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Abstract—We present the NVIDIA cuQuantum SDK [1],
a state-of-the-art library of composable primitives for GPU-
accelerated quantum circuit simulations. As the size of quantum
devices continues to increase, making their classical simulation
progressively more difficult, the availability of fast and scalable
quantum circuit simulators becomes vital for quantum algorithm
developers, as well as quantum hardware engineers focused
on the validation and optimization of quantum devices. The
cuQuantum SDK was created to accelerate and scale up quantum
circuit simulators developed by the quantum information science
community by enabling them to utilize efficient scalable software
building blocks optimized for NVIDIA GPU-based platforms.
The functional building blocks provided cover the needs of both
state vector- and tensor network- based simulators, including
approximate tensor network simulation methods based on matrix
product state, projected entangled pair state, and other factorized
tensor representations. By leveraging the enormous computing
power of the latest NVIDIA GPU architectures, quantum circuit
simulators that have adopted the cuQuantum SDK demonstrate
significant acceleration, compared to CPU-only execution, for
both the state vector and tensor network simulation methods.
Furthermore, by utilizing the parallel primitives available in the
cuQuantum SDK, one can easily transition to distributed GPU-
accelerated platforms, including those furnished by cloud service
providers and high-performance computing systems deployed
by supercomputing centers, extending the scale of possible
quantum circuit simulations. The rich capabilities provided by
the cuQuantum SDK are conveniently made available via both
Python and C application programming interfaces, where the
former is directly targeting a broad Python quantum community
and the latter allows tight integration with simulators written in
any programming language.

Index Terms—quantum circuit simulation, GPU computing,
state vector, tensor network

I. INTRODUCTION

Quantum circuit simulators are a critical part of quantum
algorithm and application development workflows. Today’s
quantum computers are prohibitively small, error-prone, hard
to access, capacity-constrained, and, at times, expensive. Even
as they scale, this will not likely change until Fault-Tolerant
Quantum Computing (FTQC) systems are broadly deployed
and no longer capacity-constrained. Therefore, researchers and
developers rely on quantum circuit and analog simulators as
a critical tool in their toolbox. Many of these simulators are
based on state vector (SV) and tensor network (TN) simulation
methods, both of which rely heavily on linear algebra and ma-
trix/tensor multiplications. Graphics Processing Units (GPUs)

have traditionally been great computational engines for these
types of problems, given their ability to utilize thousands
of threads to efficiently parallelize computations. For these
reasons, NVIDIA introduced the cuQuantum SDK with its
two main component libraries, cuStateVec and cuTensorNet
(Fig. I). Our strategy is focused on accelerating and scaling
up all quantum circuit simulators on GPUs. By working to
improve GPU kernels and provide other performance enhance-
ments, in addition to enabling advanced simulation techniques,
we have provided simulator developers around the world with
the ability to perform quantum circuit simulations at scales
and speeds previously not available to them.

Fig. 1. Overview of the NVIDIA cuQuantum SDK. QPU stands for quantum
processing units.

Before cuQuantum, quantum circuit simulator developers
predominantly used basic linear and tensor algebra libraries
in their computational backends. The cuQuantum model has
raised the level of abstraction by providing more convenient
and flexible building blocks targeting quantum circuit simula-
tor developers. At the same time, the provided data structures
and computational primitives are restricted to the core subset
of features typically exposed by higher-level libraries, for
example existing TN libraries like iTensor [2], Quimb [3],
ExaTN [4], Cyclops Tensor Framework [5], TensorNetwork
[6], or TensorTrace [7], to name a few. This uniquely positions
cuQuantum as a library created to broadly benefit the existing
quantum information science (QIS) software ecosystem rather
than compete with some of its components. That is, while
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the primary adoption target is quantum circuit simulators,
cuQuantum can also boost the performance of more generic
software libraries used in quantum sciences.

cuQuantum was introduced to the public in September
2021, with three main components: cuStateVec, cuTensorNet,
and cuQuantum Python. At the time we introduced support
for NVIDIA A100 and V100 devices, followed by a quick
expansion of supported systems to include all devices with
CUDA compute capability 7.0+. We demonstrated the largest
TN based simulation of the QAOA MaxCut problem, achiev-
ing a 93% accurate solution to a 10,000 vertex MaxCut
graph (5000 qubits). In March 2022, we introduced the first
cuQuantum Appliance as a Docker container with a Cirq
frontend and cuQuantum backend. The 22.07 release added
major performance enhancements for multi-GPU simulations,
enabling noisy quantum circuit simulations at scale in the
cuQuantum Appliance. We also introduced APIs for TN slicing
and enabling multi-GPU multi-node execution in cuTensorNet.
In September 2022, we demonstrated the fastest multi-node SV
simulations in the world, exceeding the previous state-of-the-
art by over 3x, and scaling much further. The 22.11 release
included this functionality in the cuQuantum Appliance, intro-
ducing IBM Qiskit as a frontend. This release of cuTensorNet
featured support for the NVIDIA Hopper GPU, user-friendly
multi-node APIs, and approximate TN contraction primitives
supporting the matrix product state (MPS), matrix product
operator (MPO), and projected entabled pair state (PEPS)
based simulation algorithms. The 23.03 release added multi-
node APIs in cuStateVec and intermediate caching/reuse in
cuTensorNet. Additionally, we introduced the cuQuantum Ap-
pliance VMI on several major cloud service providers.

