arXiv:2309.10392v2 [quant-ph] 20 Sep 2023

Differentiable Quantum Architecture Search for
Quantum Reinforcement Learning

Yize Sun*, Yunpu Ma', Volker Tresp?
Ludwig Maximilians University
Siemens AG
Munich, Germany
Email: *yize.sun@campus.lmu.de, t cognitive.yunpu@ gmail.com, ivolker.tresp@lmu.de

Abstract—Differentiable quantum architecture search (DQAS)
is a gradient-based framework to design quantum circuits auto-
matically in the NISQ era. It was motivated by such as low fidelity
of quantum hardware, low flexibility of circuit architecture,
high circuit design cost, barren plateau (BP) problem, and
periodicity of weights. People used it to address error mitigation,
unitary decomposition, and quantum approximation optimiza-
tion problems based on fixed datasets. Quantum reinforcement
learning (QRL) is a part of quantum machine learning and
often has various data. QRL usually uses a manually designed
circuit. However, the pre-defined circuit needs more flexibility
for different tasks, and the circuit design based on various
datasets could become intractable in the case of a large circuit.
The problem of whether DQAS can be applied to quantum
deep Q-learning with various datasets is still open. The main
target of this work is to discover the capability of DQAS to
solve quantum deep Q-learning problems. We apply a gradient-
based framework DQAS on reinforcement learning tasks and
evaluate it in two different environments - cart pole and frozen
lake. It contains input- and output weights, progressive search,
and other new features. The experiments conclude that DQAS
can design quantum circuits automatically and efficiently. The
evaluation results show significant outperformance compared to
the manually designed circuit. Furthermore, the performance of
the automatically created circuit depends on whether the super-
circuit learned well during the training process. This work is the
first to show that gradient-based quantum architecture search is
applicable to QRL tasks.

Index Terms—DQAS, QRL, QAS

I. INTRODUCTION

In recent years, quantum computing has developed rapidly
and has achieved remarkable progress [1]]. Diverse quantum
algorithms were proposed in different fields [2]]-[7]. However,
current quantum hardware has limitations on the number of
qubits and the quantum gates because of the relatively low
quantum gate fidelity on the deep quantum circuit [8]]. These
noisy intermediate-scale quantum (NISQ) devices can not
reach fault tolerance in the near future [§]]. In the NISQ era,
variational quantum algorithms (VQAs) are considered the
leading strategy [9]. It has shown the potential to improve
ML performance in quantum supervised learning (QSL) [2],
[10]-[13], quantum unsupervised learning (QUL) [14]-[17]
and quantum reinforcement learning (QRL) [3]], [[18]-[20]] on
NISQ devices.

Most studies in QRL focused on the framework with
a predefined circuit architecture. These architectures were

inspired by mathematical models and constructed through
manual experience. It would take much time to design an
architecture from the experts, especially when the number of
qubits is increasing and the circuit is getting deeper and deeper.
Besides, the lack of flexibility of predefined architecture and
the hardware constraints in the NISQ era limit us from solving
a QRL task efficiently. Therefore, we aim to solve these
issues by automating the architecture search for QRL. This
work applies quantum deep Q-learning specifically, which
is an off-policy QRL algorithm. It was proposed to solve
RL environments (cart pole and frozen lake) with quantum
computer [[19]. The circuit architecture they used is viewed as
the baseline in this work.

Differentiable quantum architecture search (DQAS) is a
general gradient-based framework for automating quantum
circuit design problems. It has shown its effects on error mit-
igation and rediscovery of quantum circuits in the NISQ [4],
[21]. All DQAS previously solved problems have a specific
condition with a fixed dataset, in which the losses are strongly
correlated to the objective (e.g., fidelity or ground state).

However, this can not be satisfied in quantum deep Q-
learning. The dataset in quantum deep Q-learning strongly
depends on the current learned experiences and varies by
increasing training epochs. There is no guarantee that a loss
decline will lead to good rewards [22]. Here is a question:
Would DQAS apply to quantum deep Q-learning?

In this work, we try to apply a gradient-based framework
of DQAS to reinforcement learning tasks. It is motivated by
the progress toward realizing quantum advantage by utilizing
DQAS in QRL. We summarise our contributions as follows:

1) We conduct sufficient experiments to evaluate the pro-

posed algorithm in two RL environments based on
various super-circuits. We demonstrate the success of
newly discovered architectures in both environments.

2) We also show that the discovered architecture will have

a bad performance by evaluation if the corresponding
super-circuit does not learn well during the training
process.

3) We test the newly found architecture on a simulator of

a noisy device.

This work includes five chapters. In chapter[l} the motivation
and overview of the study are introduced. Chapter [[I] reviews
two related works. Chapter [I1I] shows our method. The exper-

imental results are analyzed in chapter [[V] The last chapter [V]
contains conclusions and directions for future work.
II. RELATED WORK
A. DQAS
The quantum architecture search (QAS) constructs a quan-

tum circuit automatically. Its goal can be described as

(0*,a") =argmin L£(0,a, Z,¢,)
6eC,acS

(D

where L represents an objective function, 6 denotes the
parameters of an ansatz a, C is a constraint set, Z represents
the input, and €, denotes the quantum system noise.

