
Parallelizing Quantum-Classical Workloads:
Profiling the Impact of Splitting Techniques

Tuhin Khare∗ Ritajit Majumdar†, Rajiv Sangle∗, Anupama Ray†,
Padmanabha Venkatagiri Seshadri††, and Yogesh Simmhan∗

∗ Indian Institute of Science (IISc), Bengaluru
† IBM Quantum, IBM India Research Lab

†† IBM India Research Lab
Email: tuhinkhare@iisc.ac.in, majumdar.ritajit@ibm.com, rajivsangle@iisc.ac.in

anupamar@in.ibm.com, seshapad@in.ibm.com, simmhan@iisc.ac.in

Abstract—Quantum computers are the next evolution of com-
puting hardware. Quantum devices are being exposed through
the same familiar cloud platforms used for classical computers,
and enabling seamless execution of hybrid applications that com-
bine quantum and classical components. Quantum devices vary in
features, e.g., number of qubits, quantum volume, CLOPS, noise
profile, queuing delays and resource cost. So, it may be useful
to split hybrid workloads with either large quantum circuits or
large number of quantum circuits, into smaller units. In this
paper, we profile two workload splitting techniques on IBM’s
Quantum Cloud: (1) Circuit parallelization, to split one large
circuit into multiple smaller ones, and (2) Data parallelization to
split a large number of circuits run on one hardware to smaller
batches of circuits run on different hardware. These can improve
the utilization of heterogenous quantum hardware, but involve
trade-offs. We evaluate these techniques on two key algorithmic
classes: Variational Quantum Eigensolver (VQE) and Quantum
Support Vector Machine (QSVM), and measure the impact on
circuit execution times, pre- and post-processing overhead, and
quality of the result relative to a baseline without parallelization.
Results are obtained on real hardware and complemented by
simulations. We see that (1) VQE with circuit cutting is ∼ 39%
better in ground state estimation than the uncut version, and (2)
QSVM that combines data parallelization with reduced feature
set yields upto 3× improvement in quantum workload execution
time and reduces quantum resource use by 3×, while providing
comparable accuracy. Error mitigation can improve the accuracy
by ≈ 7% and resource foot-print by ≈ 4% compared to the best
case among the considered scenarios.

I. INTRODUCTION

The long-held promise of quantum computing is starting
to come true with the launch of real quantum hardware for
remote access by leading cloud service providers (CSP) –
Amazon AWS [1], Google Cloud [2], IBM [3] and Microsoft
Azure [4]. In practice, quantum applications use the quantum
hardware only for specialized kernels or routines which they
are designed for and the rest of the application runs on
“classical” (binary, general-purpose) computers. Such a hybrid
execution model is well-suited for a cloud-based deployment
where both classical and quantum resources can be co-located.

Adoption of this emerging hybrid quantum-classical com-
puting paradigm requires a wide base of users to develop
the necessary algorithmic and programming skills, which
will benefit future enterprise workforce. It can also open

up opportunities for academic researchers to explore novel
problems. In that regard, many CSPs are providing access to
their quantum hardware through both limited free offerings of
low-capacity quantum machines, and time-limited reservations
through subscriptions or a pay-as-you-go model for higher-
capacity quantum machines. Just as classical computers are
heterogeneous (x86, x64, ARM, etc.), quantum devices also
differ in the number of qubits, quantum volume and CLOPS,
and their noise profile (see Table I). This diversity extends to
their cost for use and availability, as observed through queuing
delays to these scarce resources [5].

TABLE I: Quantum hardware machine profiles

HW Name Qubits Quantum Vol. CLOPS Proc. Type
ibm hanoi 27 64 2.3k Falcon r5.11
ibmq jakarta 7 16 2.4k Falcon r5.11H
ibm oslo 7 32 2.6k Falcon r5.11H
ibm nairobi 7 32 2.6k Falcon r5.11H
ibmq perth 7 32 2.9k Falcon r5.11H
ibmq manila 5 32 2.8k Falcon r5.11L
ibmq quito 5 16 2.5k Falcon r4T
ibmq belem 5 16 2.5k Falcon r4T
ibmq lima 5 8 2.7k Falcon r4T

Under budget constraints, a user has to make the best use
of available resources, which could be either: (1) several low-
capacity machines, or (2) a mix of time-limited access to
high-capacity machines complemented by free low-capacity
machines. Such users can benefit from workload splitting
techniques to break their workload into smaller parts. This
brings to fore the following question: What are the overheads
in execution time, queuing delay and quality of result incurred
from workload splitting techniques?

There is a need to explore these overheads from an appli-
cation point-of-view. We address this need and by considering
two prominent classes of hybrid algorithms: First is from the
class of Variational Quantum Algorithms (VQAs) known as
Variational Quantum Eigensolver (VQE) [6]. VQE is exten-
sively used for ground-state energy estimation of molecules,
and the size of the circuit usually scales linearly with the size
of the system. The second is a Quantum Machine Learning

ar
X

iv
:2

30
5.

06
58

5v
1

 [
qu

an
t-

ph
]

 1
1

M
ay

 2
02

3

(QML) algorithm, Quantum Support Vector Machine (QSVM),
that depends on data for its training and testing. The number of
circuits to train QSVM is O(n2), given n training data points.
Thus, even for 100 data points, a quantum device needs to run
10, 000s of circuits, with classical optimization done in each
iteration. Also, quantum algorithms are probabilistic, and need
to be executed multiple times to obtain a reliable expectation
value of the result. All of these together is computationally
demanding, given the current limitations of quantum hardware
[7].

In our study, we apply two hardware-independent splitting
techniques to the above use-cases, namely: (1) circuit par-
allelization [8] that allows a bigger circuit to be partitioned
into multiple smaller ones, each of which can be computed
independently on separate hardware, and (2) data paralleliza-
tion, where the same circuit is run on different parameters
on multiple diverse quantum hardware (§ IV). The focus of
the study is to conduct detailed experiments on real quantum
hardware to profile the performance and quality impact of
these techniques, relative to a baseline which does not use
splitting (§ V). Specifically, for circuit parallelization, we
compare the performance of the platform, workload metrics
and quality of result, post-convergence, of the circuit-cut VQE
run on multiple machines against the baseline uncut-circuit run
on one machine. For data parallelization, we partition circuits
generated for the QSVM kernel into batches and run them on
quantum machines with diverse capacities, and compare their
performance against a baseline running on one machine. Our
results of profiling indicate these key observations:

1) VQE with circuit cutting and parallelization achieves a
≈ 39% improvement in ground state estimation than the
uncut version.

2) QSVM with using both data parallalization and reduced
feature set yields up to 3× faster quantum workload
execution time and reduces quantum resource usage
(qubits-seconds) by 3×, while providing comparable
accuracy with respect to the baseline. Error mitigation
could improve the accuracy to nearly 7% of the best
case (among the considered scenarios) while improving
resource foot-print by 4% compared to best case.

3) Classical overheads vary depending on the application.
While it is on the order of 100 ms for QSVM, it goes
up to 30 mins for VQE.

