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Abstract—Quantum computing has the potential to surpass the
capabilities of current classical computers when solving complex
problems. Combinatorial optimization has emerged as one of
the key target areas for quantum computers as problems found
in this field play a critical role in many different industrial
application sectors (e.g., enhancing manufacturing operations
or improving decision processes). Currently, there are different
types of high-performance optimization software (e.g., ILOG
CPLEX and Gurobi) that support engineers and scientists in
solving optimization problems using classical computers. In
order to utilize quantum resources, users require domain-specific
knowledge of quantum algorithms, SDKs and libraries, which
can be a limiting factor for any practitioner who wants to
integrate this technology into their workflows. Our goal is to
add software infrastructure to a classical optimization package so
that application developers can interface with quantum platforms
readily when setting up their workflows. This paper presents a
tool for the seamless utilization of quantum resources through
a classical interface. Our approach consists of a Python library
extension that provides a backend to facilitate access to multiple
quantum providers. Our pipeline enables optimization software
developers to experiment with quantum resources selectively and
assess performance improvements of hybrid quantum-classical
optimization solutions.

Index Terms—CPLEX, QPLEX, Quantum Optimization, Op-
timization, Quantum Software Engineering

I. INTRODUCTION

Optimization plays a key role in industry, solving computa-
tionally challenging problems that arise in multiple fields, such
as logistics [1], manufacturing [2], finance [3], among others.
Given the complexity of these problems, optimization software
is often needed to facilitate their modeling and analysis. This
type of software is commonly provided through programming
libraries such as DOcplex [4] (a Python wrapper for ILOG
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CPLEX [5]), which deliver a set of functionalities for the
solution of optimization problems through the use of classical
backends, also known as high-performance solvers. These
backends are capable of solving linear, mixed integer and
quadratic programming problems, making them very versa-
tile for different optimization applications. Nonetheless, such
classical approaches come with certain limitations regarding
the size of the problem and the complexity of the objective
function and their constraints [6].

In the past few years, quantum computers have become
widely available [7], allowing the scientific community to
come up with near-time quantum solutions for complex prob-
lems by exploiting the principles of quantum mechanics to
achieve a computational advantage when compared to their
classical counterparts [8], [9], [10]. Optimization sits at the
core of many of these problems, making it one of the areas
that might benefit from quantum computing. Recent advances
in this field have provided techniques for solving complex
optimization problems through different paradigms such as
adiabatic [11], [12], [13] and gate-based quantum computing
[14], [15], [16], [17]. These techniques could potentially bring
a speed up compared to classical approaches, while delivering
higher quality solutions.

Given the variety of quantum computing providers and
algorithm implementations for solving optimization problems,
some techniques executed on certain devices may yield better
results, achieve better performance, or be more efficient than
others for a given problem [7]. Thus, testing different algorith-
mic approaches and quantum processing units is essential in
order to find the best alternative for a specific use case. This
is especially important if one intends to benchmark against
classical optimizers.

Currently, each quantum hardware provider uses its own



library or SDK to allow users to interact with their ma-
chines: Qiskit [18] in the case of IBM, Ocean [19] for D-
wave and Pennylane [20] for Xanadu, to name a few. This
situation presents a challenge for any developers who want
to implement an optimization solution for multiple quantum
devices as they would have to adapt the code to function with
each target platform. Moreover, solving optimization problems
using quantum computers is not a trivial task; a certain level
of proficiency in quantum algorithms and programming is
necessary to develop such solutions. This adds friction to
the programming experience, making it considerably more
difficult for a software engineer to start experimenting with
quantum computing.

Addressing these pain points, we conceived and developed
QPLEX, a Python library extension based on DOcplex that
allows developers to implement a general mathematical formu-
lation once (also known as an optimization model) and execute
it seamlessly on multiple quantum devices using different
quantum algorithms. Our solution automatically handles the
adaptation of a general optimization model into the specific
instructions used by the target quantum device’s SDK. Ad-
ditionally, the library offers a versatile gate-based algorithm
execution workflow that is capable of running two gate-based
quantum algorithms for optimization (i.e. QAOA [21] and
VQE [22]) in a hardware-agnostic manner. This approach
enables seamless execution on any supported device without
incurring extra programming overhead.

This paper is divided into two main sections. First we review
current techniques for solving optimization problems with
quantum computers and discuss background and related work
on quantum optimization. Second, we describe our approach
and methods and present future directions for this project.
Lastly, we go over our contributions and layout improvements
for our project as future work.

