graphs. The horizontal axis indicates the graph
size (number of vertices), while the vertical axis shows the
number of time steps required to complete the initialization
of the graph state. Light blue lines represent experiments
conducted with all optimization techniques, including the
proposed MinCut mapping method, while grey lines de-
pict experiments conducted with a random mapping method
(no mapping optimization). Overall, the Substrate Scheduler
achieves a significant speedup in terms of time steps across
three out of four graph types, with path graphs and star graphs
experiencing a reduction in time steps from linear growth to
constant levels. In the complete graph, there is no discernible
improvement. Notably, for path graphs, the proposed MinCut
mapping method in this study outperforms random mapping,
while for the other three types of graphs, the MinCut mapping
method achieves performance that is not inferior to random
mapping.

These numbers can be compared to the theoretical mini-
mum, assuming no resource constraints such as the availability
of the ancilla bus. When unconstrained by resources, the time
steps taken to prepare a graph state is either the maximum
degree of G, written ∆(G), or ∆(G)+1 [26]. This is because
of Vizing’s theorem [30], which bounds the chromatic index
into either ∆(G) or ∆(G) + 1. Trees always fall into the
first class of requiring only ∆(G) time steps [31]. Table I
further discusses the optimal time step for each type of graph,
including the theoretically optimal time step obtained after
applying all three optimization methods.

The experimental results show that when using the MinCut
mapper, the path graph, the star graph, and the complete graph
all achieved their theoretical optimal values, whereas Substrate
Scheduler cannot further optimize the complete graph. The
time step growth of the random tree depends on the maximum

7

Graph Type CZ Preparation Depth Maximum Stabilizer Reduction Parity Check Preparation Depth

Path Graph 2 |V | → |V |/2 2
Star Graph |V | − 1 |V | → 1 1

Random Tree ∆(G) |V | → |V |/2 ∆(G)
Complete Graph |V | or |V | − 1 |V | → |V | − 1 |V | − 1

TABLE I: Costs associated with generating different types of graph states, where ∆(G) is the highest degree of any vertex in
G. The second column is the optimal preparation depth for preparing the graph state with CZ gates, which means the fewest
number of time steps to prepare the graph state when ancilla buses are not restricted by the spatial layout, proportional to the
chromatic index of the graph. The third column is the number of parity checks that must be performed before and after the
maximum independent set of this graph class is initialized in |+⟩ for the stabilizer generator reduction. The fourth column is
the smallest amount of time steps taken to perform the stabilizer parity checks when allowing non-overlapping parity check
to be applied in parallel. The naive time step cost for generating graph states by stabilizer formalism for any graph is |V |,
(corresponding to the number of stabilizer generators that need to be applied), and the complete graph has preparation depth
|V | when |V | is odd, and |V |−1 when |V | is even. The random tree maximum stabilizer reduction is a lower bound, achievable
when ancilla buses are not restricted by the spatial layout, since trees are bipartite and we choose the maximal independent
set to be the larger of the two bipartitions.

dimension of the graph, as previously discussed.

B. Evaluation of Random Graphs with Different Density

Fig. 10: The performance of the Substrate Scheduler is an-
alyzed across a range of densities. Each point on the graph
represents a random connected graph with 100 vertices. The
horizontal axis indicates the density of the graph. To the left
of the gray dashed line, graphs are sparse; between the gray
and red lines, graphs are intermediate; and to the right of
the red dashed line, graphs are dense. Each point on the
plot represents the average performance over 10 randomly
generated instances, and the error bars indicating the standard
deviation. The results demonstrate the reduction in time cost
achieved by the Substrate Scheduler, which becomes less
significant as graph density increases. Notably, the time cost
growth approximately follows a logarithmic curve, initially
increasing rapidly before gradually slowing down as the graph
changes from sparse to dense. Additionally, the MinCut map-
ping method exhibited performance comparable to that of the
random mapping method.

The type of graph, its size, and its density are all significant
factors that contribute to the overall time cost. The experiments
in Fig. 10 show the effect of different graph densities on the
time cost.