II. RELATED WORK

In the classical computing world, there is an extensive
body of work in scheduling workflows on HPC clusters and
cloud resources [9]. These typically attempt to schedule the
components tasks of a Directed Acyclic Graph (DAG) onto
different compute resources, taking into account the execution
time of tasks on heterogeneous resources [10], data and con-
trol dependencies, data movement costs, monetary cost [11]
and even energy [12]. However, these approaches cannot be
applied directly to quantum cloud platforms.

Recent profiling studies [13] have investigated long term
traces of generic workloads to understand quantum platform

characteristics such as queuing delay, calibration cycles and
error profiles. However these studies predate practical quantum
workload parallelization approaches like circuit splitting [8].
Further, the study does not capture the use-case specific impact
of parallelization techniques on performance. In [14], [15]
the authors propose a resource scheduling approach to map
users tasks to resources. But it does not focus on any form of
parallelization based profiling.

Circuit knitting is an umbrella term used to encompass
various techniques to split a large quantum circuit into multiple
smaller ones. Two broad subdomains of this are: (i) cutting the
wire of a circuit to create multiple smaller fragments (termed
as circuit cutting henceforth) [8], [16], [17] and (ii) replacing
two qubit gates by a local single qubit gate and classical
feedforward communication [18], [19], [20]. Both of these
methods usually lead to smaller fragments (or subcircuits)
which can be independently executed on smaller hardware.
However, to the best of our knowledge, there are no studies
which focus the performance impact of the parallelization
techniques on specific application classes. In this paper, we
restrict ourselves to only circuit cutting.

Efforts have been made previously to distribute the com-
puting workload both in quantum and classical computing.
Ensembled Quantum Computing (EQC) [21] is an approach
where the quantum workload is distributed across multiple ma-
chines. The purpose of EQC is to offer robustness against both
temporal variations in noise and also across non-homogeneity
of quantum hardware. However, it focuses only on VQA class
of algorithms and does not explore the impact of various
parameters of the workload, such as circuit cutting, feature
space reduction to reduce qubit requirements, shots required
for convergence, and the need for error mitigation.

III. BACKGROUND

Current quantum devices are noisy, and can accommodate
only low-depth circuits. Therefore, hybrid quantum-classical
algorithms have been developed to split the overall computing
workload into a quantum and a classical processing unit,
with back-and-forth interactions between these two resources.
These algorithms, in general, conform to parameterized quan-
tum circuits where the parameters are initialized randomly,
and are updated in each iteration by a classical optimizer to
converge towards the optimal expectation value.

IBM Qiskit Runtime [22] model has been proposed for
co-location of classical resources with the quantum hard-
ware. This allows classical primitives which co-ordinate with
quantum circuits to iterate with low-latency and efficiently.
Moreover, Qiskit Runtime also provides inbuilt error suppres-
sion [23] and mitigation methods (e.g., Measurement error
mitigation [24], Zero Noise Extrapolation [25] or Probabilistic
Error Cancellation [26]), thus allowing more faithful circuit
execution on noisy hardware.

We leverage this support for hybrid quantum-classical work-
loads to profile the VQE and QSVM use-cases. The two use-
cases are briefly described below.

Hamiltonian simulation using VQE. VQE is a widely
studied hybrid quantum-classical algorithm to evaluate the
minimum expectation value of some Hamiltonian H . A VQE
is characterized by a parameterized circuit (or ansatz) |ψ(~θ)〉,
where ~θ = {θ1, θ2, . . . , θm} denotes the set of parameters.
These parameters are initialized either based on some domain
knowledge or randomly, and then updated on each iteration
by a classical optimizer to minimize the energy of the system
given by the expectation value 〈ψ(~θ)|H|ψ(~θ)〉 [27].

In this study, we consider a simple n qubit Quantum
Heisenberg Spin Model (QHSM) where the interaction is be-
tween neighbouring qubits along the Z-direction with coupling
strength Jz = 1. The Hamiltonian of such a model is:

H =

n−1∑
i=1

σz
i σ

z
i+1 (1)

For the rest of the paper, we shall use σz and Z interchange-
ably to denote the Pauli-Z operator.

Classification using QSVM. Havlicek et al. [28] propose
two ways of creating a quantum version of the classical
Support Vector Machine (SVM) called the Quantum SVM
(QSVM). One is by leveraging variational quantum circuits to
train a variational quantum SVM. The second approach, which
we use in this paper, is called Kernel Estimation algorithm, and
it estimates the kernel function and optimizes the classifier
directly.

In classical SVM, feature maps are used to perform non-
linear transformations to a higher dimension if the training
data are unable to be separated in a lower dimension. In this
feature space, computing the distance between data points for
classification is equivalent to computing the inner product of
each pair of data points. This collection of inner products is
called a kernel. In QSVM, the aim is to compute a kernel
that was hard to compute classically, and take advantage of
the large dimensionality of the quantum Hilbert space for
enhanced classification. We couple this quantum kernel with
convex optimization on a classical computer, thus making this
a hybrid application.

A key challenge in training QML algorithms on quantum
devices is the inability to process a lot of data. Unlike classical
ML algorithms which are trained on millions of data points,
training a QSVM requires us to process n2 circuits for n data
points, while testing takes n ·m circuits, m being the number
of test data points. Thus, the quantum computer is used twice
here – once for computing the training kernel and once for the
testing kernel, while the rest of the steps are all classical. The
following steps illustrate the workflow when a QSVM code is
submitted to a hybrid quantum-classical system:

• Pre-process the data on classical hardware.
• Form circuit batches with n2 circuits (to create training

Kernel) and n ·m circuits (to create testing Kernel), and
submit the jobs (batches of circuits).

• Job is queued on quantum cloud, circuits are validated,
quantum provider transpiles the circuits in a job and then
run the circuits.

• Optimizer is a Classical SVM formulated in terms of
a dual quadratic program that needs only access to the
kernels. This optimizer finds an optimal α to construct
the classifier and classification is then performed using
classical SVM as optimizer.

Given the large number of circuits, training on a real quan-
tum hardware is time-consuming. Current hardware divides
the total number of circuits to run into batches called jobs,
and runs these jobs serially. So, the program needs to wait
for all circuits to complete execution before it can construct
the kernel. Also practical engineering challenges restricts
execution of a large number of circuits. The code waits for
these jobs to wait on a queue (which can vary significantly
based on the load/status of a particular hardware) and then
get executed. A job can time-out if the wait period is too
long, causing the application to fail.

IV. WORKLOAD SPLITTING TECHNIQUES

In this study we consider two methods for workload split-
ting: (i) partitioning a circuit itself into smaller fragments, and
(ii) data/circuit parallelization where we split a collection of
circuits into multiple batches (which can be run in parallel),
with multiple circuits per batch.

