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Abstract—In the noisy intermediate scale quantum (NISQ)
era, the Variational Quantum Algorithm (VQA) has emerged as
one of the most promising approaches to harness the power of
quantum computers. In VQA, a classical optimizer iteratively
updates the parameters of a variational quantum circuit to
minimize a cost objective obtained by executing the quantum
circuit on real quantum hardware. However, the deployment
of VQA applications on NISQ devices encounters substantial
noise, which degrades training stability. Moreover, the drift of
noise is particularly intractable due to its dynamic nature in
duration and magnitude. Noise drift leads to significant deviations
in VQA iteration’s objective function estimation and shapes a
dynamic noisy landscape, which poses a considerable challenge
for stable VQA parameter training, thereby hampering the
accurate convergence of VQA optimizations.

This paper proposes DISQ to craft a stable landscape for
VQA training and tackle the noise drift challenge. DISQ adopts
a “drift detector” with a reference circuit to identify and skip iter-
ations that are severely affected by noise drift errors. Specifically,
the circuits from the previous training iteration are re-executed
as a reference circuit in the current iteration to estimate noise
drift impacts. The iteration is deemed compromised by noise
drift errors and thus skipped if noise drift flips the direction of
the ideal optimization gradient. To enhance noise drift detection
reliability, we further propose to leverage multiple reference
circuits from previous iterations to provide a well-founded judge
of current noise drift. Nevertheless, multiple reference circuits
also introduce considerable execution overhead. To mitigate extra
overhead, we propose Pauli-term subsetting (prime and minor
subsets) to execute only observable circuits with large coefficient
magnitudes (prime subset) during drift detection. Only this minor
subset is executed when the current iteration is drift-free.

Evaluations across various applications and QPUs demonstrate
that DISQ can mitigate a significant portion of the noise drift
impact on VQAs and achieve 1.51-2.24× fidelity improvement
over the traditional baseline. DISQ’s benefit is 1.1-1.9× over the
best alternative approach while boosting average noise detection
speed by 2.07×.

Index Terms—Variational Quantum Algorithm, Variational
Quantum Eigensolver, Quantum Computing, Noise Mitigation

I. INTRODUCTION

Quantum computing is a revolutionary computational model
that is poised to leverage substantial quantum mechanical phe-
nomena to provide computing advantages in resolving some
classically intractable problems in domains, such as chemistry
[1], [2], biology [3], fundamental software algorithms [4], [5],
and machine learning [6], [7].

One of the most promising noise intermediate scale quantum
(NISQ) [8] algorithms that can provide a quantum advantage
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Fig. 1. Computing resource-efficient iteration skipping approach to filter out
the noise drift impact. Previous iterations act as optimal reference circuits to
detect the noise drift on the current VQA iteration. Pauli-term subsetting is
utilized to proactively minimize computation during noise drift detection.

is the variational quantum algorithm (VQA) [9], [10], which
has been widely applied to critical applications in chemistry
[1], [10], approximation [11], and physics [12], among others.
VQA is a long-running iterative algorithm that deploys a
classical optimizer to train a parameterized quantum circuit
on a quantum machine. The quantum circuit parameters are
tuned in each iteration to approach the application’s targets,
which are usually minimization problems, such as estimating
the ground state energy of molecules.

In spite of quantum supremacy having been theorized in
the aforementioned domains [3]–[6], [10], quantum processing
units (QPU) in the contemporary NISQ era are still vulnerable
to various types of noise, such as decoherence errors, gate
errors, state preparation and measurement (SPAM) errors, and
crosstalk. These noise errors stem from a multitude of sources,
such as device defects [13], thermal fluctuations [14], [15],
magnetic flux [14], [16]–[18], qubit coupling destruction [19],
insulation problems [13], and other external stimuli [20]–
[22]. Due to the dynamic nature of quantum systems and
the current limitations of quantum devices fabrication [23],
these noise sources vary over time in intensity, thereby causing
unpredictable fluctuations that deteriorate the quantum system.

With awareness of qubit restrictions in deploying full-scale
quantum error correction (QEC) [24], [25] and the pernicious-
ness of noise, multiple works have investigated mitigation
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techniques for general quantum circuits [26]–[33]. To harvest
quantum computing power while maintaining robustness in the
face of different forms of noise errors. [34]–[36] have proposed
noise-aware training frameworks to boost VQA training speed
and accuracy of results. [37] have proposed noise-aware search
for robust quantum ansatz. Although these works provide the
potential to improve result fidelity or enhance training robust-
ness, they primarily focus on static noise. Noise is assumed
to be static or to remain stable for sufficient periods, such
that these techniques can adequately capture and model the
characteristics of static noise to provide mitigation methods.
Unfortunately, focusing solely on static noise is insufficient
for deploying VQA and harvesting its power on QPUs.

VQA iteratively tunes circuit parameters with the support of
gradients [38]. The objective of the optimizer is to filter out
the optimal gradient among disparate gradients to generate
a corresponding set of parameters in each iteration, thereby
achieving convergence towards the desired objective function.
This convergence is expected to occur when the noise land-
scape of the quantum device is stable and consistent during
the gradient estimation process, which allows the optimizer to
accurately discern the most optimal circuit parameters. One
of the fundamental challenges hampering the deployment of
VQAs for practical utilization on QPUs is noise drift error
originating from dynamic sources. The term “noise drift”
refers to deviations in a quantum circuit’s output distribu-
tion caused by shifts in the device characteristics of one or
more qubits in the quantum circuit [13]–[16]. Noise drift,
characterized by the unpredictable and time-varying nature
of noise in quantum devices, poses a significant challenge
to quantum algorithms, particularly for long-running iterative
applications, such as VQA. Since noise drift alters the VQA
tuning landscape over iterations, it leads to inconsistent gra-
dient estimation each time and thus disrupts the convergence
of VQA. This dynamic nature results in noise drift being hard
to model and suppress with static noise mitigation techniques.
The state-of-the-art method targeting dynamic noise, QISMET
[39], predominantly addresses spike-like transient noise but
performs inadequately in the presence of complex noise, such
as noise drift, potentially misdirecting the VQA training.