The overarching goal of cuQuantum is to fulfill a pressing
need from community QIS codes to accelerate and scale
up quantum simulations to help drive quantum applications
towards new discoveries. Our effort builds upon, focuses
on, and unifies decades of code development for NVIDIA
GPU architectures. By adopting cuQuantum, quantum circuit
simulators receive the unique ability to study extremely large
quantum simulations using NVIDIA DGX and HGX systems,
cloud based systems, and some of the largest parallel super-
computers. The cuQuantum SDK encapsulates SV, TN, and
approximate TN simulation methods which allow studying and
accelerating a wide range of quantum simulations at unprece-
dented scale. Our software is the result of the combined efforts
of theoretical physicists, computational scientists, and applied
mathematicians who have formulated effective methods and
algorithms, allowing users to explore quantum algorithms for
a wide range of qubit counts and circuit depths.

Despite its relatively short history, cuQuantum has already
demonstrated significant impact by accelerating the QIS re-
search community worldwide, from industry to academia. Sup-
porting results include the world record for supercomputing
scale simulation performance [8] and a wide range of novel
quantum research, such as optimization [9–12], simulating
quantum chemistry and other quantum systems [13, 14],
security and privacy [15, 16], and much more.

II. THE cuStateVec LIBRARY

We developed the cuStateVec library to accelerate and scale
up SV simulation, a brute-force, exact method of quantum
circuit simulation. An SV simulator represents the quantum
state as a complex-valued 1D vector. Thus, it behaves as if it
were an ideal quantum computer, as the entire quantum state
is preserved in the simulator. Users can successively apply
quantum logic gates as needed in their quantum algorithms.
Qubits can be measured without collapsing the quantum state
by numerical computation of the probability distribution.

In order to hold the entire quantum state, the size of a state
vector grows exponentially as 2n, where n is the number
of qubits. When the size of the state vector exceeds the
capacity of a single device, it needs to be distributed across
multiple compute devices and nodes connected by high-speed
interconnects. Hence, large-scale SV simulation is considered
a high-performance computing (HPC) challenge.

In this section, we first describe several key features of
cuStateVec, followed by an introduction to the SV simulators
provided in the NVIDIA cuQuantum Appliance container.

A. cuStateVec API Design

The cuStateVec library was developed to provide a set of
common primitives used in SV simulators. The latest version
of the cuStateVec library, v23.03, provides the features shown
in Tab. I. The design of the cuStateVec library is based on the
following considerations:
Provide a set of SV primitives with a relaxed memory

model: The cuStateVec library provides the basic GPU-
accelerated APIs such as gate application, measurement,
expectation value computation, and sampling. The state
vector should be allocated in GPU memory, however,
there is no other specific requirement for the memory
model. This facilitates the adoption of the cuStateVec
library in existing SV simulators.

Small memory footprint: As SV simulation can require a
huge amount of memory to store the SV, most APIs
are designed to execute in-place operations to eliminate
the use of both source and destination buffers. Most
operations are executed by using a small amount of the
library-internal temporary buffer attached to the library
handle, which therefore does not increase the amount of
memory required for simulations.

Extensible to multi-GPU and multi-node simulations:
Most cuStateVec APIs work as single GPU primitives.
However, these APIs are designed to work as a part
of multi-GPU and multi-node simulations. The library
provides a set of APIs to swap the index bits of a SV.
These are used to manage the index bit ordering of
the state vector. There are multi-GPU and multi-node
versions to perform qubit reordering used for distributed
SV simulations.

B. Gate Application Performance and Gate Fusion

In typical SV simulations, gate application – applying the
quantum logic gates from a quantum circuit to a state vector



TABLE I
KEY FEATURES OF CUSTATEVEC

Feature Description
Resource

management
The library handle holds a few tens of MB of GPU
memory and other resources.

Gate
application

Gate application with dense matrix and generalized
permutation matrix.

Pauli rotation Rotation of state vector by Pauli string.

Measurement
Measurement on Z-product basis and batched single-
qubit measurement. Probability computation and col-
lapse function are separately provided.

Expectation Expectation value computation with dense matrix
observable or Pauli strings.

Sampler Sampling bit-strings as measurement outcomes with-
out collapsing state vector.

Accessor Copy state vector between CPU and GPU while
manipulating the qubit ordering.

Index
bit swap

Swap index bit pairs in the state vector. Single-GPU,
multi-GPU, and multi-node versions are available.

– is the most time-consuming operation. While most gates in
quantum circuits have just one or two target qubits, cuStateVec
provides optimized gate application APIs for larger numbers of
target qubits. Fig. 2 shows the performance of gate applications
on both an NVIDIA H100 80GB SXM GPU and an NVIDIA
A100 80 GB SXM GPU, with peak memory bandwidths of
3.35 TB/s and 2.04 TB/s, respectively. On the H100, the
utilized memory bandwidth generally surpasses 2.35 TB/s and
reaches 3.0 TB/s for the best cases, corresponding to 70% and
90%, respectively, while on the A100, a sustained bandwidth
of 1.6 TB/s and a peak of 1.7 TB/s, 78% and 83%, respectively,
was measured. For up to 5 qubits for Complex 64 and up to 6
qubits for Complex 128 on an NVIDIA H100 (4 and 5 qubits,
respectively on the NVIDIA A100), gate application is a
memory-bound operation. The total simulation time increases
in proportion to the number of these gate application API calls
as long as the gate matrices are sufficiently small.

To reduce the computation cost, we can introduce gate
fusion [17]. By fusing numerous small gate matrices into a
single, multi-qubit gate matrix, one can apply the fused gate
matrix in one shot instead of repeating the application of
small gate matrices. Thus, the number of fused gates directly
contributes to the acceleration of the simulations. Gate fusion
can yield drastic performance acceleration in cases where both
the high memory bandwidth and high compute performance
of the GPU are utilized.