A. Circuit Cutting

Circuit cutting is a method to partition a quantum circuit
into multiple smaller fragments, each of which can be executed
independently and parallelly on a smaller hardware [8], [17].
Given a circuit (or a quantum channel) Φ, the expectation
value of some observable A can be evaluated as Φ(A) =∑

i ciΦi(A), where Φi(A) = Tr{AOi}ρi, Oi and ρi being
tomographically complete measurement and preparation basis
respectively, and ci ∈ { 12 ,−

1
2} [8]. Each fragment Φi, in

general, contains fewer qubits and gates than Φ and is expected
to (i) have lower transpilation time, (ii) eliminate a few SWAP
gates by better transpilation of the circuit [29], and (iii) lower
the noise in the system in certain scenarios [30], [29], [31].

In [17], the authors showed that the sets Oi ∈ {X,Y, Z} and
ρi ∈ {|0〉 , |1〉 , |+〉 , |+i〉} are tomographically complete, and
hence are sufficient for the circuit cutting purpose. The overall
expectation value Φ(A) is calculated using post-processing
over the fragments using classical computers. However, a bot-
tleneck of this method is that the classical post-processing time
scales exponentially with the number of cuts, and hence this
method is feasible only for circuits which can be partitioned
using a small number of cuts.

Circuit cutting has previously been used on toy models like
GHZ [30] and also on problems of real-life interest such as
finding approximate solutions to combinatorial optimization
problems [32] or faster simulation of quantum circuits [33].
In this study, we demonstrate the relevance of circuit cutting to
exploit the use of smaller quantum machines, with the VQE as
our use case. We have used the RealAmplitudes ansatz with a
single repetition of the reverse-linear entanglement (a template
for 3-qubits is shown in Fig. 1) which can be partitioned into
two fragments using a single cut irrespective of the number

of qubits. The fragments are executed parallely on two IBMQ
devices, and the probability distribution of the uncut circuit is
obtained using the Qiskit Circuit Knitting Toolbox [34].

|0〉 Ry(θ1) Ry(θ2)

|0〉 Ry(θ3) Ry(θ4)

|0〉 Ry(θ5) Ry(θ6)

Fig. 1: A template of a 3-qubit RealAmplitudes ansatz with
single repetition and reverse-linear entanglement

Fig. 2 shows the two fragments obtained by cutting the
circuit of Fig. 1 on the 2nd qubit between the two CNOT gates.
Oi and ρi represent tomographically complete measurement
and preparation bases respectively. Note that the total number
of qubits from the two fragments is one more than that in the
original circuit since one qubit, which is cut, is present in both
the fragments [8].

|0〉 Ry(θ1) Ry(θ2)

ρi Ry(θ4)

|0〉 Ry(θ3) Oi

|0〉 Ry(θ5) Ry(θ6)

Fig. 2: Example of cutting the circuit of Fig. 1

In our experiment we cut a 6 qubit RealAmplitudes ansatz
in two partitions consisting of 4 and 3 qubits, and report the
expectation value for both the uncut circuit execution, and
the two cut circuits execution with classical postprocessing.
To the best of our knowledge, this is the first application of
circuit cutting for estimating the ground state of a molecular
Hamiltonian.

B. Slicing the workload job batch

As discussed earlier, circuit cutting is a feasible option only
when the circuit can be effectively partitioned into multiple
subcircuits using a small number of cuts only. A QSVM
circuit contains two-qubit interactions between all qubit pairs.
Thus, basically every qubit has to be cut to create an effective
partition. Circuit cutting, being infeasible in such a scenario,
we shift our focus to data parallelization. This approach
focuses on slicing the workload such that it can be executed
with small resource foot-print or on low-capacity quantum
hardware. Two possibilities include: (1) Splitting the workload
into subsets which can be independently and parallely executed
(2) Extracting a subset of the workload such that the objective
of the application is achieved albeit with a smaller resource
foot-print.

We evaluate both these approaches in the case of QSVM
kernel computation. For the first method, we split the circuit
batch representing the data points of training and test sets
such that they could be executed independently on multiple
quantum hardware. The results for each of these batches are
then combined to produce the kernel for the larger dataset.

For the second method, we perform feature selection so as
to find the most significant subset of features. Fewer features
require fewer qubits and hence reduces the resource footprint
of the workload.

These techniques could be potentially useful in applications
such as QSVM where circuit cutting will lead to an unafford-
able post-processing time due the complete graph connectivity
between the qubits of the circuit.

V. EVALUATION METHODOLOGY

A. Workload Characteristics

1) VQE: For our experimentation of a VQE workload, we
consider the QHSM of Eq. (1) with n = 6 (termed as H6

henceforth). Using classical numerical methods we compute
the minimum eigenvalue of H6 to be −5.0 with a multiplicity
of 2. The two degenerate eigenstates are |ψgs1〉 = |010101〉
and |ψgs2〉 = |101010〉, which can be prepared via a depth-1
circuit starting from the initial state |000000〉. The objective
of the VQE is to converge to a state such that the expectation
value of the Hamiltonian H6 is minimum. The Variational
Principle guarantees that such a state is indeed the ground
state for that Hamiltonian.

Since all the Pauli observable terms in H6 commute with
each other, and also with the observable (σz)⊗6, it is sufficient
to measure all the qubits of the final state in the computational
(Z) basis and use the resulting probability distribution to
evaluate the expectation value for each of the terms in H6.
The Sampler Primitive in Qiskit Runtime directly provides
the probability distribution by measuring the quantum state in
the (σz)⊗6 basis.

When exploiting circuit cutting, the VQE ansatz is cut
into 2 fragments (refer to Fig. 1 and 2), each of which
is evaluated independently and parallely with the other for
a given set of parameters. The final expectation value is
calculated via classical postprocessing, which is provided to
the classical optimizer to search for better parameters. In other
words, circuit cutting keeps the classical optimization method
unchanged. It only affects the quantum portion where each
fragment is executed on a smaller hardware - thus relaxing
the number of qubits required. Moreover, since each fragment
has lower qubit count and gate count, they are expected to be
less susceptible to noise than the uncut circuit [30].

2) QSVM: In QSVM, we construct a n×n training kernel
matrix where we have n training data points. Each entry of
this kernel is obtained by running a circuit on the quantum
hardware. This results in an execution of n2 circuits for n
training data. In the IBM Quantum hardware these circuits are
run in batches as jobs wherein each job can have a maximum
of 300 circuits for larger devices (> 7 qubits) and a maximum
of 100 circuits per job in smaller devices. However while
running these programs using Qiskit Runtime, we have been
able to run more circuits per job on larger devices and we
have also been able to parallelize job runs and then construct
the kernel once all training jobs are completed.

In this paper we used QSVM for classification of heart
failure from an open-source dataset1, which contains clinical
records of 299 patients with 13 clinical features for each
patient [35]. Out of the 299 patient data, 203 have survival
and 96 have death outcomes labeled. As in any other machine
learning task, we split the data to train and test partitions. We
started with 80:20 train:test split but in order to train QSVM
with 240 datapoints and test QSVM with the remaining 59
datapoints, we would need to run 28680 training circuits and
14160 test circuits. Since the larger machines have higher
queue times, running such large number of circuits can take
several weeks or error out while waiting on queue when run
using the circuit API. So we randomly sampled 100 datapoints
while maintaining the distribution of labels and used a 70:30
split for train and test. In this setup we needed to run 2415
training circuits and 2100 test circuits. When we run using
circuit api we are restricted to 100/300 circuits in both the
sequential and parallel runs. While in Runtime api, we have
been able to run 1000 circuits per job for the 27 qubit
devices (ibm montreal) and 600 circuits per job for 127 qubit
device (ibm washington), thus reducing the number of jobs
and improving overall compute time.

