
Fusion Blossom: Fast MWPM Decoders for QEC
Yue Wu and Lin Zhong

Department of Computer Science, Yale University, New Haven, CT

Abstract—The Minimum-Weight Perfect Matching (MWPM)
decoder is widely used in Quantum Error Correction (QEC)
decoding. Despite its high accuracy, existing implementations of
the MWPM decoder cannot catch up with quantum hardware,
e.g., 1 million measurements per second for superconducting
qubits. They suffer from a backlog of measurements that grows
exponentially and as a result, cannot realize the power of
quantum computation. We design and implement a fast MWPM
decoder, called Parity Blossom, which reaches a time complexity
almost proportional to the number of defect measurements. We
further design and implement a parallel version of Parity Blossom
called Fusion Blossom. Given a practical circuit-level noise of
0.1%, Fusion Blossom can decode a million measurement rounds
per second up to a code distance of 33. Fusion Blossom also
supports stream decoding mode that reaches a 0.7 ms decoding
latency at code distance 21 regardless of the measurement rounds.

I. INTRODUCTION

Quantum error correction (QEC) is essential for fault-
tolerant quantum computing. The decoder of QEC must be
fast enough to avoid exponential backlog effect discussed by
Terhal [1]. That is, it must process all the syndrome bits
generated by the quantum hardware within a smaller period
of time. Such fast decoders are known as online decoders.
Also, a decoder design should be scalable to support large
code distances in order to reach the desired logical error rate.

No scalable online MWPM decoders have been reported.
Fowler, Adam and Lloyd [2] reported an almost linear-time
MWPM decoder without a publicly accessible implementation.
Higgott and Gidney recently reported an open-sourced, almost
linear-time MWPM decoder at [3]. Since they are sequential
algorithms, they will eventually fail to reach the throughput
requirement at some large code distance. Fowler also sug-
gested an idea to parallelize the MWPM decoder [4], without
providing any empirical data regarding its performance.

We design Fusion Blossom as an online MWPM decoder
that scales to arbitrarily large code distance d, using paral-
lelization. Fusion Blossom is inspired by recently reported
parallel realizations of the Union-Find (UF) decoder [5–8]
and by the relationship between the UF decoder and the
MWPM decoder revealed in [9]. Fusion Blossom drastically
speeds up QEC decoding to sub-microsecond per measurement
round by using parallel CPU cores. Taking a rotated surface
code of 0.1% circuit-level noise on a 64-core CPU as an
example, it can decode up to d = 33 with throughput of
one million rounds per second using batch decoding. Using
stream decoding, it achieves a constant 0.7 ms average latency
at d = 21 regardless of the number of measurement rounds. To
the best of our knowledge, Fusion Blossom is the first publicly
available parallel MWPM decoder [10], implemented in Rust
with Python binding [11].

The key ideas of Fusion Blossom are two. First, it re-
cursively divides a decoding problem into two sub-problems
that can be solved independently and efficiently fuses their
solutions, according to a tree structure computed offline.
Second, it leverages a fast sequential MWPM decoder called
Parity Blossom, which implements a novel variant of the
blossom algorithm. Parity Blossom leverages the property of
the syndrome graph [9] where the MWPM problem is defined:
the syndrome graph is constructed from a much sparser graph
called decoding graph. Parity Blossom works on the decoding
graph to solve the MWPM problem for the syndrome graph.

In an impressive parallel work, Higgott and Gidney [3]
present Sparse Blossom, an implementation of blossom algo-
rithm that shares the key idea of Parity Blossom: identifying
tight edges using the decoding graph, and the same math-
ematical foundation. Sparse Blossom features several novel
optimizations that are not used by Parity Blossom. This paper
presents the following contributions that complement those by
Sparse Blossom.
• The mathematical foundation behind Sparse Blossom and

Parity Blossom (III).
• Fusion Blossom, a parallel MWPM decoder that could be

based on either Sparse Blossom or Parity Blossom (IV).
• A unified framework for implementing matching-based

decoders including novel mathematically grounded opti-
mizations (V).

We evaluate Parity Blossom and Fusion Blossom in §VI
and discuss related work in §VII. Our implementation is open-
source and available at [10].

II. BACKGROUND

We first define the necessary data structures for decoding a
surface code. More information can be found in [9].

A. Quantum Error Correction (QEC) Codes

We aim at decoding codes that can be represented by
a data structure called model graph. Such codes include
many of the topological codes [12]. Such a code consists
of data qubits and stabilizers. Data qubits store the quantum
information while stabilizers allow errors in data qubits to
be observed classically: an error in a data qubit will impact
the measurement outcome of the adjacent stabilizers that are
designed to detect this type of error.

a) Model Graph: Following [9], we represent such a
QEC code with a model graph GM = (VM , EM). A vertex
v ∈ VM corresponds to a stabilizer measurement result. Each
edge e ∈ EM corresponds to an independent error source and
connects with two vertices that correspond to the measurement

1

ar
X

iv
:2

30
5.

08
30

7v
1

 [
qu

an
t-

ph
]

 1
5

M
ay

 2
02

3

outcomes of stabilizers adjacent to this error source. We add a
virtual vertex to an edge if the corresponding error source
only connects with a single vertex. This results in a two-
dimensional graph as show in Fig. 1(2). The model graph is
sparse because |EM | is O(|VM |). Edges in the model graph
are weighted. The weight of an edge can be computed from
the error model of the corresponding error source P (e) as
we = log

(
1−P (e)
P (e)

)
.

The model graph can be generalized to be three-dimensional
to account for erroneous stabilizer measurement shown in
Fig. 4. The third dimension comes from multiple rounds
of measurement, with each round represented by the two-
dimensional model graph as shown in Fig. 1(2). Vertices
corresponding to the measurement outcomes of the same
stabilizer in two consecutive rounds are connected with a new
edge, which represents the potential measurement error.

b) Error Pattern & Syndromes: When an independent
error source in a code experiences an error, it will “flip” the
measurement outcome of the two adjacent stabilizers. Because
a stabilizer is adjacent to multiple independent error sources,
its measurement outcome is determined by the parity of the
number of erroneous sources: Only if an odd number of
adjacent sources experience error, the stabilizer will have a
defect measurement outcome.

Because EM denote the set of independent error sources in
the code, E ⊆ EM denotes the subset that experience an error,
or error pattern. P (E),∀E ⊆ EM indicates the probability
that E happens. It is the error model of the code and can be
obtained by characterizing the quantum hardware.

One can compute the error model from the error model for
each independent error source, P (e), as below:

P (E) =
∏
e∈E

P (e)
∏

f∈EM\E

(1− P (f)) ∝
∏
e∈E

P (e)

(1− P (e)) (1)

Given an error pattern E , S(E) denotes the set of vertices
that correspond to the defect measurement outcomes in the
decoding graph and it is known as the syndrome of E .

Given the syndrome S and the model graph, a decoder
seeks to find an error pattern that produces S. The decoding
graph is the model graph with the syndrome S marked, as
shown in Fig. 1(3). The Union-Find decoder [13] uses the
decoding graph [9] to find an error pattern that can produce
the syndrome.

c) Most-Likely Error Decoder: A Most-Likely Error
(MLE) decoder tries to find the most likely error pattern that
generates the syndrome S.

arg max
E|S(E)=S

P (E) = arg max
E|S(E)=S

∏
e∈E

P (e)

1− P (e)

The MLE decoding problem then becomes a problem for
the decoding graph: find a subset of edges E ⊆ EM that
generates the observed syndrome S(E) = S while maximizing
P (E) =

∏
e∈E

P (e)
(1−P (e)) . Note that we use E as error pattern

and subset of edges interchangeably because they represent the
same thing. Since it’s more common to define the summation

of weights in graph problems, we can equivalently translate
the problem into minimizing W (E) =

∑
e∈E we.

arg min
E|S(E)=S

∑
e∈E

we

d) MWPM Decoder: The Minimum-Weight Perfect
Matching (MWPM) decoder is an exact MLE decoder when
the error model can be precisely represented by a model graph.
Unlike the Union-Find decoder, the MWPM decoder uses
the syndrome graph, G(V,E), which is generated from the
decoding graph by creating an edge between any two defect
vertices and removing normal vertices v ∈ VM \ S (and their
incident edges). That is, V = S and E = {(u, v)|∃u, v ∈ S}.
The weight of an edge in the syndrome graph is calculated
as that of a minimum-weight path between them. As its name
suggests, the MWPM decoder finds an MLE error pattern by
finding a minimum-weight perfect matching for the syndrome
graph. We illustrate the workflow of the MWPM decoder in
Fig. 1.

Because the fastest known algorithm to solve the MWPM
problem for a general graph is the blossom algorithm [14],
most implementations of the MWPM decoder use off-the-
shelf MWPM libraries such as Kolmogorov’s blossom V
library [15] and the Lemon library by Dezső et al [16]. These
implementations must go through all the stages in Fig. 1.
Because the syndrome graph is complete, i.e, |E| = |V |2,
even the fastest implementations known [17, 18] have a time
complexity of O(

√
|V ||E|) = O(|V |2.5), scaling faster than

the number of defect stabilizer measurements |V |.
The key idea behind Parity Blossom is that it removes

the stage of building the syndrome graph. As a result, Parity
Blossom reaches an average runtime of almost O(|V |) given
sufficiently low error rate. In doing so, unlike the blossom
algorithm, Parity Blossom does not work for general graphs
but decoding graphs representing syndromes of QEC codes.
We derive this insight from our prior work [9], which shows
that the UF decoder can be considered as an approximation
of the MWPM decoder. Like the UF decoder, Parity Blossom
uses the decoding graph.

B. Blossom Algorithm in General

We next describe the blossom algorithm [14]. We elide
details that are irrelevant to our contributions. The blossom
algorithm formulate the MWPM problem as an integer linear-
programming (ILP) problem. Given any graph G = (V,E)
and edge weights we,∀e ∈ E, the MWPM problem solves
a perfect matching xe,∀e ∈ E with minimum total weight∑
e∈E wexe. A solution is represented by xe,∀e ∈ E, with all

selected edges xe = 1 and others xe = 0. A perfect matching
requires that for every vertex v ∈ V , there is a unique edge
with xe = 1 incident to v, and all other incident edges have
xe = 0. There is no constraint on the incident edges for a
virtual vertex.

The blossom algorithm solves the above ILP problem
by first relaxing the integer constraint, becoming a linear-
programming (LP) problem. It then adds some more con-

2

ẐẐ ẐẐ

X̂X̂

X̂X̂

ẐẐ

ẐẐ

X̂X̂

X̂X̂

ẐẐ

ẐẐ

X̂

X̂

X̂

X̂

ẐẐ

ẐẐ

X̂X̂

X̂X̂

ẐẐ

ẐẐ

X̂X̂

X̂X̂

X̂X̂

X̂X̂

ẐẐ

ẐẐ

X̂X̂

X̂X̂

ẐẐ

ẐẐ

X̂

X̂

X̂

X̂

ẐẐ

ẐẐ

X̂X̂

X̂X̂

ẐẐ

ẐẐ

X̂X̂

X̂X̂

ẐẐ ẐẐ

(1) Surface Code (2) Model Graph (3) Decoding Graph (4) Syndrome Graph (5) MWPM (6) Most-Likely Error

Figure 1: The procedure of an MWPM decoder. (2) Create model graph given the code and noise model. Yellow vertices
are virtual boundaries. (3) Create decoding graph given model graph and the observed syndrome. The white (red) vertices
corresponds to normal (defect) measurement result. (3) Solve an MWPM on the syndrome graph. Blue edges are selected in
the MWPM. (4) Translate MWPM into a subset of edges in the decoding graph, which corresponds to a most-likely error.

straints to the LP problem so that all optimal ILP solutions are
optimal LP solutions [19]. It solves the following LP problem.

min
∑
e∈E

wexe (1)

subject to
∑
e∈δ(v)

xe = 1 ∀v ∈ V (1a)

∑
e∈δ(S)

xe > 1 ∀S ∈ O (1b)

xe > 0 ∀e ∈ E (1c)

where O = {S|S ⊆ V ∧ |S| > 1 ∧ |S| = 1 mod 2} and
δ(S) = {e|e = (u, v) ∈ E ∧ ((u ∈ S ∧ v /∈ S)∨ (u /∈ S ∧ v ∈
S))}. e ∈ δ(S) is called a hair of S and has one and only
one incident vertex inside S.