C. Distributed State Vector Simulation

In SV simulation, each bit in the state vector index corre-
sponds to one qubit in a quantum circuit. During simulations,
qubits are mapped to the index bits of the state vector. For
distributed SV simulations, the state vector is equally sliced
and distributed to multiple computing devices as shown in
Fig. 3. In this configuration, the index bits in a slice of the
state vector are referred to as local index bits; similarly, the
index bits to identify the state vector ordinal are referred to as
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Fig. 2. Gate application performance on the NVIDIA H100 80GB SXM and
NVIDIA A100 80 GB SXM GPUs. The performance was measured with 33-
and 32-qubit state vectors for Complex 64 and Complex 128, respectively.
The bandwidth was calculated from 100 measurement results with randomly-
selected sets of target qubits.

global index bits. When applying a gate onto a local index bit,
the gate matrix can be applied independently and concurrently
to each slice. However, applying a gate onto a global index
bit requires accessing multiple slices of the state vector.

Qubit reordering is a known technique to resolve this
limitation, which has been reported in [18]. As shown in
Fig. 4, one can move a global index bit into a local index
bit position, and update the qubit-to-index-bit mapping to
move a qubit to the local index bits. Therefore, a gate that
acts on a remapped qubit is applied to a local slice of the
state vector. For this purpose, the cuStateVec library provides
distributed index bit swap APIs. One can develop a distributed
SV simulator by keeping target qubits local to the state vector
slices, then single-GPU APIs can be applied to update the state
vector. In the cuQuantum Appliance container, both multi-
GPU and multi-node quantum circuit simulations are built with
index bit swap APIs and single-GPU cuStateVec APIs.

1 1 …

1 0 …

0 1 …

0 0 …

Slice 3

Slice 2

Slice 1

Slice 0

Local index bitsGlobal index bits

State vector index bits

Fig. 3. State vector distribution. The state vector is sliced into four slices and
distributed to four computing devices.

D. Simulators in the Appliance Container

The NVIDIA cuQuantum Appliance container provides our
multi-GPU-optimized qsim backend for the Cirq frontend, and
a cusvaer backend that supports distributed SV simulations for
the Qiskit Aer [19] frontend. In this section, we provide an
overview of each backend.

1) Multi-GPU qsim backend: qsim [20, 21] is a
Schrödinger full SV simulator written in C++ and has been
integrated with Cirq [22], a Python framework for quantum
circuit simulation. Originally, its backends were designed for
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Fig. 4. Qubit reordering by swapping a pair of global and local index bits.
Two state vector slices are distributed to GPU 0 and GPU 1.

computations with either multithreading CPUs or single GPUs.
We provide a new backend, qsim-mgpu, with multi-GPU
functionalities. We introduce qubit reordering in our backend
so that there is no device-to-device communication within each
gate application kernel call. When the reordering is required,
we call custatevecMultiDeviceIndexBitSwaps to
swap the sub state vector components on multiple devices.

a) Introduction of Dense/Diagonal Gate Fusion: Some
typical gate matrices, e.g., a controlled-Z gate, can be rep-
resented as diagonal matrices. Gate applications for diagonal
matrices have lower arithmetic intensity than those for dense
matrices due to their sparsity. Therefore, for diagonal matrices,
gate application kernels can exhibit nearly identical perfor-
mance across a wide range of matrix sizes.

Considering these characteristics, we extend gate fu-
sion in Sec. II-B to accept diagonal matrices and gener-
ate fused diagonal matrices. In our backend, we provide
two options for gate fusion, max_fused_gate_size and
max_fused_diagonal_gate_size, which set the max-
imum number of qubits per fused dense and diagonal gate,
respectively. The gate applications for dense and diagonal ma-
trices are executed using the custatevecApplyMatrix
and custatevecApplyGeneralizedPermutation-
Matrix APIs.

b) Performance Evaluations: In this section, we report
the performance of our qsim backend. We use a single DGX
A100 node that consists of eight NVIDIA A100 80GB SXM
GPUs and two AMD EPYC 7742 64-core CPUs, a single
DGX H100 node that consists of eight NVIDIA H100 80GB
SXM GPUs and two Intel Xeon Platinum 8480C CPUs,
and version 23.03 of the cuQuantum Appliance container.
We target Quantum Fourier Transform (QFT) [23], Quantum
Approximate Optimization Algorithm (QAOA) [24] with the
parameter p = 2, and Quantum Volume [25] (depth=30)
circuits. Quantum Volume is measured for 10 different circuits
and their average elapsed time is evaluated. The maximum gate
fusion size is set to 4 on the DGX A100 and 5 on the DGX
H100 by the max_fused_gate_size option. We focus on
the 33-qubit Complex 64 problems and measure strong scaling
using up to 8 GPUs, using the timer in the qsim backends.

Tab. II summarizes the elapsed time in each circuit. Com-
pared to the 1-GPU cases, the 8-GPU cases on the DGX H100
attained 4.6-, 7.0-, and 6.5-times speedups in QFT, QAOA, and

Quantum Volume circuits, respectively. Additionally, we com-
puted the same QFT simulation on CPUs with the qsim_cpu
backend. The elapsed time was 78.6 s; therefore, our backend
with 8 GPUs achieved a 297-fold speedup over the CPU
backend.

TABLE II
qsim-mgpu BACKEND PERFORMANCE ON DGX A100 AND DGX H100

DGX A100 DGX H100

Circuit # of # of # of # of
GPUs gates fused Time (s) fused Time (s)

gates gates

QFT

1 577 18 2.30 18 1.21
2 577 30 1.59 27 0.911
4 577 32 0.895 29 0.523
8 577 33 0.474 27 0.265

QAOA

1 1650 131 10.7 90 4.85
2 1650 132 5.74 91 2.71
4 1650 131 2.90 88 1.34
8 1650 132 1.48 89 0.692
1 480 154 12.6 114 6.92

Quantum 2 480 158 6.96 122 3.91
Volume 4 480 158 3.67 120 2.04

8 480 160 1.93 120 1.07

2) Qiskit/Qiskit Aer Multi-node Simulator: Starting with
cuQuantum Appliance v22.11, cusvaer is provided for multi-
node distributed SV simulations. Qiskit Aer [26] provides a
full-fledged multi-node simulator, enabled at compile time,
to Qiskit users, and cusvaer is an extension to Qiskit Aer
that enables a new multi-node simulator, optimized to extract
the best performance from HPC clusters built with NVIDIA
GPUs.