B. Metrics

A baseline is required for each use-case for the sake of
comparison. The uncut version of VQE forms the baseline
for comparison with the cut versions. For QSVM, we use
the sequential versions of the QSVM classifier as baseline
to understand the impact workload slicing. Following are the
metrics used for evaluation:

• Quality of result: The quality of result for VQE is the
energy level to which the algorithm converges. In case
of QSVM, we report the accuracy and average Macro-F1
score of the classifier.

• Resource foot-print: The Qubit-Time product captures
the aggregate resource foot-print of the workload. A
computation for t time duration on Q qubits has a qubit-
time product of Q× t.

• Classical overhead: This captures the total time spent
in pre- and post processing the circuits. In the case of
VQE, this will be the circuit cut and merge operations.
In the case of QSVM, this will include the batching of
circuits, and kernel merge operations.

• Execution time: This metric captures the maximum time
taken for the batch of jobs to execute on the quantum
machine.

• Pre-execution overhead: Once a job is submitted to
the quantum hardware backend, the circuits of the job
are validated and queued until the backend hardware
is available for execution. We capture this duration as
the pre-execution overhead. Queuing delays might not
even exist in all resource utilization models. For instance,
reservation-based models will ensure little or no queues in
an alloted user timeslot. Further, as the quantum hardware

1https://archive.ics.uci.edu/ml/datasets/Heart+failure+clinical+records

resources become more ubiquitous, queuing delays will
play less of a role. Hence, we observe this metric mainly
to understand if workload parameters affect queuing delay
in current scenario.

C. Instrumentation Methodology

To capture the client-side (the end-user application sub-
mitting the jobs), we build qiskit-runtime, circuit-knitting-
toolbox, qiskit-terra and qiskit-aer from source and include
instrumentation such as logging the JobID, Job Parameters,
pre and post-processing timestamps.

The job and backend characteristics for the IBM quantum
cloud are retrieved using the IBM Qiskit Runtime API. This
API provides the timestamps for state changes once the
job is submitted to the platform. These states are labeled
created, running and finished to represent job creation, ex-
ecution and completion events. Furthermore, the Runtime
API also provides the quantum resource usage time in the
quantum seconds field of the job metadata.

The error mitigation technique to be used is set using the
resilience level field for the Sampler and Estimator primitive
class of the Runtime API. The number of shots, seed, cir-
cuits to be used, observables and parameter vectors are also
configured using the Runtime API.

In case of the circuit-cutting experiments, we also have
modified the circuit-knitting toolbox to efficiently manage the
Runtime service session by persisting the sessions for the
chosen backends and re-use the user-created session object.
We achieve this by passing a custom session dictionary
mapping the backend name to the session object into the
evaluate_subcircuits() function of the circuit knit-
ting toolbox. The benefit of persisting the session (see Fig 7
related discussion) is that we get a fixed reservation for a
specific time when the first job of the submitted program starts
running due to which the subsequent jobs face no queueing
delays.

VI. RESULTS

A. VQE

In Fig. 3, each sub-figure shows the VQE convergence
behaviour curves of the expectation value of H6 both with
and without using circuit-cutting for different number of shots
for both resilience level 0 and 1 on real quantum hardware.

We selected the least-busy 5-qubit or 7-qubit machines hav-
ing public access for the cut and uncut circuits respectively. In
the circuit-cutting case, the fragments are executed parallelly,
by having two active Sessions, on the two least-busy 5
qubit devices. The hardware(s) used to obtain the results are
mentioned in the legend of the particular curve in Fig. 3 along
with the energy value at which the VQE algorithm converges.

Analysis of Quality of Energy Convergence: Circuit
cutting involves measurment and preparation in different ba-
sis, and is, therefore, highly susceptible to state preparation
and measurement (SPAM) error [31]. Therefore, we find the
expectation values of the cut and uncut versions for both
resilience level 0 (no mitigation) and 1 (measurement error

0 20 40 60 80 100 120
Job ID

5

4

3

2

1

0

1

2

En
er

gy
 V

al
ue

Uncut Real H/W.
(ibm_oslo), res = 0, Energy Val ~ -3.76
Uncut. Real H/W
(ibm_oslo), res = 1, Energy Val ~ -2.02
Cut. Real H/W
(ibmq_manila + ibmq_quito), res = 0, Energy Val ~ -3.96
Cut. Real H/W
(ibmq_belem + ibmq_lima), res = 1, Energy Val ~ -4.70

(a) number of shots = 2000

0 20 40 60 80 100 120
Job ID

5

4

3

2

1

0

1

2

En
er

gy
 V

al
ue

Uncut Real H/W.
(ibm_oslo), res = 0, Energy Val ~ -2.62
Uncut. Real H/W
(ibm_nairobi), res = 1, Energy Val ~ -3.14
Cut. Real H/W
(ibmq_quito + ibmq_belem), res = 0, Energy Val ~ -1.84
Cut. Real H/W
(ibmq_quito + ibmq_quito), res = 1, Energy Val ~ -4.04

(b) number of shots = 4000

0 20 40 60 80 100 120
Job ID

5

4

3

2

1

0

1

2

En
er

gy
 V

al
ue

Uncut Real H/W.
(ibm_oslo), res = 0, Energy Val ~ -2.26
Uncut. Real H/W
(ibm_nairobi), res = 1, Energy Val ~ -2.66
Cut. Real H/W
(ibmq_lima + ibmq_lima), res = 0, Energy Val ~ -3.68
Cut. Real H/W
(ibmq_belem + ibmq_belem), res = 1, Energy Val ~ -4.63

(c) number of shots = 6000

0 20 40 60 80 100 120
Job ID

5

4

3

2

1

0

1

2

En
er

gy
 V

al
ue

Uncut Real H/W.
(ibm_oslo), res = 0, Energy Val ~ -2.49
Uncut. Real H/W
(ibm_oslo), res = 1, Energy Val ~ -3.16
Cut. Real H/W
(ibmq_manila + ibmq_quito), res = 0, Energy Val ~ -3.14
Cut. Real H/W
(ibmq_quito + ibmq_quito), res = 1, Energy Val ~ -4.47

(d) number of shots = 8000

Fig. 3: VQE performance using circuit-cutting on quantum hardware, with and without noise for different number of shots
with resilience level 0 and 1

mitigation). In general, we note that the expectation value
obtained using circuit cutting is even closer to the optimal
value than the uncut one for all range of shots. Naturally
measurement error mitigation provides a result closer to the
optimal value; but even there circuit cutting is shown to
outperform the corresponding uncut version. We note from
the result that the number of steps required for convergence is
higher for the cut versions than the uncut one. Nevertheless,
this is outweighed by the ∼ 39% improvement in the obtained
result provided by circuit cutting. Noise in each fragments
is lower than that of the uncut circuit due to lower qubit
count, lower depth and lower gate count. Our observation
suggests that the classical optimizer, in case of circuit cutting,
can find parameters closer to the optimal ones than for the
uncut scenario. This, sometimes, leads to a slower convergence
for circuit cutting since here the optimizer can find better
parameters than the uncut one.