In this paper, we propose DISQ, Dynamic Iteration
Skipping for Variational Quantum Algorithms, a novel com-
puting resource-efficient iteration skipping approach that crafts
a reliable landscape for VQA applications by filtering out noise
drift errors as in Fig.1. Drawing inspiration from QISMET
in handling dynamic noise, (i) DISQ employs a previous
iteration as an optimal reference to detect the noise drift for
the current iteration by estimating the discrepancy between the
reference output from the prior iteration and its result in the
current iteration. Subsequently, DISQ adopts traditional per-
iteration gradient calculation and combines it with noise drift
error detection to estimate machine-obtained and drift-free
gradients. A VQA iteration is accepted only if the direction of
the machine-observed gradient loosely matches the direction
of the drift-free gradient; Advancing beyond QISMET, (ii)
DISQ augments multiple previous iterations as references

to further enhance noise drift detection reliability in facing
intractable noise drift. Although multi-reference circuits aid in
shaping the VQA training landscape, they also introduce extra
execution costs; (iii) To minimize the extra execution cost,
DISQ groups the Pauli terms of the target Hamiltonian by
Pauli-term subsetting (prime and minor subsets) and partitions
the execution. Prime subsets (Pauli terms with dominating
coefficients) of references and prime subsets corresponding to
the current iteration are executed during noise drift detection.
The minor subset for the current iteration is executed only if
noise drift is not detected. Subsetting conserves computation
in noise drift detection, and execution partitioning eliminates
unnecessary computation in skipping iterations. Evaluation
demonstrates that DISQ achieves 1.1-1.9× fidelity improve-
ments over the best alternative approach while boosting aver-
age noise detection speed by 2.07×. This paper thus makes
the following contributions:

• DISQ Framework: We propose DISQ, a computing
resource-efficient method to actively discover noise drift
instances that severely impact VQA accurate conver-
gence. DISQ controls VQA iterations to actively skip
noise drift errors and maintain VQA optimization under
reliable scenarios.

• Noise Drift Detection with Multi-References: We lever-
age multiple previous iterations as references to faithfully
detect noise drift errors in VQA iterations, enabling
precise estimation of noise drift impacts with DISQ.

• Concept and Design of Pauli-term Subsetting: We in-
troduce a novel perspective on quantum circuits for
noise detection: instead of employing all the observable
circuits in a brute-force manner, Pauli-term subsetting
groups the dominant observable circuits (prime subset)
as effective substitutes for noise detection. Subsetting
proactively enables execution acceleration in DISQ even
with numerous references.

• Robust Landscape with Reasonable Overhead:
Through the aforementioned steps, DISQ effectively
filters a substantial portion of noise drift’s impact
on VQAs, attaining 1.51-2.24× fidelity increase over
traditional baseline. DISQ surpasses the best alternative
approach with a 1.1-1.9× benefit while enhancing
average noise detection speed by 2.07×.

II. BACKGROUND

A. Noise in NISQ QPUs

In the era of NISQ, two primary technologies in quan-
tum architectures: superconducting transmon qubits [40] and
trapped-ions [17], [41] are being pursued for universal quan-
tum computing. Despite the fact that no definitive verdict
has been reached in their performance comparison [42], both
require precise control due to their sensitivity to various
types of noise. The scalability of QPUs built using these two
technologies is limited by noise errors, such as (i) Decoherence
error: natural decay caused by the energy exchange between
a qubit and its environment, which makes the qubit lose
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Fig. 2. Noise drift errors on circuits. Circuit data are collected by 100
continuous runs of a circuit batch from an experiment on IBMQ Belem. Each
data point is the average expectation value of the circuit batch (25 identical
circuits). The mean value is -0.62, but the range value is concerning 0.22.

its quantum properties (state) over time; (ii) State prepara-
tion and measurement (SPAM) errors: caused by imprecise
state initialization and measurement [43]; (iii) Gate error:
imperfect gate operations, such as depolarization, which are
approximately 0.1% and 4% for 1-qubit gates and 2-qubit
gates, respectively, for IBMQ [44]; (iv) Device-specific error:
QPU-specific noise profiles that vary in spatial and temporal
noise, arising from factors like topology cross-talk [23], [45],
inhomogeneous qubits during manufacture [19], [46], [47],
imperfections in gate implementation and control, or specific
external interference [20], [21], where the latter is a significant
source of error such as magnetic fields affecting Zeeman
trapped-ion qubits [17], [18] and unstable near-resonant two-
level systems affecting transmon qubits [15].

The presence of those stochastic errors and environmental
variations renders the noise drift to be dynamic in nature
[14], [16], [19], [48]. Further, the impacts of different noise
drift errors compound with each other and accumulate over
time, thereby increasing the overall probability of obtaining
erroneous outcomes, particularly in long-running applications
such as VQAs. Gradient evaluation discrepancies can mislead
the tuning process in unfavorable directions, thereby impeding
the convergence and accuracy of VQA results. Fig.2 demon-
strates a severe case of noise drift affecting circuit fidelity,
obtained from IBMQ Belem. Each data point represents the
average expectation value obtained over a circuit batch (25
identical circuits). Although the mean of expectation values
over 100 executions of this batch is -0.62, its range is large
at 0.22. This proves that the statistical robustness offered by
executing multiple circuit shots (for capturing probabilistic
output distributions) cannot compensate for noise drift errors.
While such severe noise drift might not always occur, milder
noise drifts that continuously steer circuit results away from
the correct objective ground state are frequently encountered
and still perturb the accuracy of results.