The performance limitation of distributed SV simulations
comes from data transfer that happens among distributed slices
of the state vector due to necessary qubit reordering. Using
the DGX A100 as a representative GPU server, NVLink and
NVSwitch enable high-speed communication between eight
GPUs in one node. NVLink provides 600 GB/s of bidirectional
bandwidth for GPU-to-GPU data transfers. NVSwitch con-
nects eight GPUs in a single node with a bisectional bandwidth
of 2.4 TB/s. In clusters based on the DGX SuperPOD [27]
reference architecture, eight Mellanox ConnectX-6 cards in a
DGX A100 are utilized for inter-node communication, which
provides 200 GB/s of unidirectional bandwidth to/from one
DGX A100 node. The cusvaer backend is designed and
optimized to achieve nearly-optimal performance, accelerating
distributed SV simulations.

Fig. 5 shows the performance results of the multi-node
SV simulator for Quantum Volume (depth=30) and quantum
phase estimation [28]. The performance has been measured
on NVIDIA’s Selene supercomputer, which is an NVIDIA-
internal DGX A100 cluster based on the DGX SuperPOD
architecture. The number of qubits is varied from 32 qubits (1
GPU, 1 node) to 40 qubits (256 GPUs, 32 nodes) for Complex
128 value type. From 32 to 35 qubits, the number of GPUs
doubled in a single node, where NVLink and NVSwitch are
utilized for the data transfer for qubit reordering. From 35
qubits, the number of nodes is doubled for each addition



of one qubit. The slope of the simulation time from 35 to
40 qubits is steeper than that from 32 to 35 qubits, which
reflects the difference in data transfer bandwidths between
NVLink/NVSwitch and IB network. These results suggest that
it is necessary to implement algorithms to reduce inter-node
and inter-device communications such as qubit reordering for
better scalability. The simulation times of 32 qubit circuits
with two sockets of AMD EPYC 7742 64-core CPU were
178 seconds for quantum volume (depth=30) and 102 seconds
for QFT, while the simulation times for 40 qubit circuits
of our multi-node simulator are less than 40 seconds. The
performance shown in Fig. 5 is one of the best among multi-
node SV simulators. The performance comparison with other
SV simulators is discussed in the NVIDIA Developer Blog [8].
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Fig. 5. The simulation time of the extended Qiskit Aer multi-node simulator
on the Selene supercomputer.

III. THE cuTensorNet LIBRARY

Tensor network theory provides powerful and versatile
numerical machinery that has been successfully employed
across multiple quantum domains, including condensed mat-
ter physics [29, 30], quantum chemistry [31], and quantum
information science (QIS) [32–34], as well as applications
in other domains such as probabilistic graphical models [35]
and machine learning [36, 37]. In all cases, TNs enable the
exploration and exploitation of low-rank structure in inher-
ently multi-dimensional problems such as quantum many-body
simulations. TN methods have found numerous applications
in quantum circuit simulations. The most straightforward
approach is based on the direct conversion of a quantum
circuit to the corresponding TN, followed by its contraction
[32]. While quite powerful for low-depth high-qubit-count
quantum circuits [33, 38–40], this approach will suffer from
exponential scaling once the circuit depth grows sufficiently
large. More sophisticated TN methods tend to introduce con-
trollable approximations with tolerable errors by enforcing
an approximate representation of the quantum circuit wave-
function or density matrix. For example, methods based on the
MPS [34, 41–43] or PEPS [44] form of compression. These
approximate techniques are extremely powerful for simulating

quantum circuits with a moderate degree of quantum entan-
glement [45].

Given that the classical simulation of quantum phenomena
is often highly amenable to GPU acceleration, there was a
clear need for a library of performant generic building blocks
which would make feasible an efficient implementation of
the TN methods inside the corresponding domain-specific li-
braries and simulators. The cuTensorNet library consists of two
main modules. The network contraction module that performs
contraction of a TN and the approximate tensor module that
performs exact or approximate tensor(s) decomposition. The
cuTensorNet library from the cuQuantum SDK offers both C
and Python APIs (see Sec. IV). The APIs are flexible, exposing
most of the features implemented in the library allowing users
to control, explore, and investigate the minor details of the
algorithmic techniques.

A. Tensor Network Contraction Module

TN contractions are computed as a sequence of pairwise
tensor contractions (called a path). Defining which pair of
tensors go together and the order of the pairwise contractions
are the most crucial and complex phase in TN contraction.
The ratio between the cost (computational and memory) of
an optimal or close-to-optimal and a naive path (random,
left to right, right to left) can differ by many orders of
magnitude emphasizing the importance of the path. Once
the path is defined, there is another phase of optimization
related to computing the pairwise contractions using the most
efficient GPU kernels. As a result, the TN contraction module
of cuTensorNet can be described as a combination of two
components, a pathfinder component that runs on the CPU
and an execution component that computes contractions on
the GPU.