From Fig. 3 we observe some discrepancy in the reported
energy values. For example, the energy value is expected to be
a non-decreasing function of the number of shots. However, for
example, 4000 shots seem to provide a result worse than 2000
shots. In some cases, hardware result with resilience level 1
fails to outperform that with resilience level 0 for the uncut

version. Recall that we selected two least-busy devices to
execute the circuits. As a result, the hardwares on which
the fragments are executed sometimes change between the
different shot instances making our results subject to hardware
heterogeneity arising from the public access model. More-
over, the queuing time prior to execution varies for different
hardware and instances. Furthermore, transpilation in qiskit
involves stochastic steps. This can end up choosing noisier
qubits in some transpilation step for some execution cycle.
Also, the noise profile varying with time is an unavoidable
consequence of the changes in the microenviroment of the
quantum hardware.

As an empirical investigation whether the above suggested
reasons are indeed responsible for the observed deviations
from the expected trend, we look at the VQE behaviours using
circuit-cutting for noisy simulation using the noise models of
ibmq belem and ibmq lima for both resilience level 0 and 1
in Fig. 4. We find that the expected trend of better convergence
with increasing shots is observed in the simulation results
using a fixed noise model.

Circuit cutting is primarily subjected to state preparation and
measurement (SPAM) error due to the multiple measurement
and preparation basis required [31]. Moreover, the circuits are

0 20 40 60 80 100 120
Job ID

5

4

3

2

1

0

1

2

En
er

gy
 V

al
ue

Cut. Sim. r0. 2k (single noise profile)
Cut. Sim. r0. 4k (single noise profile)
Cut. Sim. r0. 6k (single noise profile)
Cut. Sim. r0. 8k (single noise profile)

(a) resilience level = 0

0 20 40 60 80 100 120
Job ID

5

4

3

2

1

0

1

2

En
er

gy
 V

al
ue

Cut. Sim. r1. 2k (single noise profile)
Cut. Sim. r1. 4k (single noise profile)
Cut. Sim. r1. 6k (single noise profile)
Cut. Sim. r1. 8k (single noise profile)

(b) resilience level = 1

Fig. 4: Comparing VQE with circut-cutting for different number of shots: (a) with and (b) without error mitigation simulated
using two different snapshots of the noise profiles of ibmq belem and ibmq lima

2K 4K 6K 8K
Number of shots

0
50

100
150
200
250
300
350
400

Re
so

ur
ce

 fo
ot

pr
in

t
(Q

ub
it-

M
in

)

Uncut (Qubit-Min), res=0
Uncut (Qubit-Min), res=1
Cut (Qubit-Min), res=0
Cut (Qubit-Min), res=1

Fig. 5: Variation of Resource footprint for different shot
configurations with and without circuit-cutting

also small in our use-cases and we obtain sufficiently good
results with TREX mitigation only. Using ZNE will incur
higher resource-footprint and therefore we do not use it for
this study.

Resource foot-print: The bar plot in Fig. 5 captures the
resource usage by the VQE instances using the qubit-minute
metric. The details of the Sampler Primitive jobs can provide
the time spent by both the quantum resource and the classical
resource (Sec. V-C). As mentioned in Sec. IV-A, the circuit-
knitting toolbox cuts the 6-qubit circuit into a 4-qubit circuit
and a 3-qubit circuit. Therefore, in every individual VQE
iteration using circuit cutting, one job executes a 4-qubit
circuit while the other executes a 3-qubit circuit. The the total
Resource foot-print for a iteration will then be the sum of the
resource foot-print for the individual jobs. We consider the
Resource foot-print of the the case without circuit-cutting as
the baseline case. From Fig. 5 we observe that the resource-
footprint of circuit cutting is always greater than that of

2K 4K 6K 8K
Number of shots

0
10
20
30
40
50
60
70
80
90

100

Ex
ec

ut
io

n
Ti

m
e

(M
in

s)

Uncut, res = 0 (Exec Time)
Uncut, res = 1 (Exec Time)
Cut, res = 0 (Exec Time)
Cut, res = 1 (Exec Time)

Fig. 6: Execution Time for different VQE instances

the uncut circuit for both the resilience levels. Note that
the definition of resource foot-print (Sec. V-B) captures the
aggregate time resources (upto a factor of the number of qubits
used) consumed by a VQE instance, regardless of whether
the resources were used parallely or not. In aggregate circuit
cutting requires one qubit more than the uncut one (refer to
Fig. 2). Also, as discussed earlier, it has a slower convergence
than the uncut one but it converges to a more accurate energy
value. Both of these contribute to the higher resource-footprint
for circuit cutting.

Execution time: Fig. 6 reports the execution time of the
uncut and cut circuits. For cut circuits we report the maximum
of the execution time of the two fragments since they are
executed parallely in two different hardware. The execution
time of the cut circuits are, in general, higher than that of
the uncut one, except for an anomaly for 6000 shots with
resilience level 1. This higher execution time is due to (i)
the slower convergence of the cut circuits, and (ii) the lower

2K 4K 6K 8K
Number of shots

0

10

20

30

40

50
Pr

e-
Ex

ec
ut

io
n

Ov
er

he
ad

s
(H

ou
rs

)

13

0
3

00 0 0

43

2
0

5

00 0

8

45Uncut, res=0
Uncut, res=1
Cut, res=0
Cut, res=1

Fig. 7: Pre Execution Overheads for VQE with circuit splitting
on ibmq belem and ibmq quito at 4k shots

CLOPS value of the 5-qubit devices (see Table I). CLOPS
is a metric which captures the execution speed of a quantum
hardware [36]. Since most of the 5-qubit devices are slower
than the 7-qubit ones, the cut circuits naturally require higher
execution time. Nevertheless, since the cut circuits are smaller
than the uncut ones, the execution times for the two cases
do not differ significantly. Cut with non resilience gives
comparable or better results than the uncut versions for 2000
and 6000 shots while also taking much less (approximately
half) time than scenarios with error mitigation.

Measurement error mitigation involves running multiple
twirled circuits [24], and postprocessing the observed value
to mitigate the effect of SPAM error. Since the number of
circuits to be executed is higher, we always observe that the
execution time with resilience level 1 is higher than that for
resilience level 0.