B. Variational Quantum Algorithms

VQA, a hybrid quantum-classical algorithm, is widely used
in chemistry and approximations such as Variational Quantum
Eigensolver (VQE) [10] and Quantum Approximate Opti-
mization Algorithm (QAOA) [11]. The VQA problem can be
generalized to a Hamiltonian, Ĥ, a linear combination of Pauli
terms P̂i, and their numerical coefficients ci, to describe the

total energy of the system, as shown in Equation 1.

Ĥ =
∑
i

ciP̂i (1)

The objective function is to find the ground state energy
of the system, which corresponds to the lowest eigenvalue,
λmin, of Ĥ [10]. To approximate the expectation value for P̂i,
the parameterized quantum circuit (ansatz) with parameters−→
θ , θ ⊆ R, are iteratively executed on QPUs and tuned by

a classical optimizer. The expectation value is derived from
ansatz measurements over different observables (bases). The
objective function is represented by

minλ(
−→
θ ) = min ⟨ψ(

−→
θ )|Ĥ|ψ(

−→
θ )⟩ = min

∑
i

ci⟨ψ(
−→
θ )|P̂i|ψ(

−→
θ )⟩ (2)

|ψ(
−→
θ )⟩ is the eigenvector corresponding to λ(

−→
θ ). Ideally,

the application monotonically converges to the minimum.
However, machine noise, such as various noise drifts, can taint
the gradient computation and thus bias the VQA optimization
process. Therefore, VQA relies on noise-robust optimizers to
become noise resilience [9], [49].

III. MOTIVATION

A. Dynamic Noise Landscape Navigation

Classical gradient-based optimizers in VQA are imple-
mented in multiple ways to calculate the gradient based on the
prior gradients and then tune the parameters of the ansatz to
drive the objective function into a ground state. The underlying
assumption of the optimizer is the evaluation of the gradient
under the same noise environment.

To better understand the impact of noise drift in VQA, Fig.3
visualizes the VQA landscape for a minimization problem
under different scenarios. Each contour level represents a value
of the objective function, with a darker blue color indicating a
smaller value in the objective function estimation. The orange
dot represents the objective function value for each parameter

a) b)

c) d)

Fig. 3. VQA landscape navigation. Contour levels correspond to different
objective function values, with darker colors indicating smaller values. The
orange dot marks the objective function value for each parameter configuration
chosen by the optimizer. The tuning process is represented by an arrow trace.
a) represents the drift-free (ideal) scenario; b) and d) depict scenarios with out-
of-range noise drift; c) illustrates a scenario where noise drift is acceptable.



QPU 

Parametrized
Quantum Circuit

Basis
Change X!!

""

!!

"# I

I

X"$

""

"%

"# H

I

OCs (Minor subset)

!"

X"$

""

"%

"#

X!!

!!

!!

!! H

H
X#$

#"

#%

## H

H

DISQ Reference Circuits!!

X"$

""

"%

"# H

H

OCs (Prime subset)
X!!

""

!!

"# I

I
X!!

""

!!

"# H

I
X"$

""

"%

"# H

H

Observable Circuits (OCs)

%& = (. * + ,, + .. ./ + 01 + .. .$ + 0,

References
Scheduling

&
Execution
Partition

Drift Error
Detection

&
Decision
Evaluation

Drift-Free:
Continue to

-$

Noise Drift Exists: Skip and Reschedule

!"# (%&'()&*"+ *)

Fig. 4. Overview of DISQ: a VQA iteration execution is partitioned into two stages (S1, S2); Prime subset corresponding to the current iteration i (blue
circuit in S1) and its references (gray circuits) are executed in S1 to detect the noise drift; If noise drift is present, DISQ skips the results of the current job
and reschedules all the circuits in S1 via the next job (orange line). Otherwise, minor subset corresponding to the current iteration i (blue circuits in S2) are
executed to proceed with VQA (green line).

configuration selected by the optimizer. Ideally, the VQA opti-
mizer steadily tunes the parameters towards a minimum value
of the objective function, which is represented by moving
the orange point from the contour level in light blue to the
deeper blue contour level, as shown in Fig.3-a. However, in
reality, the presence of noise drift alters contour levels’ shape
and position, leading to discrepancies between the machine-
obtained and ideal values. Such discrepancies even vary with
each iteration of the optimization process. In comparison with
Fig.3-a (drift-free), Fig.3-b illustrates how optimizer tuning is
disturbed by severe noise drift. Optimizers are incapable of
finding the minimum value in such a landscape with substan-
tial fluctuations in objective function estimation. Therefore, it
becomes crucial to estimate noise drift errors and craft a stable
environment for the gradient calculation of the optimizer.
Specifically, optimizers only process VQA iterations under
scenarios such as Fig.3-c, where the machine-obtained contour
levels are loosely aligned with the ideal (drift-free) contour
levels in Fig.3-a.

B. Limitations in Dynamic Noise Estimation

Traditional VQA optimizers calculate the tuning gradient Gi

for iteration (i) from the discrepancy between the machine-
obtained objective function estimations (or energy) of iter-
ations (i) and (i − 1) to select the next iteration (i + 1)
parameter:

Gi = Ei − Ei−1 (3)

where Ei denotes the energy obtained by the quantum machine
corresponding to iteration (i).