The graphs in the experiment are generated by the Python
package NetworkX [27] by uniformly selecting from the set of
all graphs containing 100 vertices and |E| edges. The density
of graphs is represented by the ratio between the number of
edges in a graph |E| and the maximum number of edges
that the graph can contain. Thus when the number of vertices
is fixed, the number of edges has determined the density of
a graph. For undirected simple graphs, we define the graph
density as:

Density =
2|E|

|V | × (|V | − 1)
(7)

The result shows that it performs better on sparse graphs
compared to dense graphs. However, with increasing graph
density, the growth of time cost after optimization approx-
imately follows a logarithmic curve. This suggests that the
impact on the Substrate Scheduler’s performance becomes less
significant as the density of the graph reaches a certain level.

C. Scalability Testing

To assess the Substrate Scheduler’s potential for use in
promising near-term applications, we conducted experiments
to evaluate its performance across graphs of different sizes
(see Fig. 11). In the current testing scale, we found that
the performance of MinCut mapper and random mapper was
comparable.

Our experiments showed that the Substrate Scheduler can
effectively handle sparse graphs, and thus we can expect its
application to larger graphs in the future.

For dense graphs, we did not observe any significant reduc-
tion in the number of time steps. This is not a serious limitation
as dense graphs can be transformed into sparse ones without
affecting the quantum computation itself, as we discuss in
Section V. In our study, we set our target at generating 1000-
vertex graph states, which provides a reasonable evaluation

8

(a) Sparse graph with n logn edges (b) Dense graph with n2/ logn edges

Fig. 11: Performance of Substrate Scheduler on graphs of varying sizes. To ensure representative results, we selected two
types of graphs of different densities, as defined in this work: sparse graphs (with O(n log n) edges) and dense graphs (with
O(n2/ log n) edges) Each point on the plot is averaged over 10 randomly generated instances. Error bars are too small to be
seen. The horizontal axis represents the number of vertices in the graph, while the vertical axis indicates the number of time
steps. To avoid excessive compilation times, which would become impractical in real applications, we tested with the MinCut
Mapper for only up to 300 vertices. The red vertical dashed line indicates the target for this study, which is the graph with
1000 vertices.

of the tool’s general behavior and compatibility with other
compiler tools.

V. DISCUSSION

To the best of our knowledge, this work is one of the first
studies for this problem, presenting a feasible approach to
optimize the time step cost of generating fault-tolerant graph
states. The shape of the 2-row layout used in our work was
chosen for ease of use but is not strictly required. The ancilla
bus can be easily deformed to better suit the physical layout of
the chip without affecting our analysis. On the other hand, the
mapping approach chosen is optimal only for specific graph
types.

Our scalability testing shows comfortable scaling up to
1,000 nodes in the graph. The graph size needed for appli-
cation circuits will depend on the number of input qubits
and the number of T gates in the circuit, which in turn is
driven by the required precision for the Solovay-Kitaev de-
composition [32]–[34] for many algorithms. Graphs far larger
than 1,000 nodes will be needed, but taking into consideration
various optimizations that are being concurrently developed,
it is difficult to estimate sizes at the time of this work, so we
defer that estimation to future work.

The density of graphs that will arise in the production use of
the toolchain is not yet well understood. The testing presented
here focuses on several abstract types of graphs, both because
of the difficulty of predicting the graph structures (which will
also change as a result of the future work described below)

and in order to provide a solid basis for understanding the
performance and for debugging and algorithm development.

The following are some extensions to this work that could
both improve our implementation performance and lead to
more rigorous optimality bounds:

a) Local complementation: Local complementation (LC)
is an operation that can be used to transform graph states, via
single qubit gates, into a large class of equivalent graph states
with highly varied structures [35]. A potential optimization of
our method is to reduce the preparation depth of the algorithm-
specific graph state by modifying the input state with LC;
although computing the local minimum degree of a graph is
both NP-complete and hard to approximate [36], LC can be
used to minimize over other metrics such as graph size to
reduce the cost of graph state constructions [26]. For example,
the complete graph can be transformed into a star graph to
reduce the time steps for its preparation.