Pre-execution overhead: Qiskit Runtime service [22] ses-
sions only suffer queuing delay per session. Once the machine
is allocated to a given session, the jobs submitted to that
session get executed with minimal delay. Our measurements
indicate that the VQE jobs get scheduled for execution within
35 seconds on an average, once the session acquires the
machine. From Fig. 7, we also notice that the the pre-execution
overhead which includes the queuing delay for the session
is not influenced by the number of shots selected for the
experiments. For instance, the sessions for 4000 shots suffer
insignificant ovehead compared to 2000 shots. It appears this
overhead is more dependent on the availability of machines at
the time of job submission than the shots parameter.

Classical overheads: Circuit cutting involves classical pre
and post-processing respectively to cut the original circuit
into sub-circuits and calculate the final expectation value
from the fragment outcomes [8], [17], [31]. This incurs some
increased classical time requirement which is absent in the
uncut version. However, we find that the classical pre and post
processing times are minimal and are significantly less than

the execution time. On an average over the number of shots,
the classical pre-processing overhead (transpilation, parameter
binding, etc.) without circuit-cutting is ≈ 3.02s and ≈ 2.78
for resilience levels 0 and 1 respectively. Whereas, that with
circuit-cutting is ≈ 10.45s and ≈ 11.11s. Further, the classical
post-processing overhead with circuit-cutting are ≈ 1550s and
≈ 1400s for resilience levels 0 and 1 respectively.

B. QSVM

We evaluate ten workload processing approaches to compute
the QSVM kernels. Each workload varies the number of
features used, number of circuits per job, sequential/parallel
execution and error mitigation technique used. All the work-
loads have a training and testing kernel computation, circuit
batch splitting, model fitting and prediction components and
kernel merging components.

First, we describe the workload types which do not use any
error mitigation techniques:
6Q-1000C-SEQ: This type represents a QSVM classifier

that leverages the Runtime API and the corresponding Estima-
tor primitive to compute the QSVM kernels. 1000 circuits are
packed per job and 6 features are selected from the original
dataset, thus 6 qubit circuits running their jobs sequentially on
ibm oslo.
6Q-1000C-PAR: This type parallelizes 6Q-1000C-SEQ

by executing the testing and training kernel computation
as separate simultaneously running processes. Within each
phase, the jobs execute sequentially. This particular workload
organization is meant to factor in the limits imposed by
the quantum cloud platform on a number of parallel jobs
submitted by a given user. This also attempts to explore the
benefits of batching jobs within parallel executing processes.
ibmq nairobi and ibm oslo are used to run the jobs.
6Q-500C-SEQ: This is similar to 6F-1000C-SEQ but the

number of circuits per job is reduced to 500, which in turn
doubles the number of jobs. We specifically wanted to explore
this setting for ablation studies, also the default max circuits
per job is 300 so both the settings are improvements that we
try to do to run QSVM on more data faster. This type was run
on ibm oslo.
6Q-500C-PAR: This type parallelizes 6Q-500C-SEQ us-

ing the same method as 6Q-1000C-PAR, and used the back-
ends ibmq nairobi and ibm hanoi.
2Q-500C-SEQ: This type explores the possibility of fea-

ture selection by reducing the number of features (qubits)
required to 2. This type is similar to 6F-500C-SEQ, but
explores the impact of circuit width on performance. We use
ibmq lima to execute this workload.
2Q-500C-PAR: This type parallelizes 2F-500C-SEQ

along the same lines as 6Q-500C-PAR. ibm lima and
ibmq manila are used to execute the workload.

We explore potential benefits of improving the accuracy
even when using fewer qubits, and the corresponding trade-
offs involved using the following workload types. We used
ibmq lima, ibmq manila, ibm oslo, ibmq belem machines for
below experiments:

2Q-500C-SEQ-TREX: This is the same workload type
as 2Q-500C-SEQ, except that while initializing the Estimator
class, we set the error mitigation parameter (resilience level
= 1) to use measurement error mitigation [24].
2Q-500C-SEQ-ZNE: This is the same as workload

type 2Q-500C-SEQ, executed with ZNE error mitigation [25]
(resilience level = 2).
2Q-500C-SEQ-TREX and 2Q-500C-PAR-ZNE: par-

allelize their sequential counter-parts 2Q-500C-SEQ-TREX
and 2Q-500C-SEQ-ZNE respectively along the same lines as
6Q-500C-PAR.

6Q-
1000C

6Q-
5000C

2Q-
500C

2Q-
500C-
TREX

2Q-
500C-
ZNE

Workload Type

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

SEQ
PAR

Fig. 8: QSVM prediction accuracy for all the workload types

Accuracy. Figure 8 illustrates the accuracy values for the
various workload types comparing the sequential and parallel
versions. The maximum accuracy reported among all the
scenarios is for 6Q-500C-PAR. When the number of features
used is reduced from 6 to 2, while keeping the number of
circuits constant (500 circuits), the accuracy drops by 5%
for the sequential and 17% for the parallel scenarios. While
this is expected, the application of TREX error mitigation
yields marginal benefit, but ZNE error mitigation improves
the accuracy of the parallel version yielding 9% improve-
ment compared to the 2Q-500C-PAR scenario with no error
mitigation. Compared to the baseline 6Q-500C-SEQ scenario,
reducing the qubit requirement to 2, applying parallelization
and ZNE error mitigation yields 11% improvement. An impor-
tant observation while realizing the accuracies achieved by all
sequential runs with and without error mitigation is that the
accuracies do not drastically improve with error mitigation,
or the model was able to learn well inspite of the hardware
noise. This is the why we didnt experiment with complex error
mitigation strategies like PEC[26].

We conjecture that the improvements that we see for
parallelized scenarios could be because the parallel versions
leverage multiple machines which could have differing noise
profiles. While a sequential version is committed to execute all
its jobs on a single machine which if having a bad noise profile
could affect all the jobs, the parallelized version could leverage
the differences in noise profile across machines to execute

some of jobs in a relatively better noise profile. Secondly, we
also notice workload types using 500 circuits (compared to
1000 circuits) yielded better or very close accuracy values for
parallelized versions compared their sequential counter-parts.
We speculate that smaller batches of circuits could mitigate
accumulated estimation errors for the estimator primitive.
Further investigation might be required to substantiate this
conjecture.

Fig. 9: Resource foot-print of jobs for QSVM workload types

Resource foot-print. Figure 9 captures the resource usage
using the qubit-minutes metric. The first improvements in
resource foot-print are derived from reducing the number of
qubits used through selecting subset of features. When the
baseline case of 6Q-500C-SEQ is compared with the 2Q-
500C-SEQ, a 3x reduction in resource foot-print is observed.
However, the accuracy also drops by 4%. The parallel version
2Q-500C-PAR also provides a 3x reduction in resource foot-
print, but also provides a comparably better (4% improvement)
accuracy to the baseline 6Q-500C-SEQ. The improvements
in accuracy could be attributed to same reasons discussed in
the previous sections. While, error mitigation improves the
accuracy even further to nearly 7% of the best case (6Q-
500C-PAR), it also reduces the gains in the resource foot-print
yielding 4% improvement compared to 6Q-500C-PAR. This
reduction is attributed to increased quantum circuit complexity
to mitigate the errors resulting in higher execution times on
the quantum hardware.