The blossom algorithm creatively exploits the dual formu-
lation of the same problem.

max
∑
v∈V

yv +
∑
S∈O

yS (2)

subject to we −
∑
v∈e

yv −
∑

S∈O|e∈δ(S)

yS > 0 ∀e ∈ E (2a)

yS > 0 ∀S ∈ O (2b)

Definition: Tight Edge. For edge e ∈ E, we say it is tight when
we =

∑
S∈O∗|e∈δ(S) yS , where O∗ = {S|S ⊆ V ∧ |S| = 1

mod 2}.
If an edge e is not tight, its primal xe must be zero, thanks

to the Complementary Slackness theorem. This means that the
final solution to the primal problem only includes tight edges.

Definition: Blossom. In the blossom algorithm, S ∈ O is a
blossom if and only if yS > 0 [15]. Blossoms are defined
inductively as below.
1. An odd number of vertices connected in a circle by tight

edges form a blossom.
2. An odd number of vertices or blossoms connected in a

circle by tight edges form a blossom.

Definition: Node. A blossom or vertex that is not the child
of any other blossom is called a node. A node also includes

an odd number of vertices. We denote it with the set of its
vertices.

1) Blossom algorithm: The blossom algorithm organizes
tight edges and nodes in alternating trees and matched pairs.
The matching solution includes alternating edges in alternating
trees and those between matched pairs. A matched pair repre-
sents an MWPM solution for the vertices included by the two
nodes.

The blossom algorithm starts with an empty matching solu-
tion that is feasible to the dual problem and evolves it toward
a feasible solution to the primal problem while maintaining
the dual feasibility. It terminates when there is no alternating
tree: all nodes are in matched pairs.

The primal phase seeks to increase the number of edges in
the matching solution: it does so by updating the alternative
trees. It computes a vector ∆~y of which an element ∆yS ∈
{0,+1,−1} is the update for yS of node S. ∆~y is essentially
the direction of update of the dual variables corresponding to
nodes. Because Parity Blossom does not innovate in the primal
phase, we refer readers to [15] for details of the primal phase.

Definition: Direction. ∆~y, the direction of updating ~y.

The dual phase seeks to update the dual variables yS along
the direction ∆~y computed in the primal phase. In doing
so, it must maintain the dual feasibility. That is, it ensures
constraints (2a) and (2b) are always true.

Definition: Obstacle. An obstacle is a dual constraint (2a or
2b) that updating a dual variable according to ∆~y may violate.

A key job of the dual phase is to detect obstacles and stop
before it violates any of the dual constraints. When the dual
phase detects an obstacle, it stops after reporting the detected
obstacles to the primal phase. Existing implementations of the
blossom algorithm detect obstacles using the syndrome graph.
A key idea of Parity Blossom and Sparse Blossom [3] is to
do it using the decoding graph.

C. Blossom Algorithm in QEC

We show some special properties of the blossom algorithm
when it solves the MWPM problem for a syndrome graph.

Theorem: Non-negative Vertex Dual. Given the error prob-
ability for any independent error source P (e) 6 0.5, dual

3

Overcome
obstacles

Grow
∑

S∈O∗ yS
in direction ∆~y

Primal Phase Dual Phase
Direction

(∆~y)

Obstacles

(constraints 2a or 2b)

Figure 2: High-level structure of the blossom algorithm

variables yv , ∀v ∈ V are non-negative during the whole
process of finding the solution by the blossom algorithm.

With Theorem: Non-negative Vertex Dual, we can sim-
plify the LP problem for QEC decoding as follows. We
define a set that includes both blossoms and single vertices
O∗ = {S|S ⊆ V, |S| = 1 mod 2}.

max
∑
S∈O∗

yS (3)

subject to we −
∑

S∈O∗|e∈δ(S)

yS > 0 ∀e ∈ E (3a)

yS > 0 ∀S ∈ O∗ (3b)

With the above simplification, the blossom algorithm can be
simplified in description so that a single vertex can be treated
as a blossom. As a result, the inductive defintion of blossoms
is reduced to:
1. A single vertex is a blossom.
2. An odd number of blossoms connected in a circle by tight

edges form a blossom.
As a result, we will use blossom to refer to both vertices

and proper blossoms when discussing the blossom algorithm
in the rest of the paper.

III. GEOMETRIC INTERPRETATION

Before describing our decoder designs, we provide their
mathematical foundation, which is based on a novel geomet-
ric interpretation of the blossom algorithm working on the
decoding graph, inspired by [9]. By linking the notion of
blossom with a geometric object (Cover) on the decoding
graph, we prove key theorems used by our design. Because
this interpretation relies on the non-negative weights and non-
negative dual variables given in Eq. 3b, it is not applicable to
the blossom algorithm working on general graphs.

A. Geometry of Decoding Graph

The geometric interpretation is based on viewing an edge
e = (u, v) ∈ EM as a straight, continuous line of length
we > 0. This line consists of points, which do not include
u and v. We do consider vertices as points; we say u and v
are incident to e, not on e, i.e., u, v /∈ e. Under the above
interpretation, the entire decoding graph comprises of points.

When we > 0, ∀p ∈ e, p partitions the line into two
segments (u, p), of length w(u,p), and (p, v), of length w(p,v).
We have w(u,p) > 0, w(p,v) > 0, and w(u,p)+w(p,v) = we. We
can conveniently view that p ∈ e breaks e into two edges, each
with its own weight. We call these edges segment edges when

it is necessary to distinguish them from e ∈ EM . Similarly,
two points on e would break it into three segment edges whose
weights can be similarly determined and are positive. With
this, we can extend the notion of path to two arbitrary points
p and q as the set of edges connecting them, some of which
are segment edges.

When we = 0, we call it a zero edge and e = ∅. Zero edges
are necessary for decoding erasure errors [20, 21]. Note that
segment edges by definition always have a positive weight.

Definition: Distance. We define the distance between two
vertices u, v ∈ VM on the decoding graph as the weight of a
minimum-weight path between them, noted as Dist(u, v). This
definition of distance can be readily extended for two arbitrary
points p and q of the decoding graph, according to the path
definition above.

A point r on a minimum-weight path between p and q
partitions the path into two paths, one between p and r and
the other between r and q. They are also the minimum-weight
paths between p and r and between r and q, respectively. And
we have Dist(p, r) + Dist(r, q) = Dist(p, q).

We note that minimum-weight paths between vertices in the
decoding graph are related to the edges in the syndrome graph:
the edge weight between two vertices in the syndrome graph is
the same as the weight of a minimum-weight path between the
corresponding vertices in the decoding graph. The notions of
point and distance are key for understanding how the blossom
algorithm can be adapted to work on the decoding graph.

Definition: Circle. A circle of radius of d around v ∈ VM ,
C(v, d), is defined as the set of points whose distance from v
is no greater than d. That is, C(v, d) = {p|Dist(p, v) 6 d}.

A Circle consists of boundary and inside. The boundary
of C(v, d) is simply {p|Dist(p, v) = d}. Likewise, the inside
C(v, d) is simply {p|Dist(p, v) < d}.
B. Blossom on Decoding Graph

We relate dual variables in the blossom algorithm to the
geometric objects of the decoding graph.

1) Geometric Notions: The inductive definition of Blossom
allows a tree representation of a blossom: The blossom is the
root; the children of the root are also blossoms; a child can
also have its own children and so on. We call the set of vertices
and blossoms represented by the (grand)children of this tree
the descendants of the root blossom.

Definition: Progeny. Given a blossom S, D(S) is the set that
includes S itself and all its descendants. We call it the progeny
of S. Furthermore, we define
• Dv(S) = {D|D ∈ D(S) ∧ v ∈ D} consists of the

members of S’s progeny that include vertex v.
• Du\v(S) = {D|D ∈ D(S) ∧ u ∈ D ∧ v /∈ D} is the set

of progeny members of S that includes u but not v.

Definition: Ancestry. Given a vertex v ∈ V in the syndrome
graph, its ancestry A(v) is the set of all blossoms that include
v. Let A(u\v) denote the subset of u’s Ancestry whose
members do not include vertex v.

4

Definition: Cover. Given a blossom S, it covers the set of
points defined by the union of circles centered at ∀v ∈ S with
d =

∑
D∈Dv(S)

yD. That is,

Cover(S) = ∪v∈SC(v,
∑

D∈Dv(S)

yD).

That is, Cover(S) consists of Circles around ∀v ∈ S. The
boundary of a Cover consists of points of the Cover that are not
inside any of its Circles. Because a Circle consists of a finite
number of edges, Cover(S) also consists of a finite number of
edges. For a blossom of a single vertex v, its Cover is simply
Cover(v) = C(v, yv).

We emphasize that blossoms are defined on the syndrome
graph while their Covers are defined on the decoding graph.
As a result, the notion of Cover is an important bridge between
the decoding and syndrome graphs.

2) Obstacle Detection on Decoding Graph: Because the
dual phase detects obstacles based on the syndrome graph, we
must find a way to do so on the decoding graph. The key
insight and theoretical result of this work is the next theorem,
which show exactly how to do it.

First of all, we note that detecting obstacles from dual
constraints 2b is independent from the choice of syndrome vs.
decoding graphs. Therefore, we only need to focus on those
from dual constraints 2a. Second, because obstacles only occur
on edges between different Nodes, it only needs to watch them
to detect obstacles. Formally, we have

Theorem: Tight Edge Detection (Cover). There exists a tight
edge between two different nodes S1 and S2 if and only if
Cover(S1) and Cover (S2) overlap. That is,

∃e = (v1, v2) ∈ E, v1 ∈ S1 ∧ v2 ∈ S2 ∧ we =
∑

S∈O∗|e∈δ(S)

yS

⇐⇒ Cover(S1) ∩ Cover(S2) 6= ∅

An obstacle of 2a is detected if such a tight edge exists and
∆yS1 + ∆yS2 > 0. That is, it can be detected by examining
Covers of nodes on the decoding graphs.

C. Parity Blossom

The key idea of Parity Blossom, as well as Sparse Blos-
som [3], is to detect obstacles using the decoding graph,
leveraging the result of Theorem: Tight Edge Detection
(Cover). Therefore, Parity Blossom, like Sparse Blossom, uses
the existing design of the primal phase, e.g, that of Blossom
V [15]. Only in the dual phase, they eschew the use of
the syndrome graph. We will describe our implementation of
Parity Blossom in §V.

Using the decoding graph to detect obstacles is more
advantageous than the syndrome graph given a low physical
error rate p � 1. As explained in §II-A, generating the syn-
drome graph itself already takes quadratic time O(|V |2). On
the decoding graph, however, large Covers are exponentially
unlikely with its size, so the average time complexity scales
with roughly O(|V |). Note that when |V | is small or when p
is large, it might be faster to use the syndrome graph.

IV. FUSION BLOSSOM

We next describe a parallel algorithm of solving the MWPM
problem for QEC, called Fusion Blossom. Fusion Blossom
recursively divides a decoding problem into sub-problems that
can be solved independently and then recursively “fuses” their
solutions to produce the solution to the original problem. We
represent this recursive division/fusion as a full binary tree,
called a fusion tree. Every leaf in the fusion tree invokes
an MWPM solver, while other nodes fuse the solutions from
their two children, also leveraging the MWPM solver. In our
implementation, the MWPM solver is Parity Blossom.