1) Path Finding: The role of a pathfinder is to find a
contraction path that minimizes the cost of contracting the TN.
Finding an optimal contraction path is an NP-hard problem;
its cost grows exponentially with the size of the network,
making such a technique an impractical or unrealistic solution
even for small networks of size dozens of tensors. Most TN
simulations, in particular, quantum circuit simulations, consist
of networks of hundreds of tensors. Different techniques such
as optimal, greedy, or branching [46] have been developed,
but they either provide a far from optimal path or require
exponential time to find a path. The approach taken in
cuTensorNet is similar to the one presented in [33], where
it was shown to provide superior quality paths (close-to-
optimal). We developed many algorithmic advancements and
optimization techniques to quickly provide such high-quality
paths. It starts by simplifying the network. Simplification
is a technique that preprocesses the large TN to find all
sets of straightforward contractions. It removes them from
the network and replaces each set with its final tensor. The
result is a smaller tensor network that is easier to process.
cuTensorNet then uses a hyper-optimization technique [33]
that tunes the pathfinder procedure. The core of the pathfinder
engine is based on recursive graph partitioning combined



with a “bubbling” mechanism. The bubbling method can be
described as an iterative process that selects hot spots in the
contraction tree (e.g., subtrees that are the most expensive
in terms of flops or memory) and adjusts their cost using
multiple pathfinder algorithms suitable for small networks. The
hyper-optimizer loop creates a distinct set of configurations of
parameters for the pathfinder engine and picks the best path
found. This hierarchical and recursive design embedded into
the hyper-optimizer loop provides superior quality contraction
paths (see Fig. 7). Higher quality contraction paths allow larger
simulations to be tackled, opening new frontiers in research
and discovery.

2) Slicing: Slicing is a technique implemented in cuTen-
sorNet to either make a network contraction fit into avail-
able device memory or to create parallelism for distributed
execution. Large TN contractions need more memory than
that available in a single device. Techniques like out-of-device
memory might be implemented in such situations but at the
cost of a large performance drop due to the significant data
traffic between the device and the CPU memory required in
this case. Realistic simulations, or the type of simulations
needed to develop new horizons in quantum computing, may
require more memory than is available on GPU devices or
on CPU making it impossible to perform without a different
approach. By slicing (also known as variable projection or
bond cutting), we split the contraction of the entire TN into
several independent smaller contractions, where each contrac-
tion considers only one particular position of a certain mode
(or combination of modes). The result for full TN contraction
can be obtained by summing over the output of each sliced
contraction. In Fig. 6, we illustrate an example. If we slice
over the mode i, it is no longer implicitly summed over as
part of the tensor contraction, but instead explicitly summed
in the last step. As a result, slicing can effectively reduce the
memory footprint for contracting large TNs, particularly those
arising from quantum circuits.

Since each sliced contraction is independent of the others,
the computation can be efficiently parallelized in various
distributed settings. As a result, the slicing techniques can
also be used to generate parallelism and to speed up TN
contractions even if memory is not an issue.

Despite all the benefits above, the downside of slicing is
that it often increases the total FLOP count of the entire
contraction. The overhead of slicing heavily depends on the
contraction path and the modes that are sliced. In general,
there is no straightforward way to determine the best set of
modes to slice. To increase the probability of finding the best
contraction path and the best slicing plan, we integrated this
phase inside the pathfinder module that is itself encapsulated
inside the hyper-optimizer.

3) Planning and Workspace: cuTensorNet utilizes the
NVIDIA cuTENSOR library [47] as a backend to perform all
the pairwise tensor contractions in the TN, over the existing
GPU devices. Once a contraction path has been generated (or
received from the user) for the TN, a contraction plan needs to
be constructed, This will hold the pairwise contraction plans

Fig. 6. Overview of the slicing technique.

for cuTENSOR. Such a contraction plan could be used to
contract the network multiple times, possibly with different
data each time. Given the multiple ways a network can be
contracted, in terms of the order of contracting the tensor
pairs within the same contraction path, the contraction plan
is by default configured to use the contraction order that
utilizes the minimum workspace possible during network
contraction. However, since the provided workspace memory
has a direct impact on the choice and performance of the
underlying cuTENSOR kernels, cuTensorNet provides APIs to
query the minimum workspace memory size required, the rec-
ommended size for good performance, and the maximum size
the contraction plan can utilize. The user can then supply any
workspace size larger than the minimum required. To get the
best performance when contracting the network, cuTensorNet
offers an API to automatically tune the contraction plan, by
executing multiple cuTENSOR kernels on each of the pairwise
contractions and selecting the most performant one that can
operate within the scratch workspace-size constraint, as well
as optimizing the intermediate tensor shapes to best utilize
device throughput and minimize data transfers.

4) Contraction: cuTensorNet facilitates the contraction of
the whole TN using the contraction plan, while leveraging the
high performance of cuTENSOR on GPU devices. The con-
traction plan serves as the vehicle for repeatedly contracting
the TN, each time with possibly different data while using the
same contraction plan. The contraction API also facilitates the
contraction of the network per slice. It is possible to select
the whole set of slices to contract at once, or select a set
of slices, picked by indices or by ranges, to be contracted
at a contraction call, with the ability to accumulate results
on the target buffer or overwrite it. This flexibility allows
for integration of the contraction process with user workflows
and easy distribution of the contraction computation to many
hardware resources, as will be discussed in a subsequent
section.

5) Performance: There are two relevant metrics when con-
sidering the performance of a pathfinder: the quality of the
path found, and the time taken to find that path. The former
is plotted in Fig. 7, measured by the cost of the obtained
contraction path in FLOPS. The circuits used for benchmark-
ing are the random quantum circuits at depths 12, 14, and 20
described in [33]. cuTensorNet performs significantly better
than the optimized opt einsum library [46] in finding a close-
to-optimal path and slightly better than Cotengra [33] for these
circuits.

cuTensorNet also finds a high-quality path quickly. The
time in seconds required by cuTensorNet compared to Coten-



gra [33] to run 1000 hyper-optimizer samples is depicted
in Tab. III, for Sycamore-53 quantum circuits with different
depths. For the most complex problem, with over 3,000 tensors
in the network, cuTensorNet takes an average of about 8
seconds per path compared to 730 seconds for Cotengra.
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Fig. 7. cuTensorNet pathfinder quality of the resulting contraction path
compared to similar packages, measured in FLOPs.