Execution time. Figure 10 illustrates the execution time for
the various QSVM workload types. Firstly, the gains in paral-
lelization (obtained by comparing the sequential and parallel
versions of each workload type) vary from 1.2x-3x. Speed-up
due to simply using fewer qubits is 6x (obtained by comparing
2Q-500C-SEQ and 6Q-500C-SEQ). Adding parallelization to
this qubit reduction yields a further 15% improvement. Error
mitigation techniques increase the execution time. However,
coupled with parallelization and reduced number of qubits,
2Q-500C-PAR yields 11% better accuracy than 6Q-500C-
SEQ (which does not use any of the said techniques), while
also computing the results 72% faster. The other observation
which is evident from Figure 10 is that the execution time

6Q-
1000C

6Q-
5000C

2Q-
500C

2Q-
500C-
TREX

2Q-
500C-
ZNE

Workload Type

0
20
40
60
80

100
120
140
160

M
ax

 e
xe

cu
tio

n
tim

e
(in

 M
in

ut
es

)
SEQ
PAR

Fig. 10: Execution times for the QSVM workload types

approximately doubles when the number of circuits per job is
reduced from 1000 to 500. This could be due to the increased
per job overhead that adds to the aggregate execution times
for a given batch of jobs.

Pre-execution overhead. Figure 11 illustrates a cumalative
distribution of the observed pre-execution overheads for jobs
generated when workloads of type 6Q-100C, 6Q-500C and
2Q-500C were submitted for execution. We observe that
70% of the jobs using fewer qubits (2Q-500C) tend to have
pre-execution overhead of less than 100 minutes, and the
remaining 30% tend to have 500 minutes or less of overhead.
Compared to this, 70% of the jobs using 6 qubits (6Q-500C)
and 500 circuits per job tend to 250 minutes of overhead or
less. About 30% of the jobs tend to have overhead between
100 minutes to 250 minutes, and another 30% tends to have
extreme overheads of 3000 minutes. Using more qubits and
having more jobs (fewer circuits per job) tends to expose the
workload to the variations of queuing behavior observed on
current quantum cloud platforms with limited resources and
large global user base. Reducing the number of jobs (more
circuits per job) improves the situation relatively by reducing
the overhead to 1000 minutes or less for 25% of the jobs as
can be seen in the case of 6Q-1000C.

Classical processing overheads. The classical processing
overhead captures the time taken to create the job batches,
use the quantum job results to compute the training test
kernels for the parallelized workload scenarios. This overhead
50 milliseconds to 107 milliseconds, with 2F-500C scenario
having the lowest overhead, while 6F-500C have the highest.
The number of features used and the number of circuits per job
impact the number of iterations to compute the job batches and
the kernels resulting in this difference in classical processing
overhead.

VII. DISCUSSION AND CONCLUSIONS

In this study, we profile two application use-cases represent-
ing real-world problems on real quantum hardware backends
of diverse capacity. We explore the possibility of designing

0
10

0
25

0
50

0

10
00

15
00

20
00

25
00

30
00

Pre-execution delay (in minutes) for jobs

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
op

or
tio

n
of

 jo
bs

2Q-500C
6Q-500C
6Q-1000C

Fig. 11: CDF of pre-execution overhead for all the jobs
constituting the QSVM scenarios

smaller, parallelizable hybrid quantum-classical jobs using
workload slitting techniques. We also explore and analyze the
trade-off between quality of the result of the application, the
performance of the application and the reduction in resource
foot-print. Our observations support the need for dynamic job
orchestration platform to effectively and affordably leverage
the diverse quantum hardware and address the challenges of
limited availability, to effectively exploit the dynamic nature
of the changes to hardware characteristics (e.g. noise profile,
queues). While, Stein et al [21] have begun this process by
proposing to exploit differences in noise profiles to achieve
faster VQA convergence without actually adapting the work-
load, our study explores the workload and application-centric
angles when even the workload could be adapted as follows:

1) Coupling workload adaptation and parallelization:
Parallel execution of job batches could help to leverage
additional but diverse capacity as it emerges. But, the
workload itself might not be directly amenable to exploit
this opportunity. Circuit cutting or feature sub-selection
could help adapt the workload and also leverage paral-
lelization. Without dynamic orchestration of this nature,
related jobs running on different machines could become
a bottleneck subject to changing machine state.

2) Failure Tolerance: Jobs could fail because of various
reasons (e.g. classical out-of-memory issue during heavy
error mitigation and post-processing, network disruption
between the client-server and the quantum hardware).
Orchestration platforms should dynamically adapt to
such points of failure and be designed to create redun-
dancy within user budgetary constraints.

3) Judicious use of error mitigation: Our profiling study
has demonstrated the improvement in quality of result
for both VQE and QSVM when error mitigation is used.
But, results indicate that it also comes with increased
utilization of quantum resources. Under budgetary con-
straints, the orchestration platform could selectively uti-
lize error mitigation while being aware of resource costs.

REFERENCES

[1] “Amazon Braket, AWS,” https://aws.amazon.com/braket/.
[2] K. Kissell and N. DeSantis, “Expanding access to quantum today

for a better tomorrow,” https://cloud.google.com/blog/products/compute/
ionq-quantum-computer-available-through-google-cloud.

[3] “Highlights of the IBM Quantum Summit 2022, IBM,” https://www.ibm.
com/quantum.

[4] “Azure Quantum, Microsoft,” https://azure.microsoft.com/en-us/
products/quantum/.

[5] R. Sangle, T. Khare, P. Seshadri, and Y. Simmhan, “Comparing the
orchestration of quantum applications on hybrid clouds,” in Students’
Showcase, The 23rd IEEE/ACM International Symposium on Cluster,
Cloud and Internet Computing (CCGRID), 2023.

[6] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii,
J. R. McClean, K. Mitarai, X. Yuan, L. Cincio et al., “Variational
quantum algorithms,” Nature Reviews Physics, vol. 3, no. 9, pp. 625–
644, 2021.

[7] J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum,
vol. 2, p. 79, 2018.

[8] T. Peng, A. W. Harrow, M. Ozols, and X. Wu, “Simulating large
quantum circuits on a small quantum computer,” Physical Review
Letters, vol. 125, no. 15, p. 150504, 2020. [Online]. Available:
https://doi.org/10.1103/PhysRevLett.125.150504

[9] M. Adhikari, T. Amgoth, and S. N. Srirama, “A survey on scheduling
strategies for workflows in cloud environment and emerging trends,”
ACM Computing Surveys (CSUR), vol. 52, no. 4, pp. 1–36, 2019.

[10] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
transactions on parallel and distributed systems, vol. 13, no. 3, pp. 260–
274, 2002.

[11] J. Yu, R. Buyya, and C. K. Tham, “Cost-based scheduling of scientific
workflow applications on utility grids,” in First International Conference
on e-Science and Grid Computing (e-Science’05). Ieee, 2005, pp. 8–pp.