We next provide the mathematical formulation of division
and fusion in §IV-A and §IV-B, respectively. We discuss how
Fusion Blossom can make tradeoffs between decoding time
and latency in §IV-C.

A. Division

As illustrated by Fig. 3(1), a carefully selected set of vertices
Vb ⊂ VM , e.g., a minimum vertex cut [22] of the decoding
graph, can divide a decoding graph into two disjoint graphs
that include V1 and V2, respectively. The only requirement of
Vb is that, there is no edge in the decoding graph that connects
vertices from both V1 and V2.

With Vb, we can create two sub-problems, one working on
the subgraph covering vertices V1 ∪ Vb and the other that
covering V2 ∪ Vb, as illustrated by Figs. 3(2) to 3(4). Each
of the sub-problems treats a vertex from Vb as a virtual vertex
that can be matched arbitrary times. This effectively relaxes the
parity constraints on vertices Vb in the sub-problems, which
will be tightened later by fusion. For the i-th sub-problem,
i ∈ {1, 2}, the primal and dual formulations as in Eq. 1 and
3, respectively, have E and O∗ as follows.

Ei = {e|e = (u, v) ∈ E ∧ u, v ∈ Vi ∪ Vb}
O∗i = {S|S ∈ O∗ ∧ S ⊆ Vi}

The process of division stops when the subproblem is
adequately small for invoking the MWPM solver directly. We
call such subproblems leaf problems and the corresponding
subgraphs leaf partitions.

B. Fusion

After the sub-problems are solved independently, their so-
lutions form an intermediate state for the original problem in
terms of the values of the primal and dual variables. The fusion
operation invokes the MWPM solver to find a solution to the
original problem starting with this intermediate state.

a) Correctness: We next show that the intermediate state
is indeed a valid state for the blossom algorithm. For the primal
variables, we remove the matchings to the temporary boundary
vertices Vb. Those matched pairs break into alternating trees
and search for new matchings. Except for those, the matchings
within V1 or V2 are preserved. We also create an alternating
tree for each defect vertex in Vb. We simply keep the existing
dual variables, as shown in Fig. 3(4) to Fig. 3(5), given

5

(1) Partition (2) Individual Step 1 (3) Individual Step 2 (4) Individual Step 3 (5) Recover Vb (6) Fusion Completed

Figure 3: Fusion Blossom example. The two sub-problems solves their local MWPM (2-4) individually, in parallel. The fusion
operation first (5) recovers the temporary boundary vertices and then (6) evolves the intermediate state to a global MWPM.

Theorem: Feasible Dual Variables. Solutions for the two
disjoint sub-problems determine the values of the dual vari-
ables yS , S ∈ O∗1 ∪O∗2 . These values plus setting yS to 0 for
S ∈ O∗ \O∗1 ∪O∗2 constitute a feasible solution to the original
dual problem.

b) Speed: We estimate the average time complexity of
fusion operation to be no worse than O(p|Vb|) where p � 1
is the physical error rate. Note the expected number of defect
vertices in Vb is also O(p|Vb|). Our estimate is based on
two intuitions. First, the fusion operation only needs to break
about the same number of matched pairs from the sub-problem
solution to match the defect vertices in Vb. Second, due to
the objective of minimum weight, it is more likely to find
matches for these vertices close to Vb. We note this estimate
is independent of the size of the sub-problems |V1| and |V2|.
We confirm this independence empirically in §VI-B3.

C. Schedule Design: Leaf Partitions and Fusion Tree
When the leaf partitions are properly chosen, there can

be multiple ways to fuse their solutions, allowing different
tradeoffs between decoding time and latency. In this case,
the fusion tree defines the space for scheduling leaf and
fusion operations. One particularly relevant case is illustrated
in Fig. 4, where the decoding graph is a stream of measurement
rounds, each a two-dimensional graph. In this case, a leaf
partition is simply a subgraph that consists of M consecutive
measurement rounds.

When the measurement rounds of a leaf partition become
available, it invokes the MWPM solver to produce a solution.
In an online system, as the measurement rounds stream in,
the leaf partitions finish one by one. However, there are
many ways in which their solutions can be fused, with three
examples shown in Fig. 5, each making a different trade-off
between decoding time and latency. As illustrated in Fig. 4,
we define
• Decoding Time: T , the time from when decoding starts

to when it finishes.
• Latency: L, the time from when all measurements are

ready to when decoding finishes.
• Measurement Rounds: N , the number of rounds of sta-

bilizer measurements.
• Leaf Partition Size: M , the number of measurement

rounds in each leaf partition.
We note the throughput of the system is related to decoding

time as N/T : how many rounds it can decode per unit time.

Batch Decoding Stream Decoding

L1

T1

L2

T2

Ti
m

e

Ti
m

e

0

1

2

3

4

5

6

7

N = 80, d = 5

M = 10

N
M = 8 partitions

M × d× d

N × d× d

0

1

2

3

4

5

6

7

0

4

80 1

92 3

104 5

118 9

126 7

1310 12

1411 13

1

5

6

2

3

7

0

3

109 3

6

1312 6

1

80 1

4

1110 4

7

1413 7

2

98 2

5

1211 5

Latency L1

Decoding Time T1

L1 = O(Nd2)

T1 = L1

Latency L2

Decoding Time T2

L2 = O(Md2)

T2 = O(Nd2)

Figure 4: A 3D decoding graph (left), its Batch (center) and
Stream (right) Decoding using three CPU cores. The Batch
decoding starts when all N = 80 rounds of measurements
are ready; it fuses solutions according to the Balanced tree
in Fig. 5. The Stream decoding starts decoding whenever M =
10 rounds of measurements for a leaf node are ready; it fuses
solutions according to the Linear tree in Fig. 5.

Batch Decoding. Prior studies generally assumed that the
syndrome of all N rounds of measurement is available at
the time of decoding, which is known as batch decoding (see
Fig. 4 (center)). For batch decoding, the decoding latency and
time are the same, i.e., L = T , and the decoding time is
determined by the longest path from a leaf to the root given
enough parallel resources. Therefore, the balanced tree, as
shown in Fig. 5 (left), is preferable since its longest path (from
leaf to root) is the shortest.

Stream Decoding. In contrast to batch decoding, stream
decoding starts as soon as enough rounds of measurement
are ready for a leaf node (see Fig. 4 (right)). As a result, the
decoding latency can be substantially shorter than the decoding
time, i.e., L < T . More importantly, to determine the decoding

6

0 1 2 3 4 5 6 7

80 1 92 3 104 5

118 9

126 7

1310 12

1411 13

Balanced Tree

0 1 2 3 4 5 6 7

80 1

98 2

109 3

1110 4

1211 5

1312 6

1413 7

Linear Tree

0 1 2 3 4 5 6 7

80 1 92 3

108 9

114 5

1210 11

136 7

1412 13

Mixed Tree

Figure 5: Fusion Trees. The leaves need to be fused recursively
into a single root, which represents a global MWPM. Because
a parent depends on the children, the paths between leaves and
the root determine the decoding time and latency.

latency, one can no longer simply consider paths between
leaves and the root but must add the time when the rounds of
measurement for a leaf is ready (assuming those for the first
leaf is ready at time zero). To minimize the decoding latency,
one must balance the path length plus the ready time for all
paths, allowing a shorter path for a later leaf. For example,
when there are enough parallel resources that are fast enough,
the path between the last leaf and the root determines the
decoding latency. In this case, the linear tree (Fig. 5 (center))
is preferable.

With the balanced and linear trees as the two extreme cases
in mind, we can create a continuum of trees between them
called mixed trees. Given the parallel resources and decoding
setup, e.g., M and N , one must examine this continuum to
find the tree that achieves the shortest decoding latency. To
construct a mixed tree, one selects a height in the balanced
tree, keeps balanced sub-trees below the height but constructs
a linear tree above it. The higher this height, the smaller path
difference between earlier and later leaves. For the balanced
and linear trees, this mix height is root and leaf, respectively.
Fig. 5 (right) shows the mixed tree with the mix height of one.
In our latency evaluation (§VI-B2), we use the mixed tree that
minimizes the decoding latency.

We note that the mix height can be determined dynamically:
the decoder can start with a balanced tree and switch to a linear
tree to optimize the performance of the system.

V. IMPLEMENTATION

We next describe our implementation of Parity Blossom and
Fusion Blossom, including major ideas for optimizations. We
implemented these algorithms in Rust with 12k lines of code.

A. Unified Framework for Matching Decoders

A key idea behind our implementation is to use a uni-
fied framework for the blossom algorithm and its variants,
including Parity Blossom, Union-Find [13], and more, as
illustrated by Fig. 6. As the blossom algorithm iterates between
the primal and dual phases as shown in Fig. 2, our unified
framework implements them in modules with a narrow, well-
defined interface with each other, marked as red and blue in
Figs. 2 and 6. The interface allows any primal module to work
with any dual module.

This framework serves three purposes. (i) First, it shows
how these variants and the blossom algorithm are related. (ii)

Standard

Union-Find

Standard

Parity

Primal Modules Dual Modules
Direction
Obstacles

traditional
MWPM Decoder

Parity Blossom

(weighted)
UF Decoder

Figure 6: Unified Framework for Matching Decoders.

Second, it allows code reuse between their implementations.
For example, Parity Blossom optimizes the dual module
(Parity) to work on the decoding graph instead of the
syndrome graph (§V-B1). It uses the same primal module
(Standard) as the original blossom algorithm, with slight
modification to support virtual vertices (§V-B2). For another
example, the UF decoder and Parity Blossom share the same
Parity dual module. The UF decoder uses its own primal
module (Union-Find) that computes the direction approx-
imately, compared to the blossom algorithm [9]. (iii) Third,
this framework reveals the existence of previously unknown
variants that can achieve different trade-offs between accuracy
and speed when applied to QEC. It also allows such new
variants to be easily implemented. For example, one can design
a new primal module based on the Standard primal module,
which sets a limit to the size of alternating trees. Once an
alternating tree reaches the size limit, the module treats it
as an invalid cluster like the Union-Find primal module.
When the size limit is infinite, the decoder is identical to
Parity Blossom; when the limit is zero, it is identical to the
UF decoder. As a result, by adjusting the size limit, we can
produce a continuum of decoders between the UF decoder and
Parity Blossom, making different tradeoffs between decoding
accuracy and speed.

B. Parity Blossom

As shown in Fig. 6, Parity Blossom uses the Parity Dual
Module and the Standard Primal Module.

1) Parity Dual Module: Because Parity Blossom uses
the decoding graph to detect Obstacles, given Theorem: Tight
Edge Detection (Cover), the Parity dual module must
efficiently track the Covers of nodes.

Our first implementation idea comes from the UF de-
coder [23]: we maintain the boundary edges for each Cover.
This is efficient and sufficient for updating Covers because
when dual variables are adjusted according to ∆~y, the bound-
ary edges of their Covers change.

Our second idea removes implementation complication re-
sulting from the fact that some vertices from the decoding
graph may belong to multiple Covers. Zero edges, representing
erasure errors [20, 21], specifically contribute to this compli-
cation because their vertices can belong to many Covers. To
ensure that a vertex belongs to at most one “Cover”, our idea
is to use Pseudo-Covers, derived from Covers as follows.

7

Definition: Pseudo-Cover. All Covers with a single vertex are
Pseudo-Cover. That is, when the blossom algorithm starts, all
the Covers on the decoding graph are Pseudo-Covers, each
of them with a single defect vertex. (i) At the beginning of
a dual phase, for a node with ∆yS < 0, its Pseudo-Cover
is derived by removing all boundary non-defect vertices. (ii)
The Pseudo-Cover for a node S with ∆yS > 0 is derived
by modifying how its Cover grows. When adding a vertex to
a growing Pseudo-Cover, the growing stops if the vertex is
already inside another Pseudo-Cover. We denote the Pseudo-
Cover of Cover(S) with Cover(S).

