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Abstract—We benchmark the performances of Qrack, an
open-source software library for the high-performance classical
simulation of (gate-model) quantum computers. Qrack simulates,
in the Schrödinger picture, the exact quantum state of n qubits
evolving under the application of a circuit composed of elemen-
tary quantum gates. Moreover, Qrack can also run approximate
simulations in which a tunable reduction of the quantum state
fidelity is traded for a significant reduction of the execution time
and memory footprint. In this work, we give an overview of
both simulation methods (exact and approximate), highlighting
the main physics-based and software-based techniques. Moreover,
we run computationally heavy benchmarks on a single GPU,
executing large quantum Fourier transform circuits and large
random circuits. Compared with other classical simulators, we
report competitive execution times for the exact simulation
of Fourier transform circuits with up to 27 qubits. We also
demonstrate the approximate simulation of all amplitudes of
random circuits acting on 54 qubits with 7 layers at average
fidelity higher than 4%, a task commonly considered hard
without super-computing resources.

I. INTRODUCTION

The last decade was characterized by significant techno-
logical progress in quantum computing. Several prototypes of
quantum computers are currently available and are routinely
used for research purposes and for proof-of-concept applica-
tions [1]. It is not surprising that, at the same time, there has
been a parallel progress in the classical simulation of quantum
computers [2]–[11].

Developing powerful and efficient classical simulators of
quantum computers is important for several reasons. A first
reason is to numerically test quantum algorithms applied to a
limited number of qubits, without the need of using expensive
quantum hardware. A second reason is to calibrate and validate
noisy quantum computers, since this typically requires a
comparison between the noisy results of the real device against
the ideal results of an exact classical simulation. A third reason
is to run algorithms where quantum processors and simulated
processors cooperate in a hybrid computation. A further mo-
tivation for classically simulating quantum computers is to
provide an empirical baseline of performances (e.g. [12]–[14])
which, at least in principle, should be overcome by real devices
in order to demonstrate any claim of quantum advantage [15]–
[20] or quantum supremacy [21]–[23]. Beyond the mentioned
applications, one should not underestimate the importance of
developing new quantum-inspired computational paradigms

from a fully classical computer science perspective. In fact,
as we also show in this work, quantum-inspired algorithms
might match or exceed the performances of standard classical
algorithms, especially if the transparent parallel nature of
quantum dynamics is exploited for GPU acceleration or for
HPC execution.

Here we focus on a specific library for the simulation of
gate-model quantum computers: Qrack [4]. Qrack is an open-
source framework founded in 2017, undergoing continuous
development up to the present days. It is designed to serve,
with high performances, all scales of simulation: from single
consumer CPUs to an arbitrarily high number of clustered
GPUs.

The main contribution of this work is to present the opti-
mization and approximation techniques underlying the Qrack
software library and to validate its simulation performance
against computationally intensive benchmark problems.

Specifically, we run exact simulations of quantum Fourier
transform (QFT) circuits up to 27 qubits and we run ap-
proximate simulations of random circuits at 54 qubits, up
to 10 layers, with average fidelity estimated at ≈ 4% at 7
circuit layers, on a single A100 GPU in very short execution
time. Differently from previous works in the literature, we do
not use advanced super-computers or expensive multi-GPU
cloud services for running our simulations. All QFT results
presented in this work are obtained with a single laptop, and all
approximate results are run on a single GPU (NVIDIA A100).
These can thus be reproduced with relatively little cost by
the scientific community. High performance simulation using
limited computational power with Qrack is realized through
several ingredients that will be explained in the main sections
of this work: circuit simplification techniques, a Schmidt de-
composition optimization, a tunable Schmidt-decomposition-
rounding-parameter (SDRP) approximation, and other syner-
gistic optimizations that include “hybrid” stabilizer/ket simula-
tion and well-rounded use of proven and novel HPC software
engineering techniques with adherence to disciplinary best-
practices (see Table I).