Regarding the cutting-edge transient mitigation technique
QISMET [39], it selects the adjacent previous iteration (i−1)
as the reference circuit and re-executes it in the current itera-
tion (i) to estimate noise errors for iteration (i). Noise impact
is estimated by comparing the energy of the reference circuit
repetition in the current iteration Eri−1 with its previous
execution Ei−1:

Ni = Eri−1 − Ei−1 (4)

The noise-free energy Efi is predicted by removing the noise
error component from the energy estimation using Equation
5. The ideal gradient Gfi is then calculated with Equation 6.

Efi = Ei −Ni (5)

Gfi = Efi − Ei−1 (6)

QISMET then employs gradients Gfi and Gi to govern VQA
progress. While this approach can address transient noise with
short duration and spike-like magnitude, it proves insufficient
for tackling prolonged and non-deterministic noise drift, as
shown in Fig.2, leading to deceptive and detrimental iterations
during tuning. Furthermore, the noise estimation process re-
quires retrial, re-executing the reference circuit with current
circuit configurations, which doubles the computational re-
sources compared to traditional VQA iterations. Further details
are discussed in Section IV.

IV. DISQ DESIGN

DISQ framework overview is depicted in Fig.4. It appends
the observable circuits of prime subsets from multiple previous
iterations, which serve as references to diligently detect the
noise drift in VQA iterations. Noise drift errors are assessed
by comparing the energy of the references in previous jobs
with their repetitions in the current job. This process enables
DISQ to decide whether to reschedule or accept a particular
iteration, thus controlling VQA progression. The orange arrow
indicates the action in case of the existence of noise drift:
rescheduling of current circuits via the next job. The green
line indicates the accepted scenario, proceeding to stage S2

for total energy estimation. The design details of DISQ are
discussed in the following sections, with a focus on three key
insights: multi-reference enhancement, computing overhead
minimization, and enhanced noise drift detection.

A. Multi-Reference Enhancement

The potential for detrimental impacts of noise drift errors
is presented in Fig.2, which is seen beyond the statistical
robustness offered by executing multiple circuit shots. In such
cases, relying solely on a single adjacent iteration for dynamic
noise detection, as with [39], can be deceptive to the optimizer
and introduce fallacious iterations with inaccurate objective
function (energy) estimations during the tuning process. Uti-
lizing such fallacious references to estimated noise errors in
subsequent iterations fails to establish a reliable environment
for tuners. Instead, the bias accumulates, potentially causing
VQA to be far from its target, as shown in Fig.3-d.

Additionally, deviations in objective function estimation
also hinder accurate noise drift detection, particularly when
relying on a single reference. Fig.5 presents the circuit expec-
tation values collected over roughly a 24-hour period, featuring
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Fig. 5. The benefits of averaging in reducing deviations. Expectation value
data over 50 executions of two circuit batches (blue line: three different
circuits; gray line: one circuit) is compared in two different circuit features
on IBMQ Lagos.

two qubit/gate-level characteristics and two circuit batch sizes.
The gray line in each plot corresponds to a batch consisting
of only one circuit configuration. In the bottom plot, the gray
line has an average of about -0.59 and a range value of 0.08.
Significant outliers (negative and positive, circled in green and
orange, respectively) are observed in the top plot. The gray line
in the top plot exhibits an average of around -0.14 and a large
range value of 0.13, highlighting the challenges arising from
fluctuating results in objective function estimations within
noisy landscapes. Such deviations impede accurate detection
of the noise drift and result in the termination of the VQA
tuning process far from a minimum, such as Fig.3-d.

In contrast to the single-circuit configuration shown in
Fig.5, the blue line in the same figure represents a batch
consisting of three different circuits. This approach attenuates
a significant portion of the fluctuations in both sub-figures,
decreasing the variance by 65.4% and 62.3%, respectively.
These results indicate that incorporating multiple references
improves the reliability of noise detection, thereby mitigating
the negative impacts of the aforementioned adverse factors,
including fallacious iterations in the reference set and devi-
ations in executing the references. Consequently, the use of
multi-references is beneficial for VQA since reliable noise
drift detection facilitates maintaining the gradient calculation
of VQA in drift-free scenarios.

B. Computing Overhead Minimization

Dynamic noise estimation, discussed in Section III-B re-
quires bundling the circuit configurations corresponding to the
current iteration and reference circuit in each VQA iteration.
This process doubles the required computing resources com-
pared to a traditional VQA iteration. Section IV-A highlights
the benefits of using multiple references, which further in-
creases the computing overhead linearly with the number of
reference circuits involved. Additionally, to align the machine-
obtained gradient with the ideal gradient, several iterations
are skipped when detrimental noise drift occurs. In extreme
cases, it may even be necessary to execute the circuit bundle
several times to accept a single iteration. Although it is
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Fig. 6. Variational quantum algorithm (VQA), a hybrid quantum-classical
algorithm

somewhat efficient in mitigating noise drifts, this level of
computing overhead is unacceptable for a simple task and is
even more severe for long-running applications such as VQA.
To eliminate the aforementioned computing overhead, Pauli-
term subsetting is proposed.

Equation 7 defines a Hamiltonian Ĥ, which describes the
total energy of a system and serves as the objective function
of a problem.