Since a vertex belongs to at most one Cover, its memory
usage is constant. Also, since the incident vertices of an edge
e = (u, v) each belongs to at most one Cover, there are at
most two covered segment edges on e. That is, the memory
usage of an edge is also constant. The next theorem says that
Pseudo-Covers can also be used to detect tight edges.

Theorem: Tight Edge Detection (Pseudo-Cover). There
exists a tight edge between two different nodes S1 and S2

with ∆yS1 +∆yS2 > 0 if and only if there exists two different
nodes S3 and S4 with ∆yS3 +∆yS4 > 0 whose Pseudo-Covers
meet on a decoding graph edge. That is,

∃S1, S2, e = (v1, v2) ∈ E,
v1 ∈ S1, v2 ∈ S2,∆yS1

+ ∆yS2
> 0, we =

∑
S∈O∗|e∈δ(S)

yS

⇐⇒ ∃S3, S4, e
′ = (v3, v4) ∈ EM ,

v3 ∈ Cover(S3), v4 ∈ Cover(S4),

∆yS3
+ ∆yS4

> 0, e′ ⊆ Cover(S3) ∪ Cover(S4)

Using this theorem, the Parity dual module checks
whether such S3 and S4 exists for each decoding graph edge
and reports all detected obstacles to the primal module. We
note that the above theorem differs from Theorem: Tight
Edge Detection (Cover) in a fundamental way: it does not
detect all obstacles but at most one for each decoding graph
edge.

We have not implemented an important optimization used
by Sparse Blossom [3] and Blossom V [15]: they sort and
process edges based on when they will become tight using
priority queues. Instead, our dual module implementation
enumerate all edges, like the UF decoder [23].

2) Standard Primal Module: We base the Standard
primal module on the implementation of blossom V [15]
with three optimizations. We note these optimizations can be
generally useful beyond Parity Blossom.

First, it supports virtual vertices. Prior works, using the
blossom V library, had to emulate them, which is inefficient.

Second, each time the dual module is invoked, it prepares
Pseudo Covers based on the directions of their blossoms,
which incurs significant overhead. To amortize this overhead,
our Standard primal module handle all reported obstacles
each time it is invoked, instead of returning to the dual module
after handling one.

Third, we grow all alternating trees simultaneously like
the UF decoder and Sparse Blossom [3]. It corresponds to
“the multiple-tree approach with fixed δ” reported in [15] and
applied by the blossom V library to only 5% of the nodes.
As shown by the authors of Sparse Blossom, this approach
explores fewer edges on average and thus is faster.

C. Fusion Blossom

We implement Fusion Blossom with Parity Blossom as the
MWPM solver, and using the Rayon parallel programming
library [24]. A manager thread reads the fusion tree from
leaves up. It creates a job for each node in the fusion tree when
the jobs for the children nodes have returned. The manager
thread inserts new jobs into a queue from which a group of
worker threads remove jobs and complete them. A job invokes
Parity Blossom implemented in the unified framework as the
MWPM solver.

During the fusion operation, the MWPM solver is invoked
to evolve the intermediate state to an optimum for the fused
problem. A naı̈ve implementation would construct the internal
data structures for solving the fused problem from the output
of solving the children sub-problems, leading to excessive
memory copying. Instead, our implementation allows the
MWPM solver invoked by a parent to reuse, i.e., operate
directly on, the internal data structures of the MWPM solver
invoked by its child. As the system progresses from a leaf
toward the root in the fusion tree, it maintains the internal
data structures for the MWPM solver invoked by each node
of the fusion tree, with those of a parent including those of
its children.

Organizing the internal data structures hierarchically based
on the fusion tree as described above brings an additional
opportunity to optimize the MWPM solver when invoked by
a parent for the fusion operation. Since the fusion operation
only changes the Pseudo-Covers in a small region around the
boundary vertices Vb, the MWPM solver ideally should only
work on data structures related to this small region. We achieve
this by allowing the MWPM solver invoked by the parent to
“invoke” the MWPM solver of its child to evolve the child’s
internal data structures. This is possible because the child’s
internal data structures are maintained in place.

D. Other Optimizations

To improve performance, we implement an optional feature
that leverages unsafe Rust to bypass safety checks when it is
safe to do so at the algorithm level. By enabling the optional
dangerous_pointer feature, it results in a speedup of
approximately 2x compared to the standard build.

Since the initialization time scales with |V | yet the decoding
time scales with p|V |, it is more practical to reset the decoder
between simulation shots rather than creating a new one. Our
optimization achieves a reset time of O(1). The key idea is to
avoid enumerating all the decoding graph edges to reset the
Pseudo Covers stored on them. In implementing this idea, the
decoder keeps a global timestamp and each edge has its own
timestamp, all initialized to 0. The global timestamp advances

8

by 1 on a global reset. An edge is invalid if its timestamp does
not match the global one. Only when an invalid edge is being
accessed, it is reset and its timestamp is updated to the global
timestamp.

VI. EVALUATION

We evaluate our implementations of Parity Blossom and
Fusion Blossom with both macro and micro benchmarks. The
evaluation answers the following questions.
• Correctness: Are they exact MWPM decoders?
• Throughput: How many rounds of measurement can be

decoded per unit time?
• Latency: How long does it take from when the last round

of measurement arrives to when decoding finishes?
• Scalability: How throughput changes with code distance?
We verify the correctness of our implementations by com-

paring against the blossom V library [15] over millions of
randomized test cases with tractable code distances up to 19.
We focus on throughput, latency, and scalability in the rest of
this section.

A. Setup

1) Noise Model: We use the circuit-level noise model [25]
with a physical error rate of 0.1%. We use a rotated surface
code shown in Fig. 1(1). It has n = d2 data qubits and (d2 −
1)/2 Z (X) stabilizers. Given a syndrome of N noisy rounds of
measurement, the Z (X) decoding graph has (N+1)(d2−1)/2
ordinary vertices and (N + 1)(d + 1) virtual vertices, a total
of (N +1)(d+1)2/2. Since the X and Z decoding graphs can
be decoded independently, we only use the Z decoding graph
for evaluation. For simplicity, we use format N × d × d to
represent the code.

2) Measurement: We evaluate the decoding speed on a
Linux server with dual Intel Xeon Platinum 8375C CPUs,
a total of 64 cores, each supporting two hyper-threads. The
server is an M6i instance from AWS (Amazon Web Services).
Our results do not include the initialization time, during which
the one-time, expensive memory allocation is performed. Once
initialized, the decoder works on 100 simulation shots consec-
utively. Between two shots, the decoder is reset with a constant
overhead, which is included in the result. Each shot by default
includes 105 rounds of measurement.

3) Baseline: For Sparse Blossom, we use the authors’
own implementation through its Python binding [26] with the
same setup as the above, with batch optimization enabled.
For the traditional MWPM decoder, we use the blossom V
library [15] with the following optimizations. It pre-computes
a complete graph of VM offline to reduce the runtime overhead
of constructing the syndrome graph. It also eliminates edges
in the complete graph if they have higher weight than the two
vertices matching to virtual boundary respectively, because
these edges would never be selected in an MWPM.

4) Metrics: Given the decoding time T and measurement
rounds N , we define
• Throughput: N/T , decoded rounds per unit time.

3 5 7 10 20 50 100
Code Distance d

0.1

1

10

100

1000

D
ec

od
in

g
Ti

m
e

pe
rR

ou
nd

(µ
s)

d× d× d

Parity Blossom ∝ n1.34

Sparse Blossom ∝ n1.35

Blossom V ∝ n2.71

(a) Code Distance d

1 10 102 103 104 105

Measurement Rounds N

1

3

10

30

100

300

D
ec

od
in

g
Ti

m
e

pe
rR

ou
nd

(µ
s)

N × 21× 21

Fusion Blossom
Parity Blossom
Sparse Blossom
Blossom V

(b) Measurement Rounds N

Figure 7: Decoding time with a single thread (lower the better).

1 2 4 8 16 32 64 128 256
Number of Threads

0.3

1

3

10

30

D
ec

od
in

g
Ti

m
e

pe
rR

ou
nd

(µ
s)

105 × 21× 21

Fusion Blossom
(expected speedup)
Sparse Blossom

#Cores

#Hyper-Threads

(a) Number of Threads

11 13 15 17 21 25 29 33
Code Distance d

0.1

0.3

1

3

D
ec

od
in

g
Ti

m
e

pe
rR

ou
nd

(µ
s)

128 threads, 105 × d× d
p = 0.4%

p = 0.2%

p = 0.1%

(b) Code Distance d

Figure 8: Parallel decoding time (lower the better).

• Decoding time per measurement round: T/N , the inverse
of throughput. Since this is easier to compare with the
measurement cycle of a quantum hardware, we use it in
lieu of throughput in the figures.

B. Results

1) Throughput: We use batch decoding in Fig. 4 for all
throughput evaluations, assuming the syndrome is ready when
the decoding begins. Instead of throughput, we report data in
its inverse, i.e., decoding time per round (T/N).

We first show the advantage of using the decoding graph
over the syndrome graph, confirming the findings also reported
by Higgott and Gidney in [3]. We benchmark the throughput
on a single thread. As shown in Fig. 7(a), the decoding time
of Parity Blossom and Sparse Blossom scales almost linearly
with the number of qubits n = d2, which is the theoretically
lower bound. In contrast, the traditional MWPM decoder based
on the blossom V library scales poorly with the number
of qubits n. Not surprisingly, Parity Blossom is roughly 4x
slower than Sparse Blossom in this case, because we have not
incorporated some important optimizations (§V-B1).

Second, when the number of rounds N grows in Fig. 7(b),
both Parity Blossom and Sparse Blossom see decoding time
per round increases [3], due to increasing pressure on the
memory hierarchy. Surprisingly, that of Fusion Blossom re-
mains steady as N grows and beats that of Parity Blossom at
large N > 103, despite that Fusion Blossom is not supposed
to enjoy any algorithmic advantage over Parity Blossom with
a single thread. This is because Fusion Blossom divides the
problem equally into small ones and solving a small problem
enjoys better cache locality. On the other hand, a small M
incurs more fusion operations and more overhead. Therefore,
we empirically find the optimal M = 100 and use it as the
default leaf partition size.

9

20 100 103 104 105

Measurement Rounds N

0.1

1

10

100
La

te
nc

y
(m
s)

32 threads, N × 21× 21

Batch Decoding (balanced tree)
Stream Decoding (mixed tree)

Measurement Rounds N

Figure 9: Latency

3 5 7 11 17 33 67 139
Code Distance d

1

10

102

103

104

Fu
si

on
Ti

m
e

(µ
s)

(2M)× d× d,M = 50

Fusion Time ∝ d2.34

(a) Code Distance d

2 4 8 16 32 64 256 1024
Leaf Partition Size M

0

100

200

300

Fu
si

on
Ti

m
e

(µ
s)

(32M)× 21× 21

Balanced Tree, Root Fusion

(b) Leaf Partition Size M

2 4 8 16 32 64 256 10001000
Number of Leaf Partitions

0

100

200

300

Fu
si

on
Ti

m
e

(µ
s)

105 × 21× 21,M = 50

Balanced Tree
Linear Tree

(c) Number of Leaf Partitions

Figure 10: Fusion time with a single thread (lower the better).

Not surprisingly, Fusion Blossom beats all serial MWPM
decoders when more threads are available. As shown in
Fig. 8(a), the throughput of Fusion Blossom increases almost
linearly with the number of threads, until the maximum
number of hyper-threads (128) supported by the processor. At
that point, it reaches the minimum decoding time per round
(0.3 us). Using all 128 hyper-threads in the processor, Fusion
Blossom can decode up to d = 33 at p = 0.1% with less than
1 us decoding time per round, as shown in Fig. 8(b).