This work is organized in two main sections. In Sec. II
we restrict the analysis to the exact simulation of quantum
circuits and we benchmark the execution time of quantum
Fourier transform circuits. In Sec. III, we instead focus on the
approximate simulation of quantum circuits, we describe the
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Schmidt decomposition rounding parameter (SDRP) technique
and we approximately simulate large-scale random circuits.

II. EXACT SIMULATION

The first task that we consider is the exact simulation of a
quantum circuit in the Schrödinger picture. Let |ψC⟩ = C|ψ0⟩
be the ket quantum state obtained by the application of a
quantum circuit C to some given initial state |ψ0⟩ of n qubits.
Our goal is to compute |ψC⟩ given |ψ0⟩ and a description of
C in terms of a sequence of local gates acting on k qubits
(with k typically equal to 1, 2 or 3).

The Qrack simulation approach is based on the following
four general principles.

A. Keeping ket states as factorized as possible

During the classical simulation steps that are necessary to
compute the state evolution, Qrack keeps the state represen-
tation as factorized as possible to increase the simulation
efficiency [24].

A generic ket state |ψ⟩ of n qubits is characterized by
O(2n) complex amplitudes. However, if the state |ψ⟩ can be
factorized as the tensor product of m local states

|ψ⟩ = |ψS1
⟩ ⊗ |ψS2

⟩ . . . |ψSm
⟩, (1)

where S1, . . . Sm represent disjoint subsets of the n qubits, the
number of complex amplitudes that are necessary to represent
|ψ⟩ can be significantly reduced. For example, in the extreme
limit m = n, i.e. when the qubits are not entangled, O(n)
complex amplitudes are sufficient. A more realistic example,
which is quite relevant for Qrack, is the case where all qubits
are highly entangled with the exception of a single qubit q
which can be fully factorized, i.e. |ψ⟩ = |ψq⟩ ⊗ |ψ′⟩. In
this case, which Qrack is able to detect during the simulation
process as shown in Sec. III-A, the representation cost is given
by O(2n−1) complex amplitudes, corresponding to halving the
cost associated to a fully entangled state.

B. Any “unobservable” circuit optimization is allowed

Qrack modifies, simplifies and sometimes completely re-
moves some gates of the simulated circuit whenever this has
unobservable consequences.

More precisely, we say that a circuit transformation C → C ′

is unobservable with respect to the specific input state |ψ0⟩, if∣∣⟨ψ0|C ′†C|ψ0⟩
∣∣2 = 1. (2)

In other words, replacing the original circuit C with a simpli-
fied circuit C ′ is always allowed as long as the results of the
computation are unaffected.

Note that C and C ′ may correspond to different unitary
operations but, as long as they are equivalent when applied
to the specific input state |ψ0⟩, we can safely change C into
C ′. For example, if the control qubit of a CNOT gate is in
the state |0⟩, the CNOT gate can be removed. Similarly, if the
control qubit is in the state |1⟩ a CNOT gate can be replaced
by a local bit-flip of the target qubit.

From this simple example it is clear that, in order to
determine if a gate optimization is unobservable, it is crucial to
have direct access to the ket state at each step of the simulation
(Schrödinger picture). This is a specific design feature which
is typically not present in standard tensor-networks simulators
in which the ket state is not explicitly accessible, but must be
computed with a non-negligible cost.

C. Hybridizing ket and stabilizer representations

It is well known that Clifford circuits can be classically
simulated with a polynomial cost [25]. This fact is exploited
by Qrack which applies an hybridized stabilizer/ket simulation
approach. In practice, one can detect which parts of the
computation are more convenient to simulate via stabilizer
tableaus and which parts are more convenient to simulate
via ket states. Beyond the obvious application in simulating
fully Clifford circuits, this hybrid approach is particularly
convenient also in circuits with deep Clifford or (near-Clifford)
preambles.