II. QUANTUM OPTIMIZATION ALGORITHMS

The three algorithmic methods currently most used in
quantum optimization are quantum annealing (QA), quantum
approximate optimization algorithm (QAOA), and variational
quantum eigensolver (VQE), which we describe in subsections
II-A, 1I-C, and II-B, respectively. These algorithms have been
proven to be fitting options for solving optimization problems
using near-term quantum computers [23] in combination with
classical processing. A recent study [24] implemented QA and
VQE to solve the dynamic portfolio optimization problem with
real data, obtaining promising results with hybrid quantum-
classical approaches.

Our solution, QPLEX, supports solving an optimization
model using QA, QAOA and VQE. The implementation of
the QA algorithm, as we describe, requires small adjustments
to the QPLEX model to be executed on a quantum annealer.
However, implementations of QAOA and VQE need some
adaptation to translate the general optimization model into
a quantum circuit. This functionality is made possible by
the Generalized Gate-Based Algorithm Execution (GGAE)
workflow, which we describe in section III-C.

To the best of our knowledge, currently there is no such
tool that allows for the seamless execution of a general rep-
resentation of an optimization problem using various different
algorithms and quantum providers.

A. Quantum Annealing

Quantum annealing is a quantum algorithm that uses adi-
abatic quantum computation. This algorithm is fitting for
solving optimization problems due to the fact that the general
model can be represented in a quadratic unconstrained binary
optimization (QUBO) form, which can be translated into a
Hamiltonian or energy function, turning the problem into an
energy minimization problem that can be solved with ease
by a quantum annealer. D-Wave provides a hybrid solver that
takes a problem and breaks it into smaller parts that are solved
using quantum-classical strategies. This approach allows the
machine to handle problem instances that would normally be
beyond its capabilities if it only used quantum resources [24]
[25].

B. Variational Quantum Eigensolver

Another approach for solving optimization problems is the
Variational Quantum Eigensolver [22], which is a hybrid
quantum-classical algorithm that approximates the ground
state of the Hamiltonian representing the optimization problem
[24]. The eigenvalues of the Hamiltonian are the possible mea-
surements of the quantum system at each of the eigenstates.
The algorithm works by sampling the function distribution to
estimate the energy of the quantum state. The starting state,
known as the ansatz, is implemented by parameterized circuits,
and after each estimation the circuit’s variational parameters
are optimized by classical techniques. Eventually, the energy
estimation converges to the ground state of the Hamiltonian,
the lowest eigenstate, with its eigenvalue as the solution to
our optimization problem. The quality of the results of this
algorithm depend first and foremost on the variational quantum
circuit used.

C. Quantum Approximate Optimization Algorithm

The Quantum Approximate Optimization Algorithm
(QAOA) is a hybrid quantum-classical algorithm specifically
designed for solving combinatorial optimization problems
[21]. Similarly to VQE, this algorithm also uses a
parameterized circuit as an anzatz to encode the problem.
Nevertheless, in the case of QAOA, this initial state
is problem-specifc and constructed using an alternating
combination of a problem Hamiltonian in the form of a
QUBO and a mixer Hamiltonian. Both of these sections
are repeated a p number of times to improve the level of
approximation of the algorithm. The use of a large value of
p comes with a trade off as this increases the complexity
circuit depth and therefore the execution time. A classical
optimization routine is employed to find the best combination
of parameters for the initial circuit state. The execution
time of this step is also determined by p, as the more
layers the algorithm has the more parameters need to be



optimized. In addition to the original QAOA implementation,
different extensions have been developed for achieving
better approximations. For instance, the Quantum Alternating
Operator Ansatz [26] achieves this by allowing the use of
more general alternating mixer operators. The Warm-start
QAOA [27] includes an additional step to solve the problem
approximately with a different optimization method (e.g., a
classical solver) and then use that output as the initial state
to QAOA.

III. QPLEX PROGRAMMING LIBRARY

QPLEX facilitates the design and execution of optimization
models on quantum hardware, enabling users to access quan-
tum resources in an effective way. This, in turn, allows to
perform comparisons between classical and quantum solvers
conveniently. To accomplish this goal, the QPLEX program-
ming library is equipped with a set of important features that
allow for (1) the representation of an optimization problem, (2)
the adaptation of the optimization model to different supported
quantum processing units (QPUs), and (3) the building of a
hardware-agnostic algorithmic implementation based on the
model requirements. In order to understand how the library
works, we expand on each of these features in the subsequent
subsections.

A. Building a general representation
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Fig. 1: QPLEX library workflow

To accomplish a general representation of an optimization
problem that can be executed on different quantum hardware,
we devised a wrapper for a base DOcplex model which encap-
sulates the default behavior of the classical high-performance
solver (CPLEX) and the customized workflow execution for
the supported quantum providers (IBM and D-Wave). The

newly conceived model contains the same attributes and meth-
ods as a DOcplex model. Nevertheless, the QPLEX model
class overrides the solve method, allowing the user to specify
the desired solver to be utilized (i.e., classical or quantum)
and, in the quantum case, to select a quantum provider.