Ĥ = 1.4 · XX + 0.05 · ZI + 0.02 · ZX (7)

To estimate the total energy (or objective function) for Ĥ
with a parameterized quantum circuit (ansatz) via VQA,
each Pauli term is converted into its corresponding basis to
generate observable circuits (OC) for their energy estimation.
Subsequently, all terms are aggregated for the total energy of
Ĥ. Fig.6 depicts a VQA iteration of Ĥ, where the circuits with
blue backgrounds are the OCs that are bundled into a “job”
to be executed for energy estimation [50]. In other words,
even a simple Hamiltonian like Ĥ necessitates QPU to execute
multiple OCs for a single iteration.

In Equation 7, the Pauli term “XX” holds the largest
absolute coefficient value, which accounts for over 95% of
all the coefficients of Pauli terms. This indicates that the OC
corresponding to the Pauli term “XX” (the circuit in Fig.6,
with each qubit followed by a Hadamard gate) significantly
impacts the energy estimation of Ĥ, as shown in Fig.7. Hence,
we introduce a new term “prime subset” to refer to such
OCs that are deemed to dominate the energy estimation of a
Hamiltonian. Specifically, the OC with an absolute coefficient
exceeding a specified threshold value THp relative to the sum
of absolute coefficients for all Pauli terms. The setting of
threshold value THp is discussed further in Section V-C1.
Note: The prime subset is not limited to a single circuit but
rather is a collection of circuits. Additionally, we define a
“minor subset”, which represents the remaining OCs.

IterationsVQ
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Fig. 7. Traditional VQA convergences. The light blue line represents the
training trace of the Hamiltonian Ĥ, while the dark blue line illustrates the
convergence of the prime subset with a setting of THp = 80%. Prime subset
dominates the energy estimation of Ĥ.



Based on the Pauli-subsetting design, DISQ actively takes
the following steps in each iteration to alleviate computing
overhead without sacrificing the reliability of noise drift detec-
tion: (i) rearranging the execution order of OCs corresponding
to the current iteration by partitioning them into two stages
(prime subset in S1, minor subset in S2); (ii) executing the
prime subset of reference circuits for noise drift detection
in S1, instead of all the references’ observable circuits; (iii)
proceeding to S2 only if the current iteration passes the noise
drift detection.

C. DISQ Noise Drift Detection

As discussed in Section IV-A and Section IV-B, DISQ
incorporates multi-references and deploys Pauli-term subset-
ting to improve the reliability of noise drift detection with
less execution time in S1 stage (Note: The adjacent previous
iterations are usually suitable choices for reference since they
typically have similar objective function estimations to the
circuit configuration in the current iteration, and the adjacent
iterations generally have closer noise landscapes compared to
other iterations). The noise drift error estimation in Equation 4
is enhanced to incorporate K reference circuits from iteration
{(i− n) | n ∈ [1..K]}:

Di =
K∑

n=1

ci−n[Eri−n(P )− Ei−n(P )] s.t.

K∑
n=1

cn = 1 (8)

where (P ) denotes the prime subset, K represents the incor-
porated reference number, which is discussed next in Section
V-C2, and ci−n is the proportion factor corresponding to the
reference circuits from the previous iteration (i − n). ci−n

is fixed at 1
K to ensure the sum of all factors equals 1

(Note: dynamic factors could potentially enhance benefits even
further, but this is beyond the scope of our current study).

With the design of K reference circuits, DISQ provides
a more faithful estimation of the drift-free energy Efi(P )
and the corresponding drift-free gradient Gfi. The calculation
process is enhanced using the updated Equations 9 and 10,
respectively:

Efi(P ) = Ei(P )−Di (9)

Gfi = Efi(P )−
K∑

n=1

ci−n · Ei−n(P ) (10)

The multi-references based machine-obtained Gi in Equation
3 is described below:

Gi = Ei(P )−
K∑

n=1

ci−n · Ei−n(P ) (11)

To handle various intractable noise drift, DISQ employs an
intelligent control policy to diligently guide VQA, ensuring
its training remains in a mild landscape. The aforementioned
gradients Gfi and Gi are utilized to make informed decisions,
which control VQA progress by accepting or rescheduling
particular iterations. The underlying principle is to accept
VQA iterations only if the direction of Gfi (gradient obtained
from DISQ noise drift detection) coincides with the direction
of Gi (gradient observed by the VQA tuner based on ma-
chine energy estimations). Fig.8-a, c describe the acceptance

Gi

Gfi

Di

b)

Gi

Gfi

Di

a) c)

Gi

Gfi

Di

Fig. 8. DISQ control policy. a) and c): Machine-obtained and drift-free
gradients have the same direction, thus acceptable; b): Noise drift flips the
machine-obtained direction, thus iteration is rescheduled.

scenarios. This precautionary approach ensures that the entire
VQA tuning process takes place under the same or similar
landscapes, enabling the tuner to steadily and reliably approach
its objective without deviating from the target due to the
negative impact of noise drift.

For the scenario in Fig.8-b, in response, DISQ skips the
result in the current iteration due to noise drift errors and
reschedules the job. As a result, identical circuit configurations
are repeated in the next iteration. Note that noise drift effects
can persist for extended periods of time. Therefore, the skip-
ping and repetition may span multiple jobs but are limited by
a max-out σ. Once max-out is reached, DISQ deems that the
landscape has completely changed, rendering the references’
energy in previous jobs inapplicable to the current landscape.
In this situation, DISQ updates the reference energy (used
only for detection) and detects the noise drift based on the
updated reference energy. Algorithm 1 outlines the process.