Qrack chooses “transparently” (i.e. by default) between
stabilizer and ket simulation. The library introspects whether
calculations are being carried out as stabilizer, and it enacts
Clifford entangling gates with priority if they would be carried
out in stabilizer formalism, otherwise attempting to buffer
them to the benefit of state factorization. Ultimately, the
stabilizer-hybridization layer of Qrack relies on fallback from
stabilizer to ket representation in all cases which cannot be
reduced to Clifford (as through unobservable circuit opti-
mizations). The stabilizer hybridization layer also assigns a
general single-qubit unitary gate buffer respectively to each
qubit, which enables further optimization by simple commu-
tation, to maintain underlying Clifford representation. One
key factor contributing to the efficiency of Qrack’s stabilizer-
hybridization layer is aggressive state factorization as a higher
and external priority, including for stabilizer subsystems.

D. Optimizing computational resources

In addition to the previous physics-based optimization
techniques, Qrack makes use of software-based techniques
to achieve high performances with minimal computational
resources. Qrack is written in “pure language” C++11 standard
with only optional OpenCL (or CUDA) and Boost library
dependencies and licensed header reuse. Because of its mini-
mal number of dependencies, a “full-feature” Linux build of
the library might require about 16 MB of disk footprint, or
about 4 MB when compressed, and this can be further reduced
for custom builds. The comparatively extreme compactness of
the compiled library likely also benefits use and management
of CPU cache. Additionally, CPU/GPU hybridization is sup-
ported through the QHybrid class (see Table I) allowing for
an optimal distribution of computational resources, such that
CPU is used for small circuits and GPU is preferred for large
circuits (see e.g. Fig. 7 in Appendix B). Finally, Qrack also
supports single instruction multiple data (SIMD) intrinsics (see
Table I) for obtaining the advantages of data vectorization at
the CPU level.



TABLE I
OPTIMIZATION METHODS EMPLOYED BY QRACK WITH ASSOCIATED PICTORIAL REPRESENTATION, SECTION AND REFERENCE.

Technique Diagram Section Ref.

Ket simulation is proactively and reactively
Schmidt decomposed.

Sec. II-A [3]

SWAP gate is constant complexity (i.e. via
qubit label swap).

Sec. II-B Qrack
(2018)

QUnit eliminates Z-basis eigenstate controls. Sec. II-B Qrack
(2018)

Controlled phase and “inversion” (X-like) gates
are buffered and commuted around H gate.

Sec. II-B Qrack
2019

Simulation is “hybridized” with transparent
switch-off between stabilizer and ket “shards”

Sec. II-C [25],
Qrack
v.5.4.0
(2021)

Coalesced parallel X/Y/Z gates are executed
with single traversal.

Sec. II-D [5]

Ket simulation “hybridizes” CPU/GPU meth-
ods.

Sec. II-D Qrack
2020

SIMD (SSE and AVX) instruction sets of
x86 and x86 64 processors improve gate-
application throughput.

Sec. II-D SSIS
x86/
x86 64
CPUs

E. Simulation benchmark: quantum Fourier transform

To test the efficiency of Qrack with respect to the task of
exactly simulating quantum circuits, we consider numerical
experiments based on the quantum Fourier transform (QFT).

QFT circuits are often used for validating real or simulated
quantum computers. Here we use them to benchmark Qrack
against similar GPU-based classical simulators [10], [26]–[29]
and against a fully classical algorithm [30] for computing
discrete Fourier transforms.

Let |ψ0⟩ be an arbitrary initial state of n qubits. We can
represent it in the computational basis as |ψ0⟩ =

∑
j xj |bj⟩

where {|bj⟩} are the basis elements labelled with bitstrings bj
corresponding to the binary representation of the integers j =
0, 1, 2, . . . N , with N = 2n. The quantum Fourier transform
is the unitary operation CQFT which acts as follows:

|ψ0⟩ =
∑
j

xj |bj⟩ → CQFT|ψ0⟩ =
∑
j

yj |bj⟩, (3)

where the complex amplitudes {yj} are (up to a different sign
convention) the classical discrete Fourier transform (DFT) [31]
of the input amplitudes {xj}:

yj =
1√
N

N−1∑
j=0

xkω
jk, ω = e

i2π
N . (4)

Importantly, it is known how to decompose the unitary
CQFT as a circuit of two elementary gates: the Hadamard
gate H and the controlled version of the single qubit phase
gate RZ(θ). So, given its decomposition as a quantum circuit,
we can measure the wall-clock time for simulating CQFT

with different simulators obtaining simple and reproducible
benchmarks.1

Moreover, since the QFT circuit CQFT acts on state ampli-
tudes according to the classical DFT defined in Eq. (4), we also

1Our choices of convention for the final state of the (inverse) QFT run by
all simulators match the DFT up to normalization.