TABLE III
PATHFINDING TIME (SEC), FOR THE SYCAMORE RQC PROBLEMS ON

INTEL(R) CORE(TM) I9-7900X CPU.

Time in seconds for n53 m10 n53 m20 n53 m20
1000 hyper-opt samples 168 tensors 382 tensors 3316 tensors
Cotengra [33] 1.5 103 8.8 104 7.3 105

cuTensorNet 2 102 1.4 103 8 103

For realistic quantum simulation, the time to find a path
is considered to be negligible when compared to the cost of
performing the contraction of the network. cuTensorNet per-
forms the contraction on GPUs using the cuTENSOR library
that provides tuned and optimized kernels for each GPU archi-
tecture. cuTensorNet also implements internal optimizations to
further reduce the memory footprint required to perform all the
pairwise contractions, as well as a mechanism to reorder the
intermediate tensors’ modes to realize the best performance of
the GPU kernels.

Fig. 8 depicts the speedup of the network contraction using
cuTensorNet compared to PyTorch [48] and CuPy [49] running
either on a single NVIDIA H100 80GB SXM GPU or a
single NVIDIA A100 80GB SXM GPU. Fig. 8 also illustrates
the speedup of cuTensorNet compared to NumPy [50] run-
ning on AMD EPYC 7742 8-core CPUs with multithreaded
OpenBLAS, for several key quantum benchmarks ranging
from search-based circuit synthesis to quantum approximate
optimization algorithm to Sycamore random quantum circuits.
Depending on the circuit, cuTensorNet offers as much as a
19x speedup for the execution of the network contraction
when compared to PyTorch and CuPy. cuTensorNet shows
impressive speedup when compared to NumPy running multi-
threaded on the CPU.

B. Distributed Multi-GPU Multi-Node Execution

In order to enable and further accelerate larger quantum
circuit simulations, cuTensorNet introduced automatic multi-

Fig. 8. Contraction speedup of cuTensorNet vs PyTorch [48] and CuPy [49]
running on a single NVIDIA H100 80GB SXM GPU or NVIDIA A100 80GB
SXM GPU, as well as vs NumPy [50] running on an AMD EPYC 7742 8-
core CPU for several key quantum benchmarks.

GPU multi-node (distributed) parallelization in the 22.11
release. By activating distributed parallelization, quantum
applications which have already adopted cuTensorNet for
single-GPU acceleration can immediately transition to
large-scale GPU-accelerated cloud platforms and HPC
systems by leveraging one of the Message Passing
Interface (MPI) libraries, thus scaling up the size of
possible quantum simulations. The activation of distributed
parallelization is performed via a single API call to the
cutensornetDistributedResetConfiguration
function which takes a user-provided MPI communicator.
Once activated, both the pathfinder and the execution
procedures will be parallelized across all MPI processes
associated with the given MPI communicator. The



pathfinder will distribute hyper-sampling of contraction
path candidates and the execution procedure will distribute
the generated tensor network slices. Since both procedures
are embarrassingly parallel, one can expect strong scaling to a
very large number of GPUs. Fig. 9 shows a strong scaling plot
for a simulation of a single bit string probability amplitude
of a random quantum circuit that was part of the validation
experiments on Google’s Sycamore quantum chip in 2019
[51]. The simulation was run on the Selene supercomputer
at NVIDIA, with up to 128 Ampere A100-80GB GPUs. The
simulation time scales almost ideally with the number of
GPUs.

Fig. 9. Strong scaling of the Sycamore-53 random quantum circuit (RQC)
simulation (circuit depth = 14) in which a single bit string probability
amplitude is computed.

Since different MPI libraries do not necessarily conform
to the same ABI specification, special care had to be taken
in interfacing cuTensorNet with MPI. In particular, the same
cuTensorNet library will work with any standard-conforming
MPI implementation that supports CUDA. This is achieved by
dynamically loading a thin shared library (at run-time) built
from the provided cuTensorNet-MPI interface C source code
and linked to user’s MPI library.

C. Intermediate Tensor Caching

1) Intermediate Tensor Reuse: In quantum circuit simula-
tions, some tasks may require multiple evaluations of TNs
of the same structure where only a small subset of input
tensors undergoes a value update in repeated executions. In
particular, validation of quantum processors often requires
computing probability amplitudes of individual bit-strings
consistently[51]. In this case, the tensor networks for all
requested bit-strings have the same structure, only differing
in the values of the output bits. Another relevant example
is the quantum circuit sampling procedure which requires
repetitive computation of projected reduced density matrices
(RDMs). In this case, one needs to recompute the same
TN (projected RDM) many times where only a small subset
of input tensors change their values (projected output bits).
The simulation of these and similar cases can be accelerated
by storing and reusing the intermediate tensors which stay
constant across all repeated TN evaluations. To mark input
tensors as constant or mutable, cuTensorNet provides the
corresponding API. To facilitate reuse of intermediate tensors,

cuTensorNet accepts two kinds of workspace memory, scratch
(used to hold temporary data during computations) and cache
(used to store the constant intermediate tensors upon the first
network contraction call to enable their reuse in subsequent
TN contraction calls).

2) Performance Impact: Intermediate tensor reuse through
caching can bring drastic speed-ups to the contraction of TNs
where only a small subset of input tensors (mutable tensors)
change their value across many network contractions. Tab. IV
shows the huge performance impact of intermediate tensor
reuse, on a synthetic network, where the number of input
tensors is indicated as network size, while varying the number
of constant input tensors, and running 1000 repetitions of TN
contraction.