After the stabilizer generator reduction is performed on an
LC-optimized graph state, further optimization is possible by
using LC to then reduce the connectivity constraints required
by the stabilizer checks. It is presently unknown if these two
LC optimization steps would meaningfully differ.

b) Stabilizer generator reduction: In our approach, we
choose to maximize the number of stabilizer reductions by ap-
proximating the maximum independent set of the input graph
state, with a maximal independent set. This will minimize the
number of stabilizer checks required, however, this does not
necessarily minimize the preparation depth required to perform
the stabilizer checks; it is plausible that for some algorithm-

9

specific graph states, there is a stabilizer generator reduction
which contains more stabilizer checks but can be performed
in parallel with fewer time steps. In future work, it may be
possible to choose the stabilizer generator reduction according
to different criteria to more rigorously guarantee preparation
depth optimality bounds.

c) Optimizing mapping methods: It is not known cur-
rently if there is an asymptotic polynomial time algorithm for
vertex-to-qubit mapping which minimizes preparation depth,
even for the linear architecture proposed. The preparation
depth overhead in this step is due to the geometric properties
of the proposed linear architecture which limits which parity
checks can be done simultaneously. It is not known to what
extent this problem is intractable for more structurally complex
ancilla bus architectures.

d) Other ancilla bus architectures: The linear ancilla bus
architecture is promising because it has clear constraints on
geometric connectivity, which translate to a precise problem
definition for optimizing the vertex-to-qubit mappings, and for
having a high data to ancilla qubit ratio of 50%. While other
architectures may have a worse data to ancilla qubit ratio,
they may also be able to prepare graph states with fewer time
steps due to different connectivity rules about which pairs
of vertices can participate in stabilizer checks simultaneously.
Further research is needed to quantitatively compare different
architectures in both the data to ancilla qubit ratio and the
overall preparation depth reduction, to see which architectures
can perform with the lowest overall time-space volume.

APPENDIX A
PSEUDOCODE FOR MINCUT MAPPER

The pseudocode for the MinCut mapper (see Section III) is
provided below as Algorithm 1.

Algorithm 1 Algorithm for MinCut Mapper

Input: g: the input graph
Output: mapping: the indexes of the vertices that have been

mapped to the logical qubits
mapping ← Array[] ▷ Initialize the mapping array
G← deepcopy(g) ▷ Create a copy of the input graph
function MIN CUT(graph, component)

cut edges list← Array[] ▷ Initialize the list of cut
edges

shortestLen = very large value
shortestV ← Array[]
for i = 0 to num of repetitions do ▷ Loop over

iterations
currentLen, currentV ← karger(graph) ▷

Apply Karger’s algorithm to find the minimum cut. The
function karger takes a graph as input and returns
two values: the number of edges that need to be cut
currentLen, and the vertices of those edges currentV .

if currentLen < shortestLen then
shortestLen← currentLen
shortestV ← deepcopy(currentV)

end if
end for
for edges in currentV do

cut edges list.append(edges)
end for
graph.remove edges from(cut edge) ▷ Remove

the cut edges from the graph
return graph

end function
function MAPPING MIN(G)

for component in connected subgraphs(G) do
if (number of vertices (component) > 2) then

G← min cut(G, component)
return mapping min(G) ▷ Recursively call

the function on the updated graph
else

mapping.append(component.vertices)
G.remove vertices from(component.vertices)
return mapping min(G) ▷ Recursively call

the function on the updated graph
end if

end for
end function
mapping min(G)
return mapping

CODE AVAILABILITY

Substrate Scheduler’s source code, documentation, and sam-
ple configurations are fully available online 2. In addition to the
tool, we also provide benchmarking code for several sample
runtime experiments, along with a visualization tool. Feedback
and requests for features are welcome.