D. Functionality Across Iterations

DISQ workflow with three references over several con-
tinuous VQA iterations is illustrated in Fig.9. In S1 stage
of job α, QPU executes the circuits consisting of the prime
subset corresponding to iteration (i), depicted as the inner box
with blue background, and the configuration of prime subsets
corresponding to iteration {(i − n) | n ∈ [1..3]}, depicted
with light gray background. Then, the input of the noise

Algorithm 1 DISQ Workflow
Require: execute N iterations
i = 0, ir = 0
while i ̸= N do
{Ei(P ), Eri−n(P )} ← QPU(Pi, Pi−n) | n ∈ [1..K]
for n ∈ [1..K] do

Ei−n(P )← Database
end for
Di ←

∑K
n=1 ci−n[Eri−n(P )− Ei−n(P )]

Efi ← Ei(P )−Di

Gfi ← Efi(P )−
∑K

n=1 ci−n · Ei−n(P )

Gi ← Ei(P )−
∑K

n=1 ci−n · Ei−n(P )
if Gi ·Gfi > 0 then

Ei(M)← QPU(Mi)
i← i+ 1
Database← Ei(P ) + Ei(M)

else
ir ← ir + 1
if ir == σ then

Database← {Eri−n(P )} | n ∈ [1..K]
Database← Ei(P ) + Ei(M)
ir ← 0

end if
end if

end while
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Fig. 9. Multiple VQA “jobs” (gray box) run on a QPU. Each job has two execution stages. S1 consists of the prime subset corresponding to the current VQA
iteration (circuits with blue background) and the prime subset of reference circuits appended by DISQ (circuits with gray background). S2 is determined
by DISQ (as check mark ✓ or X) and executes the minor subset corresponding to the current VQA iteration. VQA progresses when both S1 and S2 have
completed.

drift detection includes the above executed results Ei(P ) and
{Eri−n(P ) | n ∈ [1..3]} along with reference prime subset
energy from previous jobs {Ei−n(P ) | n ∈ [1..3]} (not shown
in the figure). In job α, DISQ indicates the impact of noise
drift on iteration (i) is acceptable (check mark). Therefore, job
α proceeds to S2 stage and the minor subset corresponding
to iteration (i) is scheduled to execute for the total energy
estimation of iteration (i). VQA thus progresses to iteration
(i+ 1).
Job β is the adjacent job right after job α to compute the
circuits of iteration (i + 1). The prime subset of iteration (i)
replaces the prime subset of iteration (i − 3) as one of the
reference circuits for this job. Other executed circuits in stage
S1 are shown in the figure. Once stage S1 of β is executed,
the following information is utilized for noise drift detection:
a) prime subset energy corresponding to iteration (i+ 1);
b) {Ei−n(P ) | n ∈ [0..2]}, prime subset energy of reference
circuits from the previous jobs;
c) {Eri−n(P ) | n ∈ [0..2]}, the repetitions of reference
circuits in the current job β.

In this example, DISQ detects that the noise drift error is
out of range and derails VQA convergence (indicated by an X
in the figure). Therefore, iteration (i+ 1) is rescheduled, and
the outcomes of job β are discarded. The figure shows the
termination of job β (S2 is not executed) and a subsequent
repetition of circuits via job γ.
Once stage S1 of job γ is completed, DISQ checks again and
determines whether the noise drift present in job β that still
exists in job γ. In this job, DISQ observes that the noise drift
has passed or deems its impact to be within an acceptable
range. The S2 stage of job γ is processed and contributes
further to the progression of VQA. By taking above steps in
each VQA iteration, DISQ provides a stable landscape for the
gradient computation of the tuning process.

V. EVALUATION

A. Evaluation Methodology

1) General Infrastructure: DISQ is a software optimiza-
tion approach implemented using the Qiskit Runtime Python
package [50], which allows for running quantum programs en-

tirely on the IBM Cloud and executing workloads on quantum
systems at scale. DISQ is broadly applicable across all VQA
applications and can be integrated into any VQA classical
optimizer to enhance noise drift resilience. In this work, we
restrict the evaluation to eight qubits considering the machine
limitations on circuit metrics (depth, width). The evaluation
deploys SPSA as the main classical optimizer and primarily
focuses on VQE, one of the VQA applications (introduced in
Section II-B). The evaluations encompass four Hamiltonians,
four different ansatzes, and six QPUs from IBM.

2) Benchmarks: The primary Hamiltonian evaluated is the
potential energy of the helium hydrogen ion over bond lengths
of 1.7 Ȧ, with additional evaluations for the potential energy of
the hydrogen fluoride molecule, the lithium hydride molecule,
and the hydrogen molecule. The molecules are labeled with
a superscript “c”, indicating that the number of terms in their
Hamiltonians has been reduced using the reduction method
from [51]. This method is capable of compressing large
fermionic Hamiltonians into several qubits, enabling more
efficient calculations and analysis. The hardware-efficient SU2
[52] and RA [53] ansatz are used in the experiments, varying
the block repetitions between 2, 6, and 10 to change the
number of parameters in the ansatz. The selected QPUs are
Kolkata (27 qubits), Toronto (27 qubits), Montreal (27 qubits),
Perth (7 qubits), Jakarta (7 qubits), and Lagos (7 qubits). All
the machine details can be found at IBMQ’s website [54].

Despite the convenience of accessing IBM’s quantum ma-
chines through the cloud and facilitating the workload with
Qiskit Runtime, the limited access to quantum machines still
prevents a holistic evaluation of our proposal. To enable fine-
granularity noise drift evaluation, we combine the noise trace
generated by the IBM machine Toronto with the enhanced
noise traces upon the model from [39]. This enhanced model
captures the noise drift effects in each iteration and normalizes
these effects to the magnitude of VQA estimations, allowing
the simulations to exactly mimic observed noise drift errors.