TABLE IV
INTERMEDIATE TENSOR REUSE PERFORMANCE IMPACT ON NVIDIA
H100 80GB SXM GPU AND NVIDIA A100 80GB SXM GPU WITH

1000 REPETITIONS OF TN CONTRACTION

Network
Size

# slices Constant
tensors

Speedup
H100

Speedup
A100

Utilized /
Recommended
Cache (GB)

242 1
80% 4.19 X 4.12 X 1.21 / 1.21
85% 4.25 X 4.22 X 1.10 / 1.10
90% 4.32 X 4.24 X 1.11 / 1.11

327 1024
80% 1.92 X 1.71 X 55.34 / 1099.51
85% 815 X 804 X 4.29 / 4.29
90% 838 X 827 X 4.29 / 4.29

D. Approximate Tensor Network Features

1) Overview: At the core of prevalent approximate TN
methods are numerical techniques, such as QR and Sin-
gular Value Decomposition (SVD), that can be employed
to efficiently represent the quantum state. For instance, QR
decomposition is heavily used in MPS canonicalization for
orthogonalization, while SVD is employed to truncate the bond
dimension, a parameter that determines the accuracy of the
MPS [30, 52]. While these two decomposition techniques are
well-defined at the matrix level, extending them to the tensor
level can be described as a transpose-decompose-transpose-
transpose process, similar to the way tensor contraction is
generalized from matrix multiplication. In practice, tensor
decomposition is frequently used in conjunction with contrac-
tions to compress the network graph in a controlled manner.

2) Functionalities: cuTensorNet provides APIs that target
different levels of single and compound tensor operations in a
hierarchical manner, aiming to support the needs of the numer-
ous approximate TN algorithms. At the tensor level, cuTensor-
Net provides C APIs for both QR and SVD functionalities on
a single GPU device, leveraging fast cuSOLVER kernels [53]
for transposition and decomposition. For the tensor SVD API,
truncation of singular values and the corresponding U and
V tensors, as well as post-processing of output tensors, are
supported in addition to the standard exact decomposition.

At the TN level, cuTensorNet provides a specialized C API
named cutensornetGateSplit that targets a compound



operation frequently used in constructing a TN representation
of a quantum circuit, such as MPS. In this context, the gate
split process refers to a computational task wherein the gate
operand is factorized onto two connecting tensors that it acts
upon. Fig. 10 illustrates two algorithms supported in cuTen-
sorNet for performing the gate split task. The direct algorithm
involves a full contraction followed by decomposition, while
the reduced algorithm uses QR decomposition before the full
contraction to potentially reduce the intermediate size for the
SVD computation.

NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.
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Fig. 10. Two algorithms for the gate split operation. The upper panel shows
the direct algorithm, while the lower panel presents the reduced algorithm.

3) Performance: In this subsection we present performance
benchmarks for the C APIs, including tensor QR, SVD, and
GateSplit, on NVIDIA A100 and H100 80GB GPUs. For the
QR and SVD benchmarks, we measure the the execution time
of decomposing a rank-3 MPS tensor with a shape of (D, 2, D)
as a function of D, where D denotes the bond dimension
of the MPS. For the gate split benchmarks, the execution
time of GateSplit was measured for applying a two qubit-
gate to an MPS with a bond dimension D. The performance
of cuTensorNet was benchmarked against an equivalent CPU-
based (NumPy) implementation using all 64 cores of an AMD
EPYC 7742 CPU and the results are summarized in Fig. 11.
With tensor QR, cuTensorNet exhibits a speedup over the CPU
implementation for bond dimensions greater than 32, with a
peak of 102x for A100 and 230x for H100 at D = 4096.
The performance curves of tensor SVD and GateSplit are
similar to that of tensor QR, but speedup is observed at a
larger bond dimension. The peak speedup of tensor SVD
at D = 4096 reaches 6.4x for A100 and 8.8x for H100.
Meanwhile, the speedup of GateSplit is observed to be 8.6x
and 13.8x for A100 and H100, respectively. The similarity
between the peak speedup of tensor SVD and GateSplit is
consistent with the fact that the cost of SVD is expected to
dominate the contraction cost at large scales.

IV. CUQUANTUM PYTHON

One of the goals of the NVIDIA cuQuantum SDK is to
allow users to easily access its full functionalities from within
Python, enabling interoperability with other Python frame-
works and projects. So, in addition to the C APIs provided
in the SDK, we also offer cuQuantum Python as a natural
starting point for those who aim to accelerate their Python
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Fig. 11. Performance benchmark of tensor QR, SVD and GateSplit. The
execution time for the NumPy implementation is indicated by the dashed
black line, while that of the cuTensorNet APIs is shown by the solid green
lines.

workloads using NVIDIA GPUs. To do so, we adopt a two-
layer approach:

1) Provide 1:1 Python bindings for the C APIs of both
cuStateVec and cuTensorNet libraries from the NVIDIA
cuQuantum SDK.

2) Provide high-level, pythonic APIs for easier integration
with Python applications in QC or other domains.

Generally, we follow PEP 8 as our style guideline, for both 1:1
bindings and pure Python functions. This allows us to offer
APIs that feel natural to Python users. We offer both wheels
and conda packages for users to quickly spin up a working
Python environment without compiling anything from source.
Below we briefly introduce each layer.