Fig. 1. (a) Wall-clock execution time of quantum Fourier transform (QFT) circuits applied to the initial state |0 . . . 0⟩ and executed with different classical
simulators. (b) Repetition of the same benchmark but using the GHZ state defined in Eq. (5) as initial condition. Because of its large amount of entanglement,
the GHZ state can be considered as the worst-case initialization scenario for Qrack. For both plots, all candidates were executed on the same Alienware m17
laptop, with Alienware BIOS version 1.16.2, (BIOS overclocking features set to off/default,) Ubuntu 22.04 LTS, Linux kernel version 5.19.0-35-generic, one
“Intel(R) Core(TM) i9-10980HK CPU @ 2.40GHz,” one “NVIDIA GeForce RTX 3080 Laptop GPU,” and 32 GB of SK hynix 3200 MT/s DDR4 in 2x16 GB
row configuration, collected on ISO date 2023-03-24. Candidate release versions were PyQrack 1.4.2 [4], qsimcirq 0.12.1 [26] (in NVIDIA appliance Docker
image), Qiskit Aer 0.12.0 [27], Qiskit Aer 0.11.0 (for cusvaer [28] in NVIDIA appliance Docker container), Qulacs 0.5.7.dev78+gc3b28f13 [29], QCGPU
0.1.1 [10], and pyFFTW 0.13.1. [30]

add a fully classical DFT library (pyFFTW [30]) within the
set of the benchmarked simulators. We stress that, technically,
pyFFTW is not an actual simulator since it is not able to
simulate quantum circuits. On the other hand, pyFFTW is one
of the fastest classical algorithms for computing Eq. (4) and
therefore it provides a useful benchmark for the performances
of quantum simulators acting on QFT circuits.

The results are reported in Figures 1a and 1b.
In Figure 1a, the initial state is |0 . . . 0⟩, i.e., all qubits are in

the configuration |0⟩, the standard initial state in most quantum
computing algorithms. In this case, Qrack is able to exploit
the state factorization of the initial state to execute the QFT
circuits several order of magnitude faster than other simulators
and, within the limits of our numerical analysis, with a better
asymptotic scaling. Remarkably, in this case Qrack clearly
outperforms even the classical DFT algorithm pyFFTW for
n > 16. This is an interesting consequence of the fact that
Qrack is highly optimized to simulate factorized states.

In Figure 1b we repeat the same numerical experiment
with an initial state which is more difficult to handle by
circuit simulators because of its large amount of entanglement.
Specifically we use the GHZ entangled state:

|ψGHZ⟩ =
1√
2
(|0 . . . 0⟩+ |1 . . . 1⟩) . (5)

Also in this case, Qrack nearly outperforms all the considered

classical simulators of quantum circuits, with the exception of
a small advantage (less than a factor of 2) by Qiskit cusvaer
(from the cuQuantum appliance for systems with NVIDIA
GPUs) at high-widths (n ≥ 23). When compared to the
classical DFT library pyFFTW, Qrack is slower for circuits
having a small number of qubits (n ≤ 20) and is slightly
faster for larger circuits (n > 20).

It is worth noting that only the QCGPU and Qrack simula-
tors can run on non-NVIDIA GPUs, as these two libraries use
the OpenCL API for general purpose GPU and accelerator
programming, while all the other simulators shown in Fig.
1 are based upon the proprietary CUDA API which can be
used with NVIDIA GPUs only. Qrack alone also optionally
supports CUDA as an alternative to OpenCL. pyFFTW also
runs on virtually any system with a CPU, since it does
not support GPU acceleration at all. Additional information
about the Qrack simulation time with and without using GPU
acceleration, is given in Fig. 7 of Appendix B.