[12] K. Bousselmi, Z. Brahmi, and M. M. Gammoudi, “Energy efficient
partitioning and scheduling approach for scientific workflows in the
cloud,” in 2016 IEEE International Conference on Services Computing
(SCC). IEEE, 2016, pp. 146–154.

[13] G. S. Ravi, K. N. Smith, P. Murali, and F. T. Chong, “Adaptive job and
resource management for the growing quantum cloud,” in 2021 IEEE
International Conference on Quantum Computing and Engineering
(QCE). IEEE, 2021, pp. 301–312.

[14] M. Zhang, Y. Fu, J. Wang, and J. Lai, “Research on task scheduling
scheme for quantum computing cloud platform,” in Proceedings of the
2022 6th International Conference on Cloud and Big Data Computing,
2022, pp. 7–11.

[15] R. Parekh, A. Ricciardi, A. Darwish, and S. DiAdamo, “Quantum
algorithms and simulation for parallel and distributed quantum comput-
ing,” in 2021 IEEE/ACM Second International Workshop on Quantum
Computing Software (QCS). IEEE, 2021, pp. 9–19.

[16] M. A. Perlin, Z. H. Saleem, M. Suchara, and J. C. Osborn, “Quantum
circuit cutting with maximum-likelihood tomography,” npj Quantum
Information, vol. 7, no. 1, pp. 1–8, 2021. [Online]. Available:
https://doi.org/10.48550/arXiv.2005.12702

[17] W. Tang, T. Tomesh, M. Suchara, J. Larson, and M. Martonosi, “Cutqc:
using small quantum computers for large quantum circuit evaluations,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2021, pp.
473–486. [Online]. Available: https://doi.org/10.1145/3445814.3446758

[18] L. Brenner, C. Piveteau, and D. Sutter, “Optimal wire cutting with
classical communication,” arXiv preprint arXiv:2302.03366, 2023.

[19] C. Piveteau and D. Sutter, “Circuit knitting with classical communica-
tion,” arXiv preprint arXiv:2205.00016, 2022.

[20] S. C. Marshall, C. Gyurik, and V. Dunjko, “High dimensional
quantum learning with small quantum computers,” arXiv preprint
arXiv:2203.13739, 2022.

[21] S. Stein, N. Wiebe, Y. Ding, P. Bo, K. Kowalski, N. Baker, J. Ang,
and A. Li, “Eqc: ensembled quantum computing for variational quantum
algorithms,” in Proceedings of the 49th Annual International Symposium
on Computer Architecture, 2022, pp. 59–71.

[22] “Qiskit Runtime, IBM,” https://www.ibm.com/quantum/qiskit-runtime.
[23] L. Viola and S. Lloyd, “Dynamical suppression of decoherence in two-

state quantum systems,” Physical Review A, vol. 58, no. 4, p. 2733,
1998.

[24] E. Van Den Berg, Z. K. Minev, and K. Temme, “Model-free readout-
error mitigation for quantum expectation values,” Physical Review A,
vol. 105, no. 3, p. 032620, 2022.

[25] K. Temme, S. Bravyi, and J. M. Gambetta, “Error mitigation for short-
depth quantum circuits,” Physical review letters, vol. 119, no. 18, p.
180509, 2017.

[26] E. van den Berg, Z. K. Minev, A. Kandala, and K. Temme, “Probabilistic
error cancellation with sparse pauli-lindblad models on noisy quantum
processors,” arXiv e-prints, pp. arXiv–2201, 2022.

[27] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J.
Love, A. Aspuru-Guzik, and J. L. O’brien, “A variational eigenvalue
solver on a photonic quantum processor,” Nature communications, vol. 5,
no. 1, p. 4213, 2014.

[28] V. Havlı́ček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala,
J. M. Chow, and J. M. Gambetta, “Supervised learning with quantum-
enhanced feature spaces.” Nature, pp. 209–212, 2019.

[29] S. Basu, A. Saha, A. Chakrabarti, and S. Sur-Kolay, “i-qer:
An intelligent approach towards quantum error reduction,” ACM
Transactions on Quantum Computing, 2021. [Online]. Available:
https://dl.acm.org/doi/10.1145/3539613

[30] T. Ayral, F.-M. L. Régent, Z. Saleem, Y. Alexeev, and M. Suchara,
“Quantum divide and compute: exploring the effect of different noise
sources,” SN Computer Science, vol. 2, no. 3, pp. 1–14, 2021. [Online].
Available: https://doi.org/10.1007/s42979-021-00508-9

[31] R. Majumdar and C. J. Wood, “Error mitigated quantum circuit cutting,”
arXiv preprint arXiv:2211.13431, 2022.

[32] Z. H. Saleem, T. Tomesh, M. A. Perlin, P. Gokhale, and M. Suchara,
“Quantum divide and conquer for combinatorial optimization and dis-
tributed computing,” arXiv preprint arXiv:2107.07532, 2021.

[33] K. N. Smith, M. A. Perlin, P. Gokhale, P. Frederick, D. Owusu-Antwi,
R. Rines, V. Omole, and F. T. Chong, “Clifford-based circuit cutting for
quantum simulation,” arXiv preprint arXiv:2303.10788, 2023.

[34] “Circuit Knitting Toolbox,” https://qiskit-extensions.github.io/
circuit-knitting-toolbox/index.html.

[35] D. Chicco and G. Jurman, “Machine learning can predict survival of
patients with heart failure from serum creatinine and ejection fraction
alone,” BMC Medical Informatics and Decision Making, vol. 20, 2020.

[36] A. Wack, H. Paik, A. Javadi-Abhari, P. Jurcevic, I. Faro, J. M. Gambetta,
and B. R. Johnson, “Scale, quality, and speed: three key attributes
to measure the performance of near-term quantum computers,” arXiv
preprint arXiv:2110.14108, 2021.

https://aws.amazon.com/braket/
https://cloud.google.com/blog/products/compute/ionq-quantum-computer-available-through-google-cloud
https://cloud.google.com/blog/products/compute/ionq-quantum-computer-available-through-google-cloud
https://www.ibm.com/quantum
https://www.ibm.com/quantum
https://azure.microsoft.com/en-us/products/quantum/
https://azure.microsoft.com/en-us/products/quantum/
https://doi.org/10.1103/PhysRevLett.125.150504
https://doi.org/10.48550/arXiv.2005.12702
https://doi.org/10.1145/3445814.3446758
https://www.ibm.com/quantum/qiskit-runtime
https://dl.acm.org/doi/10.1145/3539613
https://doi.org/10.1007/s42979-021-00508-9
https://qiskit-extensions.github.io/circuit-knitting-toolbox/index.html
https://qiskit-extensions.github.io/circuit-knitting-toolbox/index.html

	I Introduction
	II Related Work
	III Background
	IV Workload Splitting Techniques
	IV-A Circuit Cutting
	IV-B Slicing the workload job batch

	V Evaluation Methodology
	V-A Workload Characteristics
	V-A1 VQE
	V-A2 QSVM

	V-B Metrics
	V-C Instrumentation Methodology

	VI Results
	VI-A VQE
	VI-B QSVM

	VII Discussion and Conclusions
	References