A. Low-Level Python bindings

The low-level bindings are 1:1 mappings of the
C public APIs to Python. They are exposed under
the library modules cuquantum.custatevec and
cuquantum.cutensornet. They currently are written
in Cython [54] to support different kinds of user-provided
arguments so as to offer flexibility, allowing users to explore
the trade-offs between performance and convenience brought
by Python’s dynamic nature. If a C API requires an array of
plain-old-data (POD) structs, for example, we map them to
Python using NumPy’s structured dtype [55] so that users can
allocate such structs using the familiar NumPy APIs, e.g., arr
= np.zeros((10,), dtype=my_struct_dtype),
and pass the array to the corresponding Python binding. The
low-level bindings are then used by high-level APIs when
possible, as discussed below.

B. High-Level Pythonic APIs

The high-level pythonic APIs provide encapsulated
functionalities that are natural and handy for Python users.
With these APIs, just a few lines of Python code can provide
functionality that would otherwise require hundreds of lines of
C code. Our pythonic APIs keep all the low-level boilerplate
code, including memory and resource management, away from
the concerns of users. Taking cuTensorNet as example, we
offer cuquantum.einsum() that performs TN contraction
following the equivalent numpy.einsum() API signature
and semantics [56] and, thus, can be used as a drop-in



replacement, cuquantum.contract() that extends
einsum() to allow customization and controllability over
the tensor network path finding and contraction execution,
cuquantum.cutensornet.tensor.decompose()
that supports single-tensor decomposition with QR and SVD,
and cuquantum.cutensornet.experimental.-
contract_decompose() that provides access to
additional functionalities beyond gate split operations,
enabling it to handle contraction and decomposition
operations for arbitrary TNs.

However, if users need finer control over resource man-
agement or prefer less automation, they can also use
the underlying Python classes and methods. For exam-
ple, the cuquantum.Network class offers the afore-
mentioned encapsulation of a TN. Its constructor parses
an einsum expression with tensor operands to create
a TN topology and prepare metadata. It also has a
contract_path method for finding an optimal path, an
autotune method for auto-selecting the best contraction
kernel, and a contract method for actual contraction ex-
ecution. All of the configurability offered at the C API
level is exposed through NetworkOptions, Optimizer-
Options, PathFinderOptions, ReconfigOptions,
and SlicerOptions.

Moreover, as mentioned above, we can comfortably interact
with other Python libraries and frameworks at this level.
For example, the cuTensorNet distributed contraction support
can be easily turned on, by passing the MPI communicator
from mpi4py [57] (a mpi4py.MPI.Comm object) to our
helper function and then to cuquantum.cutensornet.-
distributed_reset_configuration(), allowing us
to support users of differnt underlying MPI vendors
thanks to mpi4py’s abstraction. Another example involves
the cuquantum.BaseCUDAMemoryManager protocol for
permitting cuQuantum Python to share and use the same
memory allocation solution (e.g. CuPy or PyTorch mempool)
from other components of the user’s workload, so as to avoid
encountering the out-of-memory issues commonly seen when
multiple Python GPU libraries are involved. Finally, besides
using CuPy as the default tensor framework, cuQuantum
Python also supports NumPy ndarrays and PyTorch tensors
as input tensor operands.

The layered hierachy also allows us to build QC ca-
pability upon the lower-level, “QC-agnostic” functionalities.
For example, cuquantum.CircuitToEinsum is a Python
class specifically designed to parse a user-provided, fully
parameterized quantum circuit (from either the Cirq or Qiskit
framework) and turn it into a TN contraction task, by gen-
erating einsum-compatible contraction inputs (with the cho-
sen tensor framework). The class supports various computa-
tion targets, such as SV coefficients, single or batched bit-
string amplitudes, RDMs, and expectation values for Pauli
strings. By specifying the computation target, users can obtain
the corresponding contraction inputs that can be passed to
einsum(), contract(), or Network(), using either
default settings for expedited computation or a customized

path optimization solution. Users can optionally enable the
so-called reverse lightcone simplification technique [33] when
computing RDMs and expectation values, so as to reduce the
effective TN size and further accelerate the computation.

V. CONCLUSIONS

As we have shown, NVIDIA cuQuantum SDK provides
flexible and highly optimized software building blocks for
quantum circuit simulator developers and other domain sci-
entists interested in the efficient GPU implementation of
quantum-inspired algorithms. In particular, the quantum circuit
simulation primitives provided by the cuStateVec library en-
sure the optimal memory footprint for state vector simulators.
The gate application procedure achieves high memory band-
width. State vector simulators which adopted the cuStateVec
library have demonstrated large GPU speed-ups with respect to
CPU-only execution. The distributed execution primitives have
been shown to scale well on multi-node multi-GPU platforms,
enabling even larger state vector simulations.

The cuTensorNet library from cuQuantum SDK has been
shown to generate high-quality tensor network contraction
paths much faster than the current state-of-the-art software
packages targeting tensor network simulator developers. The
use of the cuTENSOR library as the computational backend,
combined with additional optimizations of tensor network
contraction planning, deliver significant GPU speed-ups in
the tensor contraction phase. The intermediate caching/reuse
offers further speed-ups in the workloads based on repetitive
tensor network contractions. The automated distributed multi-
node multi-GPU parallelization provided by the cuTensorNet
library enables straightforward transition of the tensor network
simulators which adopted cuTensorNet to cloud platforms and
HPC systems, often showing close-to-ideal scalability. A set
of flexible and performant tensor contraction-decomposition
primitives facilitates efficient implementation of a wide variety
of approximate tensor network contraction schemes.

Finally, to allow easy access to all functionalities of
cuQuantum SDK from within Python frameworks and projects,
we developed cuQuantum Python APIs as a natural extension
for those who aim to directly accelerate their Python work-
loads using NVIDIA GPUs.

We envisage to continue our progress towards accelerating
and scaling up a more broad circle of quantum applications
where we intend to extend our coverage by developing more
functionalities and features essential for the ongoing and future
quantum research efforts.
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