3) Baselines: The following schemes are assessed in sev-
eral comparative evaluations:

• DISQ: Setting the number of optimal reference circuits
to three (two for HeH+ ion) and the prime threshold THp



to 80%.
• Baseline: Traditional variational quantum eigensolver

with deploying SPSA for optimization.
• QISMET: Transient noise mitigation approach [39] with

tuning the threshold to 10% to provide optimal perfor-
mance.

B. Evaluation Results

1) Evaluation on QPUs: The evaluation of DISQ, QIS-
MET, and Baseline for VQA energy estimation is conducted
on IBMQ machines to solve the VQA energy estimation
problem for a four qubits HeH+ ion, with a fixed number of
350 iterations. The experiments are conducted synchronously
to ensure temporal adjacency between the iterations of DISQ
and other schemes.

The results in Fig.10 compare DISQ against other schemes
on IBMQ Montreal device. Two periods of significant fluctu-
ations, which heavily derail both QISMET and Baseline, are
highlighted. QISMET only eliminates the noise instance in the
second period and fails to avoid the first serious turbulence due
to the variation in perceived gradient estimates. In contrast,
benefiting from multi-reference circuits, DISQ predominantly
bypasses both turbulent periods ensuring steady progress,
ultimately achieving improvements of 59.8% and 44.9% over
Baseline and QISMET, respectively.

Fig.11 shows a comparison of DISQ against Baseline and
QISMET on IBMQ Toronto. The noise drift errors persist for
an extended period (from 100 to 170 iterations), resulting in
multiple instances of noise drift errors with moderate or tiny
magnitudes. The tuning of QISMET and Baseline stagnates
during this period. Although DISQ is also impacted for several
early iterations, it quickly recovers and continues its navigation
to the target, improving fidelity over Baseline and QISMET
by 29.0% and 37.4%, respectively.

In the evaluation on IBMQ Jakarta shown in Fig.12, the
machine behavior is mostly smooth except for one instance of
an inconspicuous noise drift error, which is highlighted. While
this period does not seem to cause any severely detrimental
impact, QISMET is deceived by a mediocre estimation and
languishes at a local optimum. DISQ heuristically identifies
this camouflaged noise drift period and is able to further
progress toward the global optimum target with benefits of
51.6% and 36.3% over Baseline and QISMET, respectively.

Fig. 10. DISQ benefits for a HeH+ VQA application on IBMQ Montreal
with several high fluctuating noise regions (circled). Sharp noise drift errors
are avoided by DISQ.

Fig. 11. A HeH+ VQA application on IBMQ Toronto with an instance of
noise drift error spanning multiple iterations (circled). This phase of noise is
bypassed by DISQ, thus improving convergence of application.

Fig. 12. A HeH+ VQA application on IBMQ Jakarta with an inconspicuous
instance of noise drift error (circled). The convergence of application benefits
from DISQ by skipping this malicious instance of noise.

The benefits of DISQ over Baseline and QISMET on
six different IBMQ machines are shown in Fig.13. The
primary vertical axis shows the improvements in measured
VQA expectations over Baseline, while the secondary vertical
axis shows the improvement over QISMET. Across all the
machines, DISQ consistently improves the expectation values
over Baseline by 1.29-2.057×, with a mean improvement of
1.67×. Furthermore, DISQ boosts the fidelity by an average
of 45% (up to 62.1% and by at least 35.5%) over QISMET.
The above improvements are achieved over 350 iterations due
to access constraints. It is expected that benefits increase with
more iterations since this would provide higher potential for
more noise drift errors.

2) Evaluation with Multiple Benchmarks: A thorough
comparison is conducted with QISMET and Baseline to com-
prehensively evaluate the performance of DISQ across the
six different applications listed in Table I. The evaluation
is conducted over 1000 simulation iterations using different
molecules and ansatzes to explore the adaptability of DISQ.
The total number of OC for each molecule is listed under
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TABLE I
APPLICATION INFORMATION SUMMARY

Application Molecule Qubits Ansatz Layer Reps # Observable

HF HF 8 RA 6 76 (8)
HF-SU2 HF 8 SU2 6 76 (8)
HF-RA-2 HF 8 RA 2 76 (8)
HF-RA-10 HF 8 RA 10 76 (8)

LiH LiH 6 RA 6 13 (4)
HeH HeH+ 4 RA 6 4 (1)

the “# Observable” column and the values in the parentheses
are the number of OC in its prime subset. Expectation value
comparisons are presented on the left side of Fig.14. DISQ
consistently outperforms Baseline, achieving improvements
ranging from 1.51× to 2.24×. Moreover, DISQ improves
the fidelity by up to 1.89× over QISMET. Multi-reference
circuit scheduling employed in DISQ showcases its superior
performance under convoluted, noisy traces across various
molecules and ansatzes, which is consistent with the discussion
presented in section IV-A.

The number of circuit executions in each scheme enables
an intuitive comparison of computation overhead, depicted on
the right side of Fig.14. The leverage of Pauli-term subsetting
not only allows DISQ to schedule more reference circuits in
noise detection, but also boosts its computing speed. DISQ
actively reduces executed circuit cost by up to 39.2% with a
mean of 23.5% across the application, and boosts noise drift
detection speed by an average of 2.07× over QISMET.