III. APPROXIMATE SIMULATION

In Sec. II, we focused on the exact simulation of quantum
circuits. In this section instead, we consider the approximate
simulation of quantum circuits.

Limited cases of exact high-width simulation are already
possible in Qrack due to its factorization of subsystems and
stabilizer tableau capabilities. However, many realistic circuits



Fig. 2. Pictorial representation of the SDRP approximation technique. We represent the reduced state of a qubit as a vector in the Bloch sphere (first image)
and we check if its length is longer than 1− p, for threshold parameter p. If so, we rotate the state along the direction of the |0⟩ pole (second image). We
then post-select the measurement of the |0⟩ state, extending the length of the Bloch vector to 1 (third image). We finally reverse the original rotation, such
that the Bloch vector points along the original axis (fourth image).

still require a peak memory footprint which is close to
the footprint of a brute-force simulation. For large circuits
(n > 30), this limits Qrack’s exact simulation capabilities.
Compared to state-of-the-art in tensor network simulations,
this is a major limitation of Qrack exact simulation methods.
This motivated the development of an approximate simulation
method designed to trade minimal fidelity loss for maximum
reduction of memory and time complexity.

A. Schmidt decomposition rounding parameter approximation
If we isolate a single qubit q from the associated comple-

mentary set q̄ of n−1 qubits, we can always express the full ket
state of the system with the following Schmidt decomposition:

|ψ⟩ = (1−
√
ϵ)|φ⟩q|ψ⟩q̄ +

√
ϵ|φ⊥⟩q|ψ⊥⟩q̄, (6)

where |φ⟩|q is a quantum state of the qubit and |φ⊥⟩|q is its
unique orthogonal state. Similarly, |ψ⟩q̄ is a quantum state of
all the other qubits q̄ and |ψ⊥⟩q̄ is an orthogonal state.

Without loss of generality, we can assume ϵ ∈ [0, 0.5], such
that ϵ can be used to quantify the amount of entanglement
between the qubit q and the rest of the system q̄. If ϵ is large,
the state is highly entangled; if ϵ is small, the state is weakly
entangled. If ϵ = 0 (up to machine precision) the qubit is
fully separable and an exact simulation with a factorized ket
representation is possible as discussed in Sec. II. In this section
instead we are interested in approximating the state for values
of ϵ which are small but nonzero.

More precisely, we define the Schmidt decomposition
rounding parameter (SDRP) approximation, with threshold
parameter p ∈ [0, 1], as the following non-unitary operation:

|ψ⟩ → |φ⟩q|ψ⟩q̄, if ϵ ≤ p/2, (7)
|ψ⟩ → |ψ⟩, if ϵ > p/2.

In other words, if the state is weakly entangled, the SDRP
approximation projects the state on the closest factorized
state corresponding to the dominant term in the Schmidt
decomposition. Else, no approximation is applied.

In practice, the way in which Qrack implements the SDRP
approximation defined in Eq. (7) is through four geometrical
transformations representable in the Bloch sphere (see Fig. 2):

1) Since we have access to the ket state |ψ⟩, we can easily
compute the local expectation values of the Xq , Yq and
Zq Pauli operators associated to the qubit q. Therefore,
we have full knowledge of the reduced (mixed) state of
q:

ρq =
1

2
[Iq + rxXq + ryYq + rzZq] (8)

which is completely characterized by the 3D Bloch-
sphere vector

r = [rx, ry, rz] = [⟨Xq⟩, ⟨Yq⟩, ⟨Zq⟩]. (9)

We remark that the Schrödinger-picture simulation ap-
proach is crucial for quickly computing r.