2) Latency: We observe a constant latency regardless of the
measurement rounds N in the stream decoding (Fig. 4), com-
pared to the linearly growing latency in the batch decoding.
We emulate the stabilizer measurement cycle of 1 us, which
is similar to that of state-of-the-art superconducting quantum
hardware [27]. We use a mixed fusion tree in which each
balanced subtree at the mix height has 50 leaves. Each leaf
deals with M = 20 rounds of measurement. As shown in
Fig. 9, the average latency is roughly 0.7 ms regardless of the
number of measurement rounds N . For the batch decoding,
as predicted in Fig. 4, the latency scales linearly with N .

3) Fusion Time: Given a low physical error rate, a fusion
operation only changes a small region around the boundary
vertices on average. Thus, the fusion time should only increase
with |Vb| = O(d2), as confirmed by Fig. 10(a), but not M ,
the number of rounds, as confirmed by Fig. 10(b).

Moreover, because a fusion operation may recursively in-
voke the children’s MWPM solvers until leaf partitions are
reached, the structure of the corresponding subtree of the
fusion tree impacts fusion time. Fig. 10(c) show this with
fusion time for both balanced and linear trees where the X
axis is the number of leaf partitions in the subtree.

Interestingly, the mean of fusion time of the balanced tree
increases with the number of leaf partitions while that of the
linear tree largely remains constant. This, again, is because
a fusion operation only changes a small region around the
boundary vertices on average. As a result, the operation is
most likely to involve two leaf partitions next to each other
and increasingly unlikely to involve partitions that are farther
away from each other. In the balanced tree, the operation must
travel through the entire height of tree to reach any two leaf
partitions, even if they are next to each other. In contrast, in
the linear tree, the operation is exponentially less likely to
travel one level down the tree. For the example in Fig. 10(c)
(center), fusion operation 14 is exponentially less likely to
involve lower numbered leaf paritioned.

4) Scalability: Finally, we show that given enough
(Ω(d2.68)) parallel resources, e.g., cores, Fusion Blossom can
meet the throughput requirement by any code distance d when
the physical error rate p is well below the threshold pth, using
both analysis and empirical data.

Let K denote the number of threads, each handling a
(N/K) × d × d partition on its own core. Note that the
threads may reside in different machines, accessing shared
memory via network with a constant-factor slowdown, e.g.,
using shared-memory rack-scale distributed systems like [28].
The decoding time of each thread scales with O(d2.68N/K),
according to Fig. 7(a). The solutions from the K concurrent
threads can be fused with a balanced tree, with O(d2.34 logK)
time, according to Fig. 10(a). The decoding time per round has
a complexity of O(d2.68/K + d2.34 logK/N). Thus, given
a lower bound of K = Ω(d2.68) and N = Ω(d2.34 logK),
the decoding time per round will be bounded. This analysis
assumes N polynomially grows with d. This is reasonable
because the lifetime of a logical qubit scales exponentially
with d, i.e., maxN ∝ (pth/p)

(d+1)/2 [2].
Note the scaling factors of O(d2.68) and O(d2.34) are

empirically derived from code distances up to 100 (Figs. 7(a)
and 10(a)), which corresponds to about 104 physical qubits
for each logical qubit, orders of magnitude higher than what
is considered to be practical in the near future.

We note that K = Ω(d2.68) does not mean d2.68 threads
(or cores) are necessary. When estimating how many cores are
needed for a large d, one can empirically derive the number for
a small d and then extrapolate based on the scaling of d2.68.
For example, to estimate how many cores are necessary to
decode d = 51 with p = 0.1% using the setup in Section VI-A,
one can pick a data point in Fig. 8(a) where d = 21 roughly
needs 20 cores to meat the throughput requirement. We can
estimate roughly 20× (51/21)2.68 or 216 cores are necessary
for d = 51.

VII. RELATED WORK

As mentioned in §I, Sparse Blossom is a contemporary work
closely related to Parity Blossom, sharing the key idea of
solving the MWPM problem using the decoding graph. We
provide that first rigorous mathematical foundation for this
idea and contribute new implementation optimizations.

Related to Fusion Blossom, Fowler [4] presented a parallel
design of the MWPM decoder. It partitions the qubits to par-
allel decoding units of customized hardware. Each decoding

10

unit handles a sufficiently large number of qubits so that the
inter-unit communication is relatively rare. Paradoxically, its
success requires both a large number of decoding units (for
lower decoding time) and a large number of qubits in each unit
(for lower communication overhead). To our best knowledge,
perhaps not surprisingly, no implementation or empirical data
has been reported for this design. Fusion Blossom, on the
other hand, eliminates communications between the partitions
and only synchronizes them during the fusion operations. This
minimizes the need for communication and is scalable.

There is a literature that seeks to parallelize solving the
MWPM problem for general graphs. This literature, however,
does not exploit the special structure of the QEC decoding
problem as we do. As a result, its results have larger time
complexity than Parity Blossom and Fusion Blossom when
applied to QEC decoding. For example, Peterson and Kar-
alekas [29] designed and implemented a distributed MWPM
algorithm with O(|V |4) time complexity.

Recently there is a growing interest in approximate algo-
rithms for QEC decoding that sacrifice decoding accuracy
to gain speed, e.g., parallelization with parallel-window tech-
nique [6, 7, 30] and fast decoders with cryogenic chips [31–
34]. Perhaps the most relevant is the (weighted) Union-
Find (UF) decoder [23, 35] for which various design [5]
and implementation [8] have been reported. The key idea of
Parity Blossom draws inspiration from how the UF decoder
approximates the MWPM decoder [9].

ACKNOWLEDGMENTS

This work was supported in part by Yale University and
NSF MRI Award #2216030. The authors are grateful for the
insightful discussion with Shruti Puri.

REFERENCES

[1] B. M. Terhal, “Quantum error correction for quantum memories,”
Reviews of Modern Physics, 2015.

[2] A. G. Fowler, A. C. Whiteside, and L. C. Hollenberg, “Towards practical
classical processing for the surface code: Timing analysis,” Physical
Review A, 2012.

[3] O. Higgott and C. Gidney, “Sparse Blossom: correcting a million
errors per core second with minimum-weight matching,” arXiv preprint
arXiv:2303.15933, 2023.

[4] A. G. Fowler, “Minimum weight perfect matching of fault-tolerant
topological quantum error correction in average o(1) parallel time,”
arXiv preprint arXiv:1307.1740, 2013.

[5] P. Das, C. A. Pattison, S. Manne, D. M. Carmean, K. M. Svore,
M. Qureshi, and N. Delfosse, “AFS: Accurate, fast, and scalable
error-decoding for fault-tolerant quantum computers,” in 2022 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 2022.

[6] L. Skoric, D. E. Browne, K. M. Barnes, N. I. Gillespie, and E. T.
Campbell, “Parallel window decoding enables scalable fault tolerant
quantum computation,” arXiv preprint arXiv:2209.08552, 2022.

[7] X. Tan, F. Zhang, R. Chao, Y. Shi, and J. Chen, “Scalable surface code
decoders with parallelization in time,” arXiv preprint arXiv:2209.09219,
2022.

[8] N. Liyanage, Y. Wu, A. Deters, and L. Zhong, “Scalable quan-
tum error correction for surface codes using fpga,” arXiv preprint
arXiv:2301.08419, 2023.

[9] Y. Wu, N. Liyanage, and L. Zhong, “An interpretation of union-find
decoder on weighted graphs,” arXiv preprint arXiv:2211.03288, 2022.

[10] “Fusion Blossom: a fast minimum-weight perfect matching (MWPM)
solver for quantum error correction (QEC).” [Online]. Available:
https://github.com/yale-paragon/fusion-blossom

[11] “Python binding of Fusion Blossom library.” [Online]. Available:
https://pypi.org/project/fusion-blossom

[12] A. G. Fowler, A. C. Whiteside, A. L. McInnes, and A. Rabbani,
“Topological code autotune,” Physical Review X, 2012.

[13] N. Delfosse and N. H. Nickerson, “Almost-linear time decoding algo-
rithm for topological codes,” Quantum, 2021.

[14] J. Edmonds and E. L. Johnson, “Matching, Euler tours and the Chinese
postman,” Mathematical programming, 1973.

[15] V. Kolmogorov, “Blossom V: a new implementation of a minimum cost
perfect matching algorithm,” Mathematical Programming Computation,
2009.

[16] B. Dezső, A. Jüttner, and P. Kovács, “LEMON–an open source C++
graph template library,” Electronic Notes in Theoretical Computer Sci-
ence, 2011.

[17] S. Micali and V. V. Vazirani, “An O(
√

|V ||E|) algoithm for finding
maximum matching in general graphs,” in 21st Annual Symposium on
Foundations of Computer Science (sfcs 1980). IEEE, 1980.

[18] V. V. Vazirani, “A simplification of the MV matching algorithm and its
proof,” arXiv preprint arXiv:1210.4594, 2012.

[19] W. Cook and A. Rohe, “Computing minimum-weight perfect match-
ings,” INFORMS journal on computing, 1999.

[20] Y. Wu, S. Kolkowitz, S. Puri, and J. D. Thompson, “Erasure conversion
for fault-tolerant quantum computing in alkaline earth rydberg atom
arrays,” Nature communications, 2022.

[21] J. D. Teoh, P. Winkel, H. K. Babla, B. J. Chapman, J. Claes, S. J.
de Graaf, J. W. Garmon, W. D. Kalfus, Y. Lu, A. Maiti et al.,
“Dual-rail encoding with superconducting cavities,” arXiv preprint
arXiv:2212.12077, 2022.

[22] D. B. West et al., Introduction to graph theory. Prentice hall Upper
Saddle River, 2001, vol. 2, p. 149.

[23] N. Delfosse and G. Zémor, “Linear-time maximum likelihood decoding
of surface codes over the quantum erasure channel,” Physical Review
Research, vol. 2, no. 3, p. 033042, 2020.

[24] “Rayon: a data-parallelism library for Rust.” [Online]. Available:
https://github.com/rayon-rs/rayon

[25] A. J. Landahl, J. T. Anderson, and P. R. Rice, “Fault-tolerant quantum
computing with color codes,” arXiv preprint arXiv:1108.5738, 2011.

[26] O. Higgott and C. Gidney, “PyMatching v2.” [Online]. Available:
https://github.com/oscarhiggott/PyMatching

[27] “Suppressing quantum errors by scaling a surface code logical qubit,”
Nature, 2023.

[28] S.-s. Lee, Y. Yu, Y. Tang, A. Khandelwal, L. Zhong, and A. Bhat-
tacharjee, “MIND: In-network memory management for disaggregated
data centers,” in Proc. ACM SIGOPS Symposium on Operating Systems
Principles, 2021.

[29] E. C. Peterson and P. J. Karalekas, “A distributed blossom algorithm for
minimum-weight perfect matching,” arXiv preprint arXiv:2210.14277,
2022.

[30] H. Bombı́n, C. Dawson, Y.-H. Liu, N. Nickerson, F. Pastawski, and
S. Roberts, “Modular decoding: parallelizable real-time decoding for
quantum computers,” arXiv preprint arXiv:2303.04846, 2023.

[31] A. Holmes, M. R. Jokar, G. Pasandi, Y. Ding, M. Pedram, and F. T.
Chong, “NISQ+: Boosting quantum computing power by approximating
quantum error correction,” in 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2020.

[32] Y. Ueno, M. Kondo, M. Tanaka, Y. Suzuki, and Y. Tabuchi, “QECOOL:
On-line quantum error correction with a superconducting decoder for
surface code,” in 2021 58th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2021.

[33] ——, “QULATIS: A quantum error correction methodology toward
lattice surgery,” in 2022 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 2022.

[34] G. S. Ravi, J. Baker, A. Fayyazi, S. Lin, A. Javadi-Abhari, M. Pedram,
and F. Chong, “Better than worst-case decoding for quantum error
correction,” Bulletin of the American Physical Society, 2023.