3) Molecule Estimation Evaluation: VQE is extensively
used in molecule chemistry to estimate the energy value of
a molecule in a specific geometry, where energy variation
indicates the chemical reaction rates for the molecule. The
geometry of a molecule typically varies with different bond
lengths, resulting in a multitude of Hamiltonians [10]. The
energy of molecules is calculated from the expectation value
of their Hamiltonians. However, noise drift errors affect the
expectation values differently for different bond lengths, lead-
ing to skewed energy differences. Fig.15 depicts the potential
expectation for the H2 molecule over 10 different H-H bond
lengths, each corresponding to a unique Hamiltonian and VQE
experiment. The gray line represents the noise-free scenario,
while DISQ closely models the noise-free trace by accurately
estimating the expectation for each bond length. However,
QISMET and Baseline deviate from the ideal scenario as the
bond length descends, especially at lower bond lengths where
the noise drift errors have a substantial impact. At a bond
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length of 0.8 Ȧ, the step-wise estimation difference relative
to the previous length of 0.6 Ȧ has opposite gradients when
comparing Baseline and Ideal, which results in misleading
indications in the chemical reaction rates for Baseline.

C. Analysis

1) Sweeping over DISQ Prime Threshold: In section IV-B,
we discuss the use of a prime threshold THp to delineate the
criteria for Pauli-term subsetting. To identify an appropriate
threshold for the prime subset, we conduct a statistical analysis
of the observable circuit (OC) number in different molecules
with different THp. Our findings reveal that the energy of
most molecules heavily relies on a few OCs, aligning with our
prime subset design and highlighting the substantial potential
of DISQ to conserve computational resources.

The statistical results from our analysis are summarized
in Fig.16, which depicts evaluated molecule configurations in
terms of their OC numbers in the prime subset and total-to-
prime ratio (the ratio of the total number of OCs to the number
of OCs in the prime subset). Each point is color-coded by OC
number and shaped by the applied THp. The y-axis represents
the total-to-prime ratio, with higher points indicating greater
potential for DISQ to reduce computing overhead. The x-axis
(log scale) represents the OC number in the prime subset. The
molecules, denoted by the superscript c, represent compressed
molecules, as introduced in Section V-A.

To further investigate the optimal THp for molecules, four
different thresholds (50, 70, 80, and 90) are analyzed along
with Baseline in Fig.17. The evaluation is conducted on simu-
lation across three molecules: HeH+, LiH, and HF (Note: 60
has the same number of OC as 70 in HeH+ and LiH molecules,
while HeH+ maintains a consistent OC count across these
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Fig. 17. Simulation evaluation with varying DISQ prime threshold values
THp. HeH+ and LiH molecules exhibit the same number of OC at THp = 60
and THp = 70, while HeH+ maintains a consistent OC count across these
thresholds.
thresholds). The 50 and 70 percent thresholds skip fewer
impactful noise drift instances, resulting in relatively poor
results. Although the 90 threshold yields similar improvements
as 80, it requires more circuits to be executed. Consequently,
the optimal threshold for selected molecules is found to be 80,
which achieves strong benefits over Baseline while minimizing
computing resources. Note that intelligent dynamic threshold-
ing for different molecules may further improve benefits, but
that is beyond the scope of this study.

2) Sweeping over DISQ References Number: Section
IV-A discusses using multi-references to improve the relia-
bility of noise detection. Four different K values (number of
incorporated references) are analyzed alongside Baseline in
Fig.18 for three molecules HeH+, LiH, and HF.

For all the selected molecules, K = 1 is a conservative
scheme, which accepts some detrimental noise drift instances,
and thus performs negative impacts on the VQA trace. For
HeH+ ion, incorporating three or four references for noise
drift detection pushes DISQ to be worse than two references,
since some iterations with tiny noise drift errors are avoided
unnecessarily. Incorporating three references for molecules HF
and LiH provides a good trade-off, achieving a 2.47× and
1.71× improvement over Baseline, respectively.

VI. RELATED WORK

To contribute to the success of quantum computing during
the NISQ era, it is critical to comprehend and control sources
of noise, which typically include thermal fluctuations [14]
and magnetic flux [16]–[18]. Other sources, such as cosmic
rays [55], device defects [13], quantum drift [48] and external
stimuli [20]–[22] also cause the pernicious effects on qubits.

By understanding noise, multiple works from different hier-
archies have investigated both error correction [56]–[59] and
error mitigation techniques to efficiently drive the computing
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power of quantum [28]–[33]. Some works target specific
noise sources and propose corresponding solutions, such as
crosstalk-oriented compilation methods [27] and experiment-
based techniques for measurement error [26]. Beyond these
works, mapping virtual to physical qubits is also a primary
technique used to alleviate noise effects [37], [60]. The works
in [61], [62] even ensemble diverse qubit mappings or multi-
device mappings. Other proposed mitigation techniques in-
clude learning-based methods [63]–[65], co-design of training,
noise robustness [24], [35], circuit structure analysis-based
one [66], pulse-level optimizations [67] and Quantum neuron
network compression [68], [69]. However, the preceding works
all primarily focus on static noise.

Regarding dynamic noise, [39] profiles spike-like noise
impacts and proposes a method with reference circuits. Com-
paratively, our overhead-aware scheduling method can provide
significantly more accurate detection in facing various types of
noise drift (not limited to transient spikes) while heuristically
minimizing required computing resources.

VII. CONCLUSION

DISQ, as proposed in this paper, takes proactive steps to
address the detrimental impact of noise drifts and to neutral-
ize the required execution overhead. To achieve this, DISQ
incorporates multi-reference circuits to faithfully detect noise
drift errors in VQA iterations in order to maintain the fidelity
of the iterations in drift-free scenarios. Furthermore, DISQ
deploys Pauli-term subsetting to replace reference circuits with
their prime subset circuits and partition the circuit execution to
efficiently reduce the corresponding circuit execution overhead
by detecting noise drift.
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