Given that DOcplex is used as an API to model the
combinatorial optimization formulations, it was necessary to
allow for the execution of any type of optimization problem
within QPLEX. These include unconstrained and constrained
(i.e., equality and inequality constraints) problems, as well as
the use of binary, discrete, and continuous variables. Taking
into account that the supported quantum algorithms for com-
binatorial optimization require the problem to be in the form
of a QUBO formulation, it was necessary to devise a method
for converting non-compliant formulations when needed. For
practicality purposes, Qiskit’s QUBO converters were used to
address this situation. However, we plan to implement our own
mapping and conversion methods in the near future.

Figure 1 illustrates the QPLEX model workflow. On the one
hand, if the classical solver is selected, the program will simply
call the base model’s solve method, which in turn executes the
underlying problem formulation using the CPLEX optimizer.
On the other hand, if the quantum solver is selected, the model
will use the specified backend to execute the problem on
quantum hardware through their corresponding cloud (e.g., D-
Wave Leap, or IBM Quantum). Note that for the user the only
difference is the choice of the parameters of the solve method
since the underlying solving process is handled automatically
by the library, and the solved model is accessible in the same
manner as the base model. In other words, the switch between
using quantum or classical resources to solve the problem is
practically seamless for the developer.

The following code snippet illustrates the use of QPLEX
to execute an optimization problem model (the knapsack
problem) on quantum resources while using the same syntax
provided by DOcplex:

Moreover, some configuration parameters of the solve
method are only necessary in specific cases. For instance,
specifying a quantum algorithm to solve the problem would
only make sense in the case that the user has selected a gate-
based quantum provider.

B. Optimization model adaptation for different QPUs

One of the primary characteristics of QPLEX is its capa-
bility to translate a general representation of an optimization
problem into the particular set of instructions employed by the
quantum providers available in the programming library for
addressing the desired problem formulation on their QPUs.
This process is realized through multiple solver instances.
Each solver corresponds to a quantum backend (e.g. IBM, D-
Wave) and they abstract vital functionalities for the adaptation.
For instance, how to parse the problem formulation, how to
execute it, and how to read the results sent back from the
QPU. The problem execution includes the quantum hardware
selection stage where, if multiple devices are available for use,
only the ones with a sufficient number of qubits to support



from gplex import QModel

# Problem definition
weights = [4, 2, 5, 4, 5, 1, 3, 5]
values = [10, 5, 18, 12, 15, 1, 2, 8]

15
len(values)

max_weight =
n =
model

# Build the

knapsack_model = QModel('knapsack')
X = knapsack_model.binary_var_list(n, name="x")
knapsack_model.add_constraint(

sum(weights[i] * x[i] for i in range(n)

) <= max_weight)

obj_fn = sum(values[i] * x[i] for i in range(n))
knapsack_model.set_objective('max', obj_fn)

# Code for solving the knapsack problem

# with quantum resources

knapsack_model.solve('quantum')

H

Code for solving the knapsack problem

# with resources

classical
knapsack_model.solve('classical')

Fig. 2: Code snippet for solving the knapsack problem with QPLEX

the formulation and the shortest job queue are considered.
The solver handles the access to quantum computing resources
through requests to its corresponding backend’s cloud. These
services require an API token to successfully execute the
problem, making it necessary for QPLEX users to have their
own tokens and set them as environment variables for the
library to function correctly.

In order to manage the creation of quantum solver instances,
a solver factory module is implemented. Depending on the
selected hardware provider, this module returns the corre-
sponding solver for the optimization problem to be addressed.
This design is depicted in Figure 3. All QPLEX models
instantiate the solver factory and make use of it when a
quantum backend is selected, allowing the model to under-
stand which set of instructions has to be executed to solve
the specified optimization problem. Figure 4 illustrates the
methods described above using the D-Wave solver as a specific
example. In this case, the factory builds a solver instance that
leverages instructions written in the OceanSDK to convert the
base model into a QUBO and execute it on a D-Wave Leap
device. The machine’s response is then parsed and returned as
the solution for the optimization problem.

In addition to providing a simple workflow for execution,
the design of this module greatly minimizes the coupling
between the solvers and the rest of the system, as all the
logic for each of these is contained within its own class and
used through a common call from the factory. In the case

Factory Solver

solver

create_instance()

1

SolverFactory

parse_input{QFLEXModel)

execute_optimization()

parse_output()

i
| |

create_instance()

IBMQuantumSolver DwaveSolver

parse_input{QPLEXModel) parse_input(QPLEXModel)

execute_optimization() execute_optimization()

parse_output() parse_output()

Fig. 3: Quantum Solver Factory

that a quantum provider decides to update how to access their
machines, it is only necessary to modify the corresponding
solver class; the remaining sections of code are not affected
by the change. This also applies when a new backend has to
be integrated into the library, as it is only needed to create
the new solver class with the necessary execution logic and
instantiate it within the solver factory, heavily reducing the
amount of time and complexity required to provide access to
a new quantum provider.