[35] S. Huang, M. Newman, and K. R. Brown, “Fault-tolerant weighted
union-find decoding on the toric code,” Physical Review A, 2020.

11

https://github.com/yale-paragon/fusion-blossom
https://pypi.org/project/fusion-blossom
https://github.com/rayon-rs/rayon
https://github.com/oscarhiggott/PyMatching

APPENDIX A
FACTS & LEMMAS

a) Relevant facts about the decoding problem.

Fact 1. Edge weights are non-negative in a decoding graph.
This is because we = log (1−Pe)

Pe
given reasonable physical

error rate of Pe 6 50%, we ≥ 0. Consequently, edge weights
in a syndrome graph are also non-negative.

We note that even if Pe > 50%, this error is equivalent to
an always-happening error plus another error with probability
1− Pe < 50%. We can first apply this error to the syndrome
by flipping the incident vertices and then decode with positive
weighted edge we = log Pe

(1−Pe)
.

Fact 2. The triangular relationship holds for the weights in a
syndrome graph G(V,E). That is, for any vertices u, a, b ∈ V ,
w(a,b) 6 w(a,u) + w(b,u). This is because syndrome graph
weights are constructed from minimum-weight paths in the
decoding graph.

b) Relevant facts about the blossom algorithm, also see §II-B.

Fact 3. The blossom algorithm starts with some feasible
dual variables and maintains the feasibility throughout the
algorithm. We assume the initial solution is yS = 0, ∀S ∈ O∗
given the non-negative weights we ≥ 0,∀e ∈ E (Fact 1).

Fact 4. When a dual variable decreases by ∆, it must be
a “−” node in an alternating tree, and there exists two “+”
nodes in the tree that connects this “−” node with tight edges.
The dual variables of these “+” nodes must increase by ∆.

c) Relevant facts & lemmas about the blossoms.

Fact 5. Given two different nodes S1 and S2, S1 ∩ S2 = ∅
and D(S1)∩D(S2) = ∅. That is, different nodes do not share
any vertices, or share any descendants.

Lemma: Root Uniqueness. Any blossom S has a unique node
whose Progeny includes S, denoted as Root(S).

Lemma: Ancestry. Similar to the definitions in Progeny,

• A(v) = Dv(Root(v)).
• A(u\v) = Du\v(Root(u)).

Lemma: Distinct-Root Ancestry. If Root(u) 6= Root(v), then
A(u\v) = A(u).

Fact 6. Blossom algorithm maintains all blossoms that have
positive dual variables.

{S|S ∈ O∗ ∧ u ∈ S ∧ v /∈ S ∧ yS 6= 0} ⊆ A(u\v)

⊆ {S|S ∈ O∗ ∧ u ∈ S ∧ v /∈ S}
{S|S ∈ O∗ ∧ e ∈ δ(S) ∧ yS 6= 0} ⊆ A(u\v) ∪ A(v\u)

⊆ {S|S ∈ O∗ ∧ e ∈ δ(S)}, where e = (u, v)

Fact 7. Given Fact 6 and A(v1\v2)∩A(v2\v1) = ∅ we can
simplify the dual variable summation,

∑
S∈O∗

v1∈S∧v2 /∈S

yS =
∑
S∈O∗

v1∈S∧v2 /∈S∧yS 6=0

yS =
∑

A∈A(v1\v2)

yA

∑
S∈O∗

(v1,v2)∈δ(S)

yS =
∑
S∈O∗

(v1,v2)∈δ(S)∧yS 6=0

yS =
∑

A∈A(v1\v2)

yA +
∑

A∈A(v2\v1)

yA

APPENDIX B
LP SIMPLIFICATION

Theorem: Non-negative Vertex Dual. Given the error prob-
ability for any independent error source P (e) 6 0.5, dual
variables yv , ∀v ∈ V are non-negative during the whole
process of finding the solution by the blossom algorithm.

Proof. Given Fact 1 and Fact 3, the initial state satisfies that
yu > 0,∀u ∈ V . Whenever a vertex dual variable yu decreases
∆yu < 0, it must be a node. According to Fact 4, there must
exists two other nodes Sa and Sb increasing. Since there are
tight edges between a node and u, we can assume edges (a, u)
and (b, u) are the constraints of tight edges from the two nodes.
Obviously (u, a), (u, b) ∈ δ(u), i.e. yu contributes to the slack
of both edges (u, a) and (u, b). According to Fact 5, there
are no other node containing u since {u} is a node, and any
non-zero dual variable that includes a must be child node of
Sa. According to Fact 4, there are two tight constraints.

yu + ya +
∑

S∈O|(u,a)∈δ(S)

yS = w(u,a) (2)

yu + yb +
∑

S∈O|(u,b)∈δ(S)

yS = w(u,b) (3)

According to Fact 3 and Fact 4, there are three constraints
for the update amount ∆ between vertices a, b and u.

yu −∆ + ya +
∑

S∈O|(u,a)∈δ(S)

yS + ∆ 6 w(u,a) (4)

yu −∆ + yb +
∑

S∈O|(u,b)∈δ(S)

yS + ∆ 6 w(u,b) (5)

ya +
∑

S∈O|(u,a)∈δ(S)

yS + ∆ + yb +
∑

S∈O|(u,b)∈δ(S)

yS + ∆ 6 w(a,b) (6)

Constraints (4) and (5) are automatically satisfied with any
∆ value, but constraint 6 requires that

∆ 6

w(a,b) − ya −
∑

S∈O|(u,a)∈δ(S)

yS − yb −
∑

S∈O|(u,b)∈δ(S)

yS

 /2

Given w(a,b) 6 w(u,a)+w(u,b) (Fact 2) and Eqs. (2) and (3),

∆ 6 yu

That means in the next stage y′u = yu − ∆ ≥ 0. Since
blossom algorithm starts with yu > 0 and there is no chance of
decreasing any yu below zero at any point of the algorithm, we
can conclude that yu > 0 stands throughout the algorithm.

12

APPENDIX C
PROOFS OF DECODING GRAPH

Lemma: Edge Max Point. For a (segment) edge e = (s, t) of
weight w and a point p /∈ e,

max
q∈e

Dist(p, q) = min(Dist(p, s),Dist(p, t))+

w/2 + |Dist(p, s)− Dist(p, t)|/2
Proof. By the definition of Distance, we have |Dist(p, t) −
Dist(p, s)| 6 w. We can denote

|Dist(p, t)− Dist(p, s)| = w − δ
where 0 6 δ 6 w. Without loss of generality, we assume
Dist(p, s) 6 Dist(p, t). ∀q ∈ e, let w1 = Dist(q, s). We have

Dist(p, q) = min(Dist(p, s) + w1,Dist(p, t) + w − w1)

= min(Dist(p, s) + w1, (Dist(p, s) + w − δ) + w − w1)

= Dist(p, s) + min(w1, 2w − δ − w1)

Thus, we have

max
q∈e

Dist(p, q) = Dist(p, s) + w − δ/2

= min(Dist(p, s),Dist(p, t)) + w − δ/2

Lemma: Edge Min Point. For a (segment) edge e = (s, t) of
weight w and a point p /∈ e,

min
q∈e

Dist(p, q) = min(Dist(p, s),Dist(p, t))

Lemma: Edge Max-Min Bound. For a (segment) edge e of
weight w and a point p /∈ e,

max
q∈e

Dist(p, q)−min
q∈e

Dist(p, q) > w/2.

Lemma: Circle-Edges. A circle C(v, d) on the decoding graph
is a union of a finite number of vertices and (segment) edges
with their incident points.

Proof. There are a finite number of vertices VM . Given an
edge e = (s, t) of weight w, if w = 0, the edge is empty e =
∅; If w > 0, there are four situations regarding its relationship:
• if ∀p ∈ e, Dist(p, v) > d, e is outside the circle.
• if ∀p ∈ e, Dist(p, v) 6 d, e ∪ {s, t} is inside the circle.
• if ∃r ∈ e, Dist(s, v) 6 d, and ∃t ∈ e, Dist(t, v) > d,

there must be one or two points that are of distance d to
v. When there is a single point, it partitions e into two
segments: one inside the circle and the other outside.

• When there are two points that are of distance d to v,
they partition e into three segments: the middle segment
lies outside the circle while the other two inside.

With the above, we can conclude that a circle covers a finite
number of vertices and (segment) edges with their incident
points. That is, a circle is a union of a finite number of sets
each represented by an closed intervals of (segment) edge.

APPENDIX D
PROOFS OF BLOSSOM

The blossom algorithm solves the MWPM problem for the
syndrome graph. Our Parity Blossom algorithm solves the
same problem but work on the decoding graph. Therefore,
to prove that Parity Blossom solves the same problem, we
relate dual variables in the blossom algorithm to the geometric
objects of the decoding graph.

We imagine the syndrome graph is overlaid over its de-
coding graph. As V ⊆ VM , a vertex in the syndrome graph
is aligned with its correspondent in the decoding graph, as
shown in Fig. 11.

Figure 11: Overlaying syndrome graph on top of its decoding
graph. The center vertex is v. The dual variable yv on the
syndrome graph corresponds to a Circle of the same radius on
the decoding graph. In the decoding graph, the circle C(v, yv)
consists of all the orange (segment) edges. Despite its square
appearance, it is actually a “circle” in Manhattan geometry.

We define

C(v) = C(v,
∑

A∈A(v)

yA)

C(u\v) = C(u,
∑

A∈A(u\v)

yA)

Lemma: Root Cover. If S is a node, i.e., S = Root(S),

Cover(S) = ∪v∈SC(v).

Lemma: Distinct-Root Circle. If Root(u) 6= Root(v), then
C(u\v) = C(u).

Lemma: Tight Edge. An edge (v1, v2) in the syndrome graph
becomes tight if and only if C(v1\v2) and C(v2\v1) on the
decoding graph overlap. That is,

we =
∑

S∈O∗|e∈δ(S)

yS ⇐⇒ C(v1\v2) ∩ C(v2\v1) 6= ∅

Proof. Sufficiency. Assume on the decoding graph ∃p ∈
C(v1,

∑
A∈A(v1\v2) yA)∩C(v2,

∑
A∈A(v2\v1) yA). By the def-

13

inition of Circle,

Dist(v1, p) 6
∑

A∈A(v1\v2)

yA

Dist(v2, p) 6
∑

A∈A(v2\v1)

yA

According to the triangular relationship, the weight of the
edge between v1 and v2 in the syndrome graph has we =
Dist(v1, v2) 6 Dist(v1, p) + Dist(v2, p). This and Fact 7 have

we 6
∑

S∈O∗|e∈δ(S)

yS

Since the edge slackness constraints (3b) also says > of the
above inequality, we have

we =
∑

S∈O∗|e∈δ(S)

yS

Necessity. Suppose an edge e = (v1, v2) is tight, there exists
a minimum-weight path from v1 to v2 in the decoding graph
that consists of edges e1 = (v1, a), e2, · · · , en = (b, v2) where

n∑
i=1

wei = we =
∑

S∈O∗|e∈δ(S)

yS

Since Dist(v1, v) is continuous and monotonic as v moves
from v1 to v2 along the minimum-weight path, ∃p ∈ ej that
split the edge ej into two parts weighted w1 and w2, where

path (v1, p) :

j−1∑
i=1

wei + w1 =
∑

S∈O∗|v1∈S∧v2 /∈S

yS

path (p, v2) : w2 +

n∑
i=j+1

wei =
∑

S∈O∗|v1 /∈S∧v2∈S

yS

Given the distance definition and Fact 7,

Dist(v1, p) 6
∑

S∈O∗|v1∈S∧v2 /∈S

yS =
∑

A∈A(v1\v2)

yA

Dist(v2, p) 6
∑

S∈O∗|v1 /∈S∧v2∈S

yS =
∑

A∈A(v2\v1)

yA

That is, ∃p belongs to both C(v1\v2) and C(v2\v1).