2https://github.com/sfc-aqua/gosc-graph-state-generation

10

https://github.com/sfc-aqua/gosc-graph-state-generation

REFERENCES

[1] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and
J. L. O’Brien, “Quantum computers,” Nature, vol. 464, no. 7285, pp.
45–53, 2010. [Online]. Available: https://doi.org/10.1038/nature08812

[2] J. Preskill, “Quantum Computing in the NISQ era and beyond,”
Quantum, vol. 2, p. 79, Aug. 2018. [Online]. Available: https:
//doi.org/10.22331/q-2018-08-06-79

[3] D. Gottesman, “An introduction to quantum error correction and
fault-tolerant quantum computation,” in Quantum information science
and its contributions to mathematics, Proceedings of Symposia in
Applied Mathematics, vol. 68, 2010, pp. 13–58. [Online]. Available:
https://arxiv.org/abs/0904.2557

[4] S. J. Devitt, W. J. Munro, and K. Nemoto, “Quantum error correction
for beginners,” Reports on Progress in Physics, vol. 76, no. 7, p.
076001, 2013. [Online]. Available: https://doi.org/10.1088/0034-4885/
76/7/076001

[5] B. M. Terhal, “Quantum error correction for quantum memories,” Rev.
Mod. Phys., vol. 87, pp. 307–346, Apr 2015. [Online]. Available:
https://link.aps.org/doi/10.1103/RevModPhys.87.307

[6] C. Chamberland and K. Noh, “Very low overhead fault-tolerant magic
state preparation using redundant ancilla encoding and flag qubits,” npj
Quantum Information, vol. 6, no. 1, p. 91, 2020. [Online]. Available:
https://doi.org/10.1038/s41534-020-00319-5

[7] K. J. Satzinger et al., “Realizing topologically ordered states on a
quantum processor,” Science, vol. 374, no. 6572, pp. 1237–1241, 2021.
[Online]. Available: https://doi.org/10.1126/science.abi8378

[8] M. K. Vijayan, A. Paler, J. Gavriel, C. R. Myers, P. P. Rohde, and S. J.
Devitt, “Compilation of algorithm-specific graph states for quantum
circuits,” 2022. [Online]. Available: https://arxiv.org/abs/2209.07345

[9] M. Hein, J. Eisert, and H. J. Briegel, “Multiparty entanglement in
graph states,” Phys. Rev. A, vol. 69, p. 062311, Jun 2004. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevA.69.062311

[10] M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. V. den Nest, and
H. J. Briegel, “Entanglement in graph states and its applications,”
ArXiv:quant-ph/0602096, 2006. [Online]. Available: https://arxiv.org/
abs/quant-ph/0602096

[11] R. Raussendorf and H. J. Briegel, “A one-way quantum computer,”
Phys. Rev. Lett., vol. 86, pp. 5188–5191, May 2001. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.86.5188

[12] M. A. Nielsen, “Cluster-state quantum computation,” Reports on Math-
ematical Physics, vol. 57, no. 1, pp. 147–161, 2006. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0034487706800145

[13] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland,
“Surface codes: Towards practical large-scale quantum computation,”
Physical Review A, vol. 86, no. 3, p. 032324, Sep 2012. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevA.86.032324

[14] A. Kitaev, “Fault-tolerant quantum computation by anyons,” Annals
of Physics, vol. 303, no. 1, p. 2–30, Jan 2003. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0003491602000180

[15] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, “Topological quantum
memory,” Journal of Mathematical Physics, vol. 43, no. 9, pp. 4452–
4505, sep 2002. [Online]. Available: https://doi.org/10.1063/1.1499754

[16] D. Horsman, A. G. Fowler, S. Devitt, and R. Van Meter, “Surface
code quantum computing by lattice surgery,” New Journal of
Physics, vol. 14, no. 12, p. 123011, Dec 2012. [Online]. Available:
https://iopscience.iop.org/article/10.1088/1367-2630/14/12/123011

[17] D. Litinski, “A Game of Surface Codes: Large-Scale Quantum
Computing with Lattice Surgery,” Quantum, vol. 3, p. 128, Mar. 2019.
[Online]. Available: https://doi.org/10.22331/q-2019-03-05-128