QPLEX
Model

l

Solver
Factory

J

D-Wave Solver (OceanSDK)

QUBO ——> D-Waveleap ——>  Response

Solved Model

Fig. 4: Model execution using the D-Wave solver

C. Generalized Gate-Based Algorithm Execution

As mentioned before, quantum annealers are designed to
solve problem formulations in QUBO forms by directly map-
ping them into a QPU. This allows for an effective execution
workflow for optimization problems as the same QUBO can be
solved in different annealers using their specific SDK or pro-
gramming library. Nevertheless, this is not the case for general-
purpose gate-based quantum computers. In order to solve an
optimization problem through one of these machines, it is
necessary to first implement a quantum algorithm to approach




the optimization task. Most of the time these implementations
are provider specific, which makes it necessary to have mul-
tiple versions of the same approach when experimenting on
different quantum computers. Thus, adding support for more
devices and quantum algorithms is cumbersome.

To improve this situation, we developed a workflow for
the execution of hardware-agnostic gate-based quantum algo-
rithms for optimization, depicted in Figure 5. This process
begins once the optimization model has been created and
the user has chosen to solve the problem through a gate-
based quantum machine. The first step in this approach is to
transform the QPLEX model into a QUBO formulation that
can be solved employing any of the variational algorithms
provided by our library.

As it was previously described, this type of algorithm
comprises two main phases: the quantum circuit execution
and the classical parameter optimization loop. The generated
QUBO model is employed in the first phase to build the initial
parameterized quantum circuit or anzatz. Given that our main
goal is to make this execution hardware-agnostic, the circuit
is constructed using OpenQASM3 directives instead of SDK
specific quantum gates. Since the execution is going to be
determined by this intermediate representation language, it is
required that the gate-based solvers support OpenQASM3, as
once the generalized circuit is created, each backend has to
transpile the instructions into QPU specific operations.

Once the operations are executed by the appropriate solver,
the solution for the first iteration of the algorithm is then
returned to be used in the optimization loop. For this step,
a classical optimization algorithm (e.g., SPSA, COBYLA or
Adam) is used in conjunction with a cost function, to find
the optimal configuration of parameters for the circuit. It
is possible for the user to specify which optimizer to be
employed, but if none is provided COBYLA will be used by
default. With the optimization results a new generalized circuit
is constructed and once again executed through a solver. The
loop is performed a set number of times or until the loss stops
changing. At this point the best solution is returned to the user
in a seamless manner.

The discussed setup allows for a simple way to incorporate
new implementations of quantum optimization algorithms, as
the general instructions for the implementation have to be
specified only once and can be re-used for multiple gate-based
solvers.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented QPLEX, a quantum
hardware-agnostic Python library for optimization, detailing
its motivation, design, implementation, and usability. We in-
troduced the primary components of our approach, specif-
ically the QPLEX model and the quantum solver factory,
and demonstrated their interaction in facilitating a seamless
workflow for solving optimization problems effectively in
quantum infrastructure. Our solution builds on top of a known
optimization library (i.e., DOcplex) and abstracts the syntax
related to the different quantum SDKs needed to communicate
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Fig. 5: The generalized gate-based algorithm execution workflow

with different quantum backends, as well as the necessary
parsing of a general optimization model defined using DOc-
plex to the specific quantum target’s language. We also show
the flexibility of this toolbox to be extended and adapted to
specific development needs, making it a useful tool for a wide
range of scenarios.

Moreover, we would like to highlight our approach of using
a common programmatic interface as a means to provide ac-
cess to a large collection of quantum algorithms and hardware
providers as one of the main contribution of this work. While
packages for quantum optimization currently exist, this paper
presents, to the best of our knowledge, the first attempt to
unify the execution of classical and quantum, both annealing
and gate-based techniques for optimization problems under the
same development tool.

For this paper, we only incorporated three quantum al-
gorithms (i.e., Quantum Annealing, VQE, QAOA) and two
providers (i.e., IBM and D-Wave) into QPLEX; nonetheless,
moving forward, we expect to include more algorithms and
support access to a larger number of quantum computers.
Currently, QPLEX is an open-source project available on
GitHub !, and we encourage readers who are interested to
contribute to any of the open issues, as we intend to make
this library a useful tool built and used by the QC community.

Uhttps://github.com/JuanGiraldo0212/QPLEX



Finally, despite current limitations in quantum hardware, we
believe that the continued development of quantum software
engineering solutions is crucial to fully realize the potential
benefits of fault-tolerant quantum computing in the near future.
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