Theorem: Node Cover Finite Overlap. Given two nodes S1

and S2, Cover(S1) ∩ Cover(S2) is a finite set.

Proof. Because S1 and S2 are nodes,

Cover(S1) ∩ Cover(S2) =

(
∪
v1∈S1

C(v1)

)
∩
(
∪
v2∈S2

C(v2)

)
.

Suppose |Cover(S1)∩Cover(S2)| is infinite, there must exist
two vertices v1 ∈ S1 and v2 ∈ S2 such that |C(v1) ∩ C(v2)|
is infinite.

Since a circles includes a finite number of edges, there must
exists a (segment) edge f of a nonzero weight w > 0 with

f ⊆ C(v1) ∩ C(v2).

By the definition of Circle, we have

∀p ∈ f, Dist(v1, p) 6
∑

A∈A(v1)

yA and

Dist(v2, p) 6
∑

A∈A(v2)

yA

Moreover, with Lemma: Edge Max-Min Bound,

∃p ∈ f,Dist(v2, p) 6
∑

A∈A(v2)

yA − w/2

Given the triangular inequality of the distance function
Dist(v1, v2) ≤ Dist(v1, p) + Dist(v2, p),

Dist(v1, v2) + w/2 6
∑

A∈A(v1)

yA +
∑

A∈A(v2)

yA.

With Fact 7 and Lemma: Distinct-Root Ancestry,∑
A∈A(v1)

yA +
∑

A∈A(v2)

yA =
∑

S∈O∗|e∈δ(S)

yS

The syndrome graph edge e = (v1, v2) has a weight we =
Dist(v1, v2), thus

we + w/2 6
∑

S∈O∗|e∈δ(S)

yS =⇒ we <
∑

S∈O∗|e∈δ(S)

yS

The above violates the edge slackness constraints (3b). As
the result, the theorem must be true.

Theorem: Tight Edge Detection (Cover). There exists a tight
edge between two different nodes S1 and S2 if and only if
Cover(S1) and Cover (S2) overlap. That is,

∃e = (v1, v2) ∈ E, v1 ∈ S1 ∧ v2 ∈ S2 ∧ we =
∑

S∈O∗|e∈δ(S)

yS

⇐⇒ Cover(S1) ∩ Cover(S2) 6= ∅

Proof. Since S1 and S2 are different nodes, we have C(v1 \
v2) = C(v1) and C(v2 \ v1) = C(v2) per Lemma: Distinct-
Root Circle.

Necessity. With Lemma: Tight Edge,

we =
∑

S∈O∗|(v1,v2)∈δ(S)

yS

=⇒ C(v1\v2) ∩ C(v2\v1) 6= ∅
=⇒ C(v1) ∩ C(v2) 6= ∅
=⇒ Cover(S1) ∩ Cover(S2) 6= ∅

The last step is true because the Cover of a node consists
of circles of all its vertices, per Lemma: Root Cover.

Cover(S) = ∪v∈SC(v)

14

Sufficiency.

Cover(S1) ∩ Cover(S2) 6= ∅
=⇒ ∃v1 ∈ S1, v2 ∈ S2, C(v1) ∩ C(v2) 6= ∅
=⇒ C(v1\v2) ∩ C(v2\v1) 6= ∅

=⇒ w(v1,v2) =
∑

S∈O∗|(v1,v2)∈δ(S)

yS

APPENDIX E
PROOFS OF FUSION BLOSSOM

Vb ⊂ VM divides a decoding graph G(EM , VM) into two
disjoint graphs that include V1 and V2, respectively if there is
no edge in the decoding graph that connects vertices from both
V1 and V2. As a result, it divides the MWPM problem into two
disjoint sub-problems. For the i-th sub-problem, i ∈ {1, 2}, the
primal and dual formulations as in Eq. 1 and 3, respectively,
have E and O∗ as follows.

Ei = {e|e = (u, v) ∈ E ∧ u, v ∈ Vi ∪ Vb}
O∗i = {S|S ∈ O∗ ∧ S ⊆ Vi}

Theorem: Feasible Dual Variables. Solutions for the two
disjoint sub-problems determine the values of the dual vari-
ables yS , S ∈ O∗1 ∪O∗2 . These values plus setting yS to 0 for
S ∈ O∗ \O∗1 ∪O∗2 constitute a feasible solution to the original
dual problem.

Proof. ApparentlyO∗1∩O∗2 = ∅ andO∗1∪O∗2 ⊆ O∗. Likewise,
E1 ∪ E2 ⊆ E.

The MWPM solutions for the sub-problems must satisfy the
following by definition∑

S∈O∗
1 |e∈δ(S)

yS 6 we, ∀e ∈ E1∑
S∈O∗

2 |e∈δ(S)

yS 6 we, ∀e ∈ E2

Additionally, since any vertex in Vb does not appear in any
blossom of O∗1 or O∗2 ,

e /∈ δ(S), ∀S ∈ O∗1 , ∀e ∈ E2

e /∈ δ(S), ∀S ∈ O∗2 , ∀e ∈ E1

These four can be combined as∑
S∈O∗

1∪O∗
2 |e∈δ(S)

yS 6 we, ∀e ∈ E1 ∪ E2

Because yS is 0 for S ∈ O∗ \ (O∗1 ∪ O∗2), we can further
simplify the above as∑

S∈O∗|e∈δ(S)

yS 6 we, ∀e ∈ E1 ∪ E2

We only need to prove the constraint is also met for ∀e ∈
E \ (E1 ∪ E2), which can be noted as e = (v1, v2) where
v1 ∈ V1 and v2 ∈ V2. e corresponds to a minimum-weight

path between v1 and v2 in the original decoding graph. Since
Vb divides the decoding graph into two disjoint parts, this path
must go through ∃vb ∈ Vb. Since a minimum-weight path
go through v1, vb, v2, we have w(v1,v2) = w(v1,vb) + w(v2,vb).
Because (v1, vb) ∈ E1 and (v2, vb) ∈ E2, we have∑

S∈O∗
1 |(v1,v2)∈δ(S)

yS 6 w(v1,vb)∑
S∈O∗

2 |(v1,v2)∈δ(S)

yS 6 w(v2,vb)

Again because yS is 0 for S ∈ O∗ \ (O∗1 ∪ O∗2), we have∑
S∈O∗|(v1,v2)∈δ(S)

yS 6 w(v1,vb) + w(v2,vb) = w(v1,v2)

That is, ∑
S∈O∗|e∈δ(S)

yS 6 we, ∀e ∈ E \ (E1 ∪ E2)

Overall, the dual variables are feasible in (3a) and (3b)

we −
∑

S∈O∗|e∈δ(S)

yS > 0, ∀e ∈ E

yS > 0, ∀S ∈ O∗

APPENDIX F
PROOFS OF PARITY DUAL MODULE

We optimize the algorithm by tracking Pseudo-Covers
(§V-B1) instead of Covers. Pseudo-Covers are similar to
Covers, but differ by only a few boundary vertices. The
primary complication introduced by Pseudo-Cover stems from
the presence of zero edges, as all the vertices connected by
zero edges can belong to an arbitrary number of Covers. Addi-
tional complications arise when Fusion Blossom partitions the
decoding graph, as some of the zero edges may not be known
to a Pseudo-Cover when it is constructed from a sub-problem.
Therefore, it is natural to question whether Pseudo-Covers are
equally effective as Covers in detecting Obstacles.

Here we prove the correctness of using Pseudo-Covers, as
stated in Theorem: Tight Edge Detection (Pseudo-Cover).
We start with a few definitions and lemmas exclusively used in
the proof of this theorem. We will use the example in Fig. 12
throughout. Pseudo-Covers have the following properties.

Cover(S) ⊆ Cover(S)

Cover(S) \ Cover(S) ⊆ VM
Cover(S1) ∩ Cover(S2) ∩ VM = ∅, ∀S1 6= S2

Lemma: No Free Zero Edge Vertex. Given a zero edge e =
(u, v) ∈ EM , if there is a node S such that u ∈ Cover(S),
there is a node T such that v ∈ Cover(T).

Definition: Island. We define the island of a vertex v as the
set of vertices that have zero distance to v, noted as

Island(v) = {u|Dist(u, v) = 0, u ∈ VM}

15

(1) Island (2) Invalid Pseudo-Covers

(3) ∆yR = −1, Cover(R) (4) ∆yG = +1, Cover(G)

Figure 12: Example of maintaining Pseudo-Covers to detect at
least one obstacle. (1) The Island is marked in yellow circles,
connected by zero edges in yellow. When a vertex in the Island
is inside a Pseudo-Cover, we mark half of the incident edges
with the color of the node. (2) Suppose the nodes are R,G,B
for red, green and blue respectively. Suppose ∆yR = −1,
∆yG = ∆yB = +1. Although there is an obstacle between
G and B given Cover(G) ∩ Cover(B) 6= ∅, their initial yet
invalid Pseudo-Covers Cover(G) and Cover(B) do not touch
on any decoding graph edge, isolated by Cover(R) as shown
in the figure, thus forbidding an obstacle to be detected. In
order to let Cover(G) and Cover(B) touch, the algorithm
constructs valid Pseudo-Covers by (3) removing boundary
vertices from Cover(R) given ∆yR = −1 and (4) absorbing
as many boundary vertices as possible into Cover(G) given
∆yG = +1. After that, Cover(G) and Cover(B) touch on one
decoding graph edge and thus detects an obstacle.

Obviously, v ∈ Island(v). Also, |Island(v)| > 1 iff ∃e =
(u, v) ∈ EM , we = 0. That is, an island is non-trivial
only when there are zero edges. An example is shown in
Fig. 12(1), where the vertices in yellow circles constitute an
island, connected by yellow zero edges.

Definition: Occupancy. We define the Occupancy of a vertex
v as the set of nodes whose Cover includes v, noted as

Occupancy(v) = {S|v ∈ Cover(S) ∧ S is node}
A member of the Occupancy is called an Occupier.

Lemma: Occupier Boundary. If v ∈ VM has more than one
occupiers, it must be on the boundary of the Covers of all its
occupiers.

Proof. Assume S1, S2 ∈ Occupancy(v). We have v ∈
Cover(S1)∩Cover(S2). We prove by contradiction, assuming
v is not on the boundary of Cover(S1).

Since v is strictly inside Cover(S1), there exists a defect
vertex u1 ∈ S1 such that v is strictly inside the circle C(u1).
That is, Dist(u1, v) <

∑
A∈A(u1)

yA. Since v ∈ Cover(S2),
there exists a defect vertex u2 ∈ S2 such that v ∈ C(u2).
That is, Dist(u2, v) 6

∑
A∈A(u2)

yA. We have

Dist(u1, u2) 6 Dist(u1, v) + Dist(u2, v)

<
∑

A∈A(u1)

yA +
∑

A∈A(u2)

yA =
∑

S∈O∗|(u1,u2)∈δ(S)

yS

This violates the dual constraint (2a) of e = (u1, u2) ∈ E,
contradiction. Thus, the theorem must be true.

We can extend the notion of Occupancy to an Island: the
Occupancy of Island(v) is the same as Occupancy(v). This is
because

v ∈ Cover(S)⇐⇒ Island(v) ⊆ Cover(S)

As shown in example Fig. 12(1), the Occupancy of the
island is ∅, while in Fig. 12(2) the Occupancy of the island
is {R,G,B}.
Lemma: Pseudo-Cover Touching. Consider a vertex v ∈ VM ,
if there exists two node S1, S2 ∈ Occupancy(v) with ∆yS1

+
∆yS2

> 0, there exists two nodes S3, S4 ∈ Occupancy(v)
with ∆yS3

+ ∆yS4
> 0 whose Pseudo Covers border each

other. That is,

∃S1, S2 ∈ Occupancy(v),∆yS1
+ ∆yS2

> 0

=⇒ ∀S3 ∈ Occupancy(v),∆yS3
> 0,

∃S4 ∈ Occupancy(v) \ {S3},∆yS4
> 0, e = (a, b) ∈ EM ,

a ∈ Cover(S3), b ∈ Cover(S4),

e ⊆ Cover(S3) ∪ Cover(S4)

Proof. Because v has at least two occupiers (S1 and S2), v
and all members of Island(v) must be on the boundaries of the
Covers of all its occupiers, per Lemma: Occupier Boundary.