2) Given the Bloch vector r, we deduce ϵ from its modulus,
since it is easy to show that ϵ = (1−|r|)/2. If ϵ > p/2,
no approximation is applied. If ϵ ≤ p/2, a local unitary
is applied to rotate r along the direction of the |0⟩ pole.

3) In this new reference frame, the projection defined in
Eq. (7) can be implemented as a simple measurement
in the computational basis, post-selected on the |0⟩ out-
come, which yields the normalized state |0⟩q|ψ⟩q . This
measurement-like step is a fundamental capability which
must be obviously present in any classical simulator,
including Qrack.

4) The state of the qubit is finally rotated back along the
direction of the original Bloch vector r, obtaining the
desired final state |φ⟩q|ψ⟩q .

Note that, from an abstract point of view, this technique is
similar to the core idea of matrix product states (MPS) [32]–
[34], but it is focused on the particular case in which one
of the subsystems in the Schmidt decomposition is a single-
qubit. (Qrack has also generalized the technique analogously
to at least 2-qubit subsystems, but this does not factor into
the particular benchmarks presented.) Within the MPS for-
malism, a common way to recover efficiency of approximate
simulation is to represent states as tensors, perform a singular
value decomposition, and discard principle components with
small Schmidt coefficients (see e.g. [35] for a recent software
implementation). The peculiar aspect of the SDRP technique



presented in this work is the possibility of applying the same
type of Schmidt projection used in MPS without representing
states as MPS, but by performing instead a task which is
elementary for any classical simulator: rotating and measuring
a single qubit in the computational basis.

B. Estimating the simulation fidelity

Let us denote with |ψ(in)
j ⟩ and |ψ(out)

j ⟩ the simulated ket
states evaluated right before and right after the jth SDRP
projection (with ϵj ≤ p) applied during the circuit simulation.
It is easy to check that, for each individual approximation, the
fidelity of the output state with respect to the input given by:

|⟨ψ(out)
j |ψ(in)

j ⟩|2 = 1− ϵj . (10)

This fidelity reduction is due to neglecting the √
ϵj |φ⊥

j ⟩q|ψ⊥
j ⟩q

branch of Eq. (6). If all the neglected branches associated
to multiple SDRP approximations remained orthogonal to the
preserved branch along the full simulation, the fidelity of the
final approximated state with respect to the ideal exact state
would be

F =
∏
j

(1− ϵj). (11)

In practice however, the Schmidt branches associated to dif-
ferent SDRP approsimations can have a small overlap with the
simulated state, such that Eq. (11) is not an exact formula but,
nonetheless, is a very good estimator of the actual fidelity.

To validate the model introduced in Eq. (11), we compared
it with the exact fidelity which, by definition, can be computed
from the exact simulation of the final state:

Fexact = |⟨ψapprox|ψexact⟩|2. (12)

For random circuits of limited size, we find a very good agree-
ment between the two quantities. (See Appendix A for more
details on the statistical validation of the fidelity estimation
model). This fact allows us to efficiently estimate the fidelity
of large-scale simulations, without the need of computing (12)
which instead would require an exact simulation with huge
computational resources.

C. Simulation benchmark: random circuits

Figure 3 shows the final fidelity estimates, for 100 random
circuits at each circuit layer depth. In each trial, starting from
SDRP value of 1 and decrementing by 0.025 at each successful
completion of a circuit, we used only the fidelity estimate of
the minimum attainable rounding parameter p, before out-of-
memory failure. These simulations were carried out on a single
(80 GB) NVIDIA Tesla A100 GPU. Execution time was not
precisely recorded, but the whole of data collection for this
plot took less than or about 3 days.

The obtained results demonstrate that Qrack can run approx-
imate simulations of 54-qubit random circuits up to 10 layers
(with exponentially decreasing fidelity). We highlight that, at
7 layers, the estimated average fidelity is ≈ 4%, which is a
significant result for a single GPU.

Fig. 3. Achievable fidelity for the simulation of random circuits acting
on 54 qubits with d layers on a single GPU. The fidelity is estimated by
the empirically-validated model discussed in Sec. III-B averaged over 100
random circuits for each data point. The cloud-compute virtual machine was
a Paperspace A100 80GB instance, 92669188 KB (> 88 GB) general RAM.