[18] A. M. Steane, “Overhead and noise threshold of fault-tolerant quantum
error correction,” Physical Review A, vol. 68, p. 042322, 2003. [Online].
Available: https://doi.org/10.1103/PhysRevA.68.042322

[19] A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M.
Gambetta, “Validating quantum computers using randomized model

circuits,” Phys. Rev. A, vol. 100, p. 032328, Sep 2019. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevA.100.032328

[20] A. Paler, I. Polian, K. Nemoto, and S. J. Devitt, “Fault-tolerant, high-
level quantum circuits: form, compilation and description,” Quantum
Science and Technology, vol. 2, no. 2, p. 025003, Apr 2017. [Online].
Available: https://dx.doi.org/10.1088/2058-9565/aa66eb

[21] D. Gottesman, Stabilizer Codes and Quantum Error Correction.
PhD Thesis Caltech, 1997. [Online]. Available: https://arxiv.org/abs/
quant-ph/9705052

[22] D. B. West, Introduction to graph theory. Prentice Hall, 2001, vol. 2.
[23] R. Raussendorf and J. Harrington, “Fault-tolerant quantum computation

with high threshold in two dimensions,” Phys. Rev. Lett., vol. 98,
p. 190504, May 2007. [Online]. Available: https://link.aps.org/doi/10.
1103/PhysRevLett.98.190504

[24] D. S. Wang, A. G. Fowler, and L. C. L. Hollenberg, “Surface
code quantum computing with error rates over 1%,” Phys. Rev.
A, vol. 83, p. 020302, Feb 2011. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevA.83.020302

[25] H. Bombin, “Topological order with a twist: Ising anyons from an
abelian model,” Physical Review Letters, vol. 105, no. 3, p. 030403, Jul
2010. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.
105.030403

[26] A. Cabello, L. E. Danielsen, A. J. López-Tarrida, and J. R.
Portillo, “Optimal preparation of graph states,” Physical Review
A, vol. 83, no. 4, p. 042314, Apr. 2011. [Online]. Available:
https://doi.org/10.1103/PhysRevA.83.042314

[27] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using NetworkX,” in Proceedings
of the 7th Python in Science Conference, G. Varoquaux, T. Vaught,
and J. Millman, Eds., 2008, pp. 11 – 15. [Online]. Available:
https://conference.scipy.org/proceedings/SciPy2008/paper 2/

[28] D. R. Karger, “Global min-cuts in RNC, and other ramifications of
a simple min-cut algorithm,” in Proceedings of the Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, ser. SODA ’93. USA:
Society for Industrial and Applied Mathematics, 1993, p. 21–30.
[Online]. Available: https://dl.acm.org/doi/10.5555/313559.313605

[29] M. Van den Nest, J. Dehaene, and B. De Moor, “Graphical description
of the action of local Clifford transformations on graph states,”
Phys. Rev. A, vol. 69, p. 022316, Feb 2004. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevA.69.022316

[30] V. G. Vizing, “On an estimate of the chromatic class of a p-graph,”
Diskret analiz, vol. 3, pp. 25–30, 1964.

[31] J.-C. Fournier, “Colorations des arêtes d’un graphe,” Cahiers du CERO
(Bruxelles), vol. 15, pp. 311–314, 1973.

[32] A. Y. Kitaev, “Quantum computations: algorithms and error correction,”
Russian Mathematical Surveys, vol. 52, no. 6, p. 1191–1249, Dec
1997. [Online]. Available: https://iopscience.iop.org/article/10.1070/
RM1997v052n06ABEH002155

[33] P. Selinger, “Efficient Clifford+T approximation of single-qubit
operators,” Quantum Info. Comput., vol. 15, no. 1–2, p. 159–180, jan
2015. [Online]. Available: https://arxiv.org/abs/1212.6253