According to how a Pseudo Cover is derived, ∀S ∈
Occupancy(v) with ∆yS < 0, we have Cover(S)∩Island(v) =
∅, because all zero edges and their vertices must be removed
from Cover(S) to create Cover(S).

For every S3 ∈ Occupancy(v) with ∆yS3
> 0, there are

only two cases.

• In the first case, Island(v) does not overlap with any other
Pseudo-Covers beyond Cover(S3). We have Island(v) ⊆
Cover(S3) given the island is a connected graph and how
Pseudo-Covers are derived. Since there exists another
node S4 ∈ Occupancy(v) \ {S3} with ∆yS4

> 0
and Island(v) ∩ Cover(S4) = ∅, there must exist a
decoding graph edge e = (a, b) ∈ Cover(S4) where
a ∈ Island(v) ⊆ Cover(S3) and b ∈ Cover(S4). That
is, a ∈ Island(v) must be removed from Cover(S4)
to form Cover(S4). Because b /∈ Island(v), we must
be greater than zero. As a result, e ⊆ Cover(S4).
Therefore, e ⊆ Cover(S4) ⊆ Cover(S3) ∪ Cover(S4),
and ∆yS3 + ∆yS4 > 0.

16

• Island(v) overlaps with a Pseudo-Cover beyond that of
S3. There must exists a zero edge e = (a, b) ∈ EM
that a, b ∈ Island(v) and a and b are covered by Pseudo-
Covers of S3 and another nodes S4, respectively. We have
∆yS4

> 0 because Cover(S) ∩ Island(v) = ∅ for any
∆yS < 0. We have e = ∅ ⊆ Cover(S3) ∪ Cover(S4),
and ∆yS3

+ ∆yS4
> 0.

Lemma: Edge Fully Cover. If a decoding graph edge e =
(u, v) ∈ EM is covered by the union of two different Pseudo-
Covers S1, S2 and u, v are inside Cover(S1),Cover(S2) re-
spectively, then the Covers of S1 and S2 overlap. That is,

e ⊆ Cover(S1) ∪ Cover(S2), u ∈ Cover(S1), v ∈ Cover(S2)

=⇒ Cover(S1) ∩ Cover(S2) 6= ∅

Proof. We prove there exists a point in Cover(S1)∩Cover(S2).
We have u ∈ Cover(S1) ⊆ Cover(S1) and v ∈ Cover(S2) ⊆
Cover(S2).

Clearly, if u ∈ Cover(S2) or v ∈ Cover(S1), the vertex u
or v belongs to Cover(S1) ∩ Cover(S2).

If not, then we > 0 per definition of Island and Occupancy.
Since v /∈ Cover(S1), Cover(S1) ∩ (e ∪ {u, v}) is a closed
edge segment from u to p1 ∈ (u, v). Similarly, Cover(S2) ∩
(e ∪ {u, v}) is a closed edge segment from v to p2 ∈ (u, v).
We have e ⊆ Cover(S1) ∪ Cover(S2) ⊆ Cover(S1) ∪
Cover(S2). Thus, we have Dist(u, p1) + Dist(v, p2) > we,
because otherwise there exists a point on segment edge
p ∈ (p1, p2) ⊆ e where p /∈ Cover(S1) ∪ Cover(S2). Also,
Dist(u, p1) + Dist(v, p2) 6 we given Theorem: Node Cover
Finite Overlap, because otherwise Cover(S1) and Cover(S2)
overlap on segment edge (p1, p2) with infinite points. Thus,
we have Dist(u, p1) + Dist(v, p2) = we, i.e., point p1 = p2
belongs to both Cover(S1) and Cover(S2).

Theorem: Tight Edge Detection (Pseudo-Cover). There
exists a tight edge between two different nodes S1 and S2

with ∆yS1 +∆yS2 > 0 if and only if there exists two different
nodes S3 and S4 with ∆yS3

+∆yS4
> 0 whose Pseudo-Covers

meet on a decoding graph edge. That is,

∃S1, S2, e = (v1, v2) ∈ E,
v1 ∈ S1, v2 ∈ S2,∆yS1

+ ∆yS2
> 0, we =

∑
S∈O∗|e∈δ(S)

yS

⇐⇒ ∃S3, S4, e
′ = (v3, v4) ∈ EM ,

v3 ∈ Cover(S3), v4 ∈ Cover(S4),

∆yS3
+ ∆yS4

> 0, e′ ⊆ Cover(S3) ∪ Cover(S4)

Proof. Sufficiency. We prove that when S1 = S3, S2 = S4,
there exists such a tight edge e. Given Theorem: Tight
Edge Detection (Cover) and ∆yS1

+ ∆yS2
> 0, we only

need to prove Cover(S3) ∩ Cover(S4) 6= ∅. Although their
Pseudo-Covers do not overlap on vertices, i.e., Cover(S3) ∩

Cover(S4) ∩ VM = ∅, we have Cover(S3) ∩ Cover(S4) 6= ∅
given Lemma: Edge Fully Cover.
Necessity. Given Theorem: Tight Edge Detection (Cover),
we have Cover(S1)∩Cover(S2) 6= ∅ and ∆yS1 + ∆yS2 > 0.
Since ∆yS ∈ {0,±1}, without loss of generality, we have
∆yS1

= +1 and ∆yS2
∈ {0,+1}. Also, there exists a point

p ∈ Cover(S1) ∩ Cover(S2).
If such a point belongs to an edge p ∈ e′ = (v3, v4) ∈

EM , we have we > 0 and Dist(v3, p) > 0, Dist(v4, p) >
0. Given Theorem: Node Cover Finite Overlap, v3 and v4
must belong to different Covers. Without loss of generality, we
assume v3 ∈ Cover(S1) and v4 ∈ Cover(S2). Thus, segment
edge (v3, p) ⊆ Cover(S1) and (v4, p) ⊆ Cover(S2). Given
edge segments contain no vertex and Cover(S) \ Cover(S) ⊆
VM , we have (v3, p) ⊆ Cover(S1), (v4, p) ⊆ Cover(S2) and
p ∈ Cover(S1) ∩ Cover(S2). Thus,

e′ = (v3, p) ∪ {p} ∪ (p, v4) ⊆ Cover(S1) ∪ Cover(S2)

Since v3, p ∈ Cover(S1), v4 /∈ Cover(S1), v3 is not on
the boundary of Cover(S1). Given Cover(S) \ Cover(S) only
consists of boundary vertices per definition of Pseudo-Cover,
we have v3 ∈ Cover(S1). Similarly, v4 ∈ Cover(S2). That is,
there exist S3 = S1 and S4 = S2 satisfying the conditions.

If such a point is a vertex v, we have S1, S2 ∈
Occupancy(v). Now we can simply invoke Lemma: Pseudo-
Cover Touching to complete the proof. Note that in this case,
S3 and S4 are not necessarily S1 and S2.

APPENDIX G
PARITY BLOSSOM EXAMPLE

An example of Parity Blossom is shown in Fig. 13, demon-
strating the whole procedure from receiving the defect vertices
to calculating the MWPM.

17

∆~y

+

∆ya=+1

+

∆yb=+1

+

∆yc=+1

+

∆yd=+1

+

∆ye=+1

Primal

(1) Initial

a

b

c

d

e

ya = 2 yb = 2

yc = 2 yd = 2

ye = 2
Dual

(2) Obstacle (e, virtual)

∆~y

+

∆ya=+1

+

∆yb=+1

+

∆yc=+1

+

∆yd=+1

∆ye=0

Primal

(3) Match

ya = 2.5 yb = 2.5

yc = 2.5 yd = 2.5

ye = 2
Dual

(4) Obstacle (a, b) and (b, c)

∆~y

+

−
+

∆ya=+1

∆yb=−1

∆yc=+1

+

∆yd=+1

∆ye=0

Primal

(5) Alternating

ya = 3 yb = 2

yc = 3 yd = 3

ye = 2
Dual

(6) Obstacle (a, c)

∆~y

+

∆yS =+1

∆ya=0

∆yb=0

∆yc=0

+

∆yd=+1

∆ye=0

Primal

(7) Blossom

S = {a, b, c}

ya = 3 yb = 2

yc = 3 yd = 4

ye = 2 yS = 1
Dual

(8) Obstacle (b, d)

∆~y

∆yS =0

∆yd=0

∆ya=0

∆yb=0

∆yc=0

∆ye=0

Primal

(9) Matched

MWPM

x(a,c) = 1

x(b,d) = 1

x(e,) = 1

Primal

(10) MWPM

Figure 13: Blossom on Decoding Graph using Parity Blossom as example. The primal phase works on the matchings and
outputs directions ∆~y. The dual phase works on the Covers of nodes (in different colors) and outputs Obstacles (with
icon). When an obstacle is detected between vertices u and v, the black dashed lines show the Circles C(u) and C(v)
as part of their individual Covers. (1) The algorithm starts with direction ∆yv = +1, ∀v ∈ V and initial dual variables
yS = 0, ∀S ∈ O∗. (2) Dual phase grows 2∆~y and finds an obstacle between vertex e and a virtual vertex on the right. (3)
Primal phase overcomes the obstacle by matching e with the virtual vertex, and set ∆ye = 0. (4) Dual phase grows 1

2∆~y and
finds two obstacles at tight edges (a, b) and (b, c). (5) Primal phase constructs an alternating tree with alternating grow and
shrink ∆ya,∆yb,∆yc = +1,−1,+1 to overcome the obstacles. (6) Dual phase grows 1

2∆~y and finds an obstacle between
(a, c). (7) Primal phase constructs a blossom S = {a, b, c} with ∆yS = +1. (8) Dual phase grows ∆~y and finds an obstacle
between (b, d). It’s found by first detecting Cover(S)∩Cover({d}) 6= ∅ and then detecting C(b\d)∩C(d\b) 6= ∅. (9) Primal
phase matches S to b. All nodes are matched. (10) Primal phase expands the blossoms and outputs an MWPM.

18

	I Introduction
	II Background
	II-A Quantum Error Correction (QEC) Codes
	II-B Blossom Algorithm in General
	II-B1 Blossom algorithm

	II-C Blossom Algorithm in QEC

	III Geometric Interpretation
	III-A Geometry of Decoding Graph
	III-B Blossom on Decoding Graph
	III-B1 Geometric Notions
	III-B2 Obstacle Detection on Decoding Graph

	III-C Parity Blossom

	IV Fusion Blossom
	IV-A Division
	IV-B Fusion
	IV-C Schedule Design: Leaf Partitions and Fusion Tree

	V Implementation
	V-A Unified Framework for Matching Decoders
	V-B Parity Blossom
	V-B1 Parity Dual Module
	V-B2 Standard Primal Module

	V-C Fusion Blossom
	V-D Other Optimizations

	VI Evaluation
	VI-A Setup
	VI-A1 Noise Model
	VI-A2 Measurement
	VI-A3 Baseline
	VI-A4 Metrics

	VI-B Results
	VI-B1 Throughput
	VI-B2 Latency
	VI-B3 Fusion Time
	VI-B4 Scalability

	VII Related Work
	References
	Appendix A: Facts & Lemmas
	Appendix B: LP Simplification
	Appendix C: Proofs of Decoding Graph
	Appendix D: Proofs of Blossom
	Appendix E: Proofs of Fusion Blossom
	Appendix F: Proofs of Parity Dual Module
	Appendix G: Parity Blossom Example