Each “circuit layer” is defined by a round of 3-parameter
single-qubit general unitary gates,

U(θ, ϕ, λ) =

(
cos

(
θ
2

)
−eiλ sin

(
θ
2

)
eiϕ sin

(
θ
2

)
ei(ϕ+λ) cos

(
θ
2

)) (13)

[36], with variational parameters randomly generated on
their full period, acted on every qubit, followed by nearest-
neighbor coupler gates from the set [CX/CY/CZ/AX/AY/AZ]
(where “A” opposed to “C” indicates that the |0⟩ control state
activates the gate, as opposed to |1⟩) applied on random qubits
according to the ABCDCDAB pattern deemed to be hard
to simulate in the Sycamore quantum supremacy experiment
[23]. It should be noted that our median and mode fidelity
appear significantly lower than our reported mean fidelity, to
basic human inspection of our data supplement (at https://
github.com/unitaryfund/qrack-report). Additional information
about the fidelity obtained for different values of the SDRP
approximation parameter is provided in Appendix B.

IV. CONCLUSIONS

We presented and numerically tested the optimization tech-
niques which are at the basis of the Qrack simulator, many of
which appear to be novel among the available set of major
quantum computer simulator libraries and frameworks. We
run numerical experiments for benchmarking the simulation

https://github.com/unitaryfund/qrack-report
https://github.com/unitaryfund/qrack-report


performances on large circuits with limited computational
power.

Our results show that Qrack reaches approximate parity
(or better performances) relative to all other simulator candi-
dates on exact QFT simulation, even with its hardest initial
conditions (see Fig. 1). At high qubit widths, Qrack even
outperforms the popular pyFFTW bindings for the (CPU-
based) FFTW library, which is historically-notable for its DFT
performance. An interesting research question, suggested by
our QFT benchmarks, is whether quantum-inspired (classical)
algorithms for DFT could outperform standard fast Fourier
transform (FFT) methods [31], [37], such as the Cooley-Tukey
[31] algorithm.

For what concerns the task of approximate simulation, we
gave a detailed description of the SDRP technique in which a
rounding parameter p can be tuned to increase the simulation
efficiency at the cost of reducing the simulation fidelity. By
using the SDRP technique, we have achieved ≈ 4% average
fidelity on random circuits acting on 54 qubits with a depth
of 7 layers, a performance which is worse than Sycamore
quantum supremacy experiment [23] (F = 0.2% with 20
layers), but remarkable considering that it was obtained with
a single GPU device.
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APPENDIX

A. Empirically validating the fidelity estimation model

In this appendix we empirically validate our model of the
approximate simulation fidelity F proposed in Eq. (11) against
the corresponding gold standard Fexact defined in Eq. (12).
A data supplement which contains all validation data and
additional validation tests is available at https://github.com/
unitaryfund/qrack-report/tree/main/data/collated.

The main motivation for introducing and using the fidelity
model F is that, when compared to Fexact, it is much more
efficient to compute and it becomes the only practical option
for large-scale circuits as those simulated in Fig. 3. It is worth
mentioning that an indirect approach for estimating the fidelity,
although based on a different empirical computational estima-
tion, was also used in the quantum supremacy experiment of
Ref. [23] due to the prohibitive cost of computing Fexact.

For our validation we generate 100 random instances of
circuits (with the structure defined in Sec. III-C) for each of
the following width×depth combinations: 6×6, 12×6, 18×6,
12×12, 18×12, 18×18, 15×15, and 19×10. For each circuit,
the Schmidt decomposition rounding parameter (SDRP) is
incremented on the inclusive interval [0, 1], by increments of
0.025, interpolating from the minimum to the maximum ap-
proximation error. In total, this produced 32,800 observations
of both the gold standard Fexact and our fidelity estimation
model F . These circuit sizes are chosen due to the fact that
the gold standard values is possible to simulate and calculate
on a single GPU.