[34] C. M. Dawson and M. A. Nielsen, “The Solovay-Kitaev algorithm,”
Quantum Info. Comput., vol. 6, no. 1, p. 81–95, Jan 2006. [Online].
Available: https://arxiv.org/abs/quant-ph/0505030

[35] J. C. Adcock, S. Morley-Short, A. Dahlberg, and J. W. Silverstone,
“Mapping graph state orbits under local complementation,” Quantum,
vol. 4, p. 305, Aug. 2020, arXiv: 1910.03969. [Online]. Available:
https://doi.org/10.22331/q-2020-08-07-305

[36] D. Cattanéo and S. Perdrix, “Minimum degree up to
local complementation: Bounds, parameterized complexity, and
exact algorithms,” in Algorithms and Computation. Springer
Berlin Heidelberg, 2015, pp. 259–270. [Online]. Available:
https://doi.org/10.1007/978-3-662-48971-0 23

11

https://doi.org/10.1038/nature08812
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://arxiv.org/abs/0904.2557
https://doi.org/10.1088/0034-4885/76/7/076001
https://doi.org/10.1088/0034-4885/76/7/076001
https://link.aps.org/doi/10.1103/RevModPhys.87.307
https://doi.org/10.1038/s41534-020-00319-5
https://doi.org/10.1126/science.abi8378
https://arxiv.org/abs/2209.07345
https://link.aps.org/doi/10.1103/PhysRevA.69.062311
https://arxiv.org/abs/quant-ph/0602096
https://arxiv.org/abs/quant-ph/0602096
https://link.aps.org/doi/10.1103/PhysRevLett.86.5188
https://www.sciencedirect.com/science/article/pii/S0034487706800145
https://link.aps.org/doi/10.1103/PhysRevA.86.032324
https://linkinghub.elsevier.com/retrieve/pii/S0003491602000180
https://doi.org/10.1063/1.1499754
https://iopscience.iop.org/article/10.1088/1367-2630/14/12/123011
https://doi.org/10.22331/q-2019-03-05-128
https://doi.org/10.1103/PhysRevA.68.042322
https://link.aps.org/doi/10.1103/PhysRevA.100.032328
https://dx.doi.org/10.1088/2058-9565/aa66eb
https://arxiv.org/abs/quant-ph/9705052
https://arxiv.org/abs/quant-ph/9705052
https://link.aps.org/doi/10.1103/PhysRevLett.98.190504
https://link.aps.org/doi/10.1103/PhysRevLett.98.190504
https://link.aps.org/doi/10.1103/PhysRevA.83.020302
https://link.aps.org/doi/10.1103/PhysRevA.83.020302
https://link.aps.org/doi/10.1103/PhysRevLett.105.030403
https://link.aps.org/doi/10.1103/PhysRevLett.105.030403
https://doi.org/10.1103/PhysRevA.83.042314
https://conference.scipy.org/proceedings/SciPy2008/paper_2/
https://dl.acm.org/doi/10.5555/313559.313605
https://link.aps.org/doi/10.1103/PhysRevA.69.022316
https://iopscience.iop.org/article/10.1070/RM1997v052n06ABEH002155
https://iopscience.iop.org/article/10.1070/RM1997v052n06ABEH002155
https://arxiv.org/abs/1212.6253
https://arxiv.org/abs/quant-ph/0505030
https://doi.org/10.22331/q-2020-08-07-305
https://doi.org/10.1007/978-3-662-48971-0_23

	Introduction
	Preliminaries
	Graph State and Stabilizer Formalism
	Surface Code
	Correspondence to surface code lattice surgery
	Logical qubit representation
	Patch operations

	Our Approach
	Framework Overview
	Design of the Layout
	Three-Phase Process of Optimization
	Stabilizer Generator Reduction
	Scheduling of the Stabilizer Generator Measurements
	Vertex-to-Qubit Mapping

	Evaluation
	Evaluation of Specific Types of Graphs
	Evaluation of Random Graphs with Different Density
	Scalability Testing

	Discussion
	Appendix A: Pseudocode for MinCut Mapper
	References