As a validation metric we compute the root-mean-square
error (RMSE) between the predictor F and the gold standard
Fexact:

RMSE =
√

⟨(Fj − Fexact)2⟩S , (14)

where ⟨·⟩S is the statistical average with respect to a set S of
validation circuits.

When S is the set of all the validation circuits, the RMSE
is 3.9%, in units equivalent to overall circuit fidelity. If we
look at the subsets of each single width×depth combination,
each subset result is comparable to the overall result, as the
reader can inspect in Table II and in the data supplement.

We notice that fidelities, by definition, fall on the interval
[0, 1]. As a result, some heteroscedasticity is observed in the
prediction residuals, corresponding to ceiling and floor effects
on the bounded interval. When a situation like this arises, it
is common to use logistic regression: the fidelity on interval
[0, 1] is effectively transformed with the logit function into
a log odds ratio which is unbounded and suitable to the
strictest assumptions of ordinary least squares regression. This
alternative approach is developed and reported in the data
supplement, and it points to the same essential conclusions.

The data supplement, which can be found in the
in the folder https://github.com/unitaryfund/qrack-report/tree/
main/data/collated, is organized in different spreadsheets
named like “validation method comparison n by m”, where
“n” is circuit width and “m” is circuit layer depth.

TABLE II
RMSE PER WIDTH/DEPTH SUBSET, 100 RANDOM CIRCUITS APIECE

Width Depth RMSE
6 6 6.7%
12 6 5.4%
18 6 4.4%
12 12 3.9%
18 12 2.5%
18 18 1.8%
15 15 2.4%
19 10 2.5%

Overall 3.9%

B. Additional simulation benchmarks

This section attempts to give a more general characterization
of the overall abilities of Qrack, through additional cross-
sectional plots.

Figure 7 compares CPU-only methods with “hybrid” GPU
methods in Qrack, on the quantum Fourier transform algorithm
on a GHZ state. The near-identical points at the low-width end,
between both series, are where hybrid GPU techniques rely on
CPU, while the high-width points where GPU leads is where
hybrid GPU methods actually engage the GPU.

Fig. 4. Comparison of Qrack executtion time with and without GPU
acceleration on the quantum Fourier transform algorithm on a GHZ state. Both
series were run on anAlienware m17 laptop, with Alienware BIOS version
1.16.2, (BIOS overclocking features set to off/default,) Ubuntu 22.04 LTS,
Linux kernel version 5.19.0-35-generic, one “Intel(R) Core(TM) i9-10980HK
CPU @ 2.40GHz,” one “NVIDIA GeForce RTX 3080 Laptop GPU,” and
32 GB of SK hynix 3200 MT/s DDR4 in 2x16 GB row configuration, with
PyQrack release 1.4.2

https://github.com/unitaryfund/qrack-report/tree/main/data/collated
https://github.com/unitaryfund/qrack-report/tree/main/data/collated
https://github.com/unitaryfund/qrack-report/tree/main/data/collated
https://github.com/unitaryfund/qrack-report/tree/main/data/collated


Fig. 5. Random circuit fidelity on an A100 GPU, at 25 qubits width.

In the additional three heat map plots of SDRP, we run
the same random circuit as figure 3, but rather than search
for the minimum attainable rounding parameter and report the
average fidelity, we give a cross section over the fidelity as we
vary rounding parameter and depth. These cross sections were
collected at different qubit widths: 25, 36, and 49. (Note that
49 qubits width had no significant fidelity beyond about 12
circuit layers in depth, and the black regions on the left sides
of two of the heat maps ran out of memory despite potentially
low SDRP values.)

Fig. 6. Random circuit fidelity on an A100 GPU, at 36 qubits width. (The
black region on the left side of the heat map ran out of memory despite
potentially low SDRP values.)

Fig. 7. Random circuit fidelity on an A100 GPU, at 49 qubits width. (The
black region on the left side of the heat map ran out of memory despite
potentially low SDRP values.)
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