As one of the QAS algorithms, DQAS is a hybrid quantum
framework [4]]. It has one super-circuit including an operation
pool O, p placeholders, architecture parameters a,, and circuit
weights 6 with dimension p x |O| x [, where [is the largest
number of gate parameters. It is inspired by differentiable
architecture search (DARTS) and designs a circuit by placing
multiple operation candidates in a placeholder. Given some
placeholders and an operations pool, people usually test all
combinations of placeholders and operation candidates indi-
vidually to get the best-performing architecture. The search
space is thus discrete. However, DQAS gives weight to each
operation candidate within a placeholder, and people refer
to the normalized weights as operation probabilities. The
probability of a circuit with a specific architecture is then
defined as the product of probabilities of its component’s oper-
ations. DQAS makes the search space continuous through this
probability model. It samples a batch of circuit architecture
candidates to calculate the global loss, which is a sum of the
loss of each batch member and represented as

Pk,)

L= :
k~P(k,q) Zk/NP(k,a) Pk,)

Lk(e) ’

where

P o
P(k,a) = H S (3)
k denotes the sampled architecture from the probability model
P(k, a). The architecture and circuit parameters are optimized
using gradient descent [4] with a global loss function.

In practice, DQAS can compose a quantum circuit for error
mitigation and optimization problems [4].

B. ORL

Similarly to the classical deep Q-learning algorithm, quan-
tum deep Q-learning uses a variational quantum circuit VQC
as a counterpart of DQN. VQC here is called Quantum-DQN
(QDQN). One observation state is input for the encoding
block, and measurement provides output. Trainable parameters
of QDQN correspond to the parameters of DQN. There is
a replay memory to manage observations. The Q-values are
calculated by

Q(s.a) = 50T (OTR(0™) +1) @)

in range of [0, 1] for each action a by corresponding observ-
ables O,. The local loss function is represented as

L7(01) = E(s,a,r,s’)NER[(T
4 ,Ymaxa/Qtarget»QDQN(8/7 CLI; 92—)
— Q¥ (s,0:0))%]

®)

where ~ denotes the discount factor. The vector (s,a,r,s’) is
one of the sampled observations including state s, action a,
reward r and next state s’. §; and 6; denote parameters of
target-QDQN and QDQN, respectively. For every n epochs,
the target-QDQN copies 6; from QDQN into itself.

With the help of quantum deep Q-learning, the cart-pole
environment and the frozen lake environment were solved
in [20]]. They also used data re-uploading technique input and
output weights to improve training performance. We will refer
to these methods in our following work as new features for
DQAS.

III. METHOD

Algorithm E] shows an overview for RL-DQAS. Firstly, a
super-circuit is defined, including a circuit with placeholders,
an operation pool O, and trainable shared parameters for
circuit gates ¢ and architecture . Secondly, we start training
with multiple agents. According to the current architecture
distribution model P, a batch of architecture candidates is
sampled from the super-circuit. Each candidate shares circuit
parameters 6 and calculates individual loss value £ between
the predicted and target Q-values. With a global loss, the
shared architecture parameters « and circuit parameters 6 can
then be updated by gradient descent with optimizer Adam.
Meanwhile, the corresponding probability is updated as well.
For every n iterations, the progressive search checks for each
placeholder if one operation candidate and its architecture
parameter should be removed by comparing the corresponding
architecture distribution. The target circuit will periodically
copy the circuit values of the shared parameters. If the
architecture is fixed, the tuning phase only updates the trained
circuit parameters iteratively before the reward converges to
a given value. After training, we rank training performances
among agents and take the architectures of the first K top-
performing candidates. Finally, we evaluate these architectures
to find out the best-performing architecture.

A. Super-circuit

A super-circuit builds a search space using a circuit with
placeholders, architecture parameters «, and operations from
operation pool O. The circuit consists of three blocks. The en-
coding block encodes the weighted input state into a quantum
state. The parameterized block contains all placeholders and
should be stacked to create a deep circuit. The measurement
block is used to provide output value for a classical computer.

The super-circuit adopts the architecture distribution model
P(U, «), where U denotes the sequence of placeholders or an
architecture candidate. This work defines operation candidates
and placeholders differently than the original DQAS. Each

Algorithm 1 DQAS for RL
Step 1: Super-circuit definition:

Initialize op O and super-circuit with « and 6
Initialize two QDQNSs and environment e
Step 2: Super-circuit training:
while Architecture search do
Sample minibatch of architectures
Calculate global loss £ via Eq: [9]
Update o and 6; via gradients VL, and VL
The tar-circuit copy 6 from pred-circuit periodically
end while
Circuit parameter tuning
Early stop training if e 3 r®"9 > r™%% c e
Step 3: Rank training performance among agents:
Take top K architectures for evaluation
Step 4: Evaluation of architectures:
Take the best performing architecture or retrain

placeholder wu; covers all qubits instead of one qubit and
accepts one element from the operation pool containing the
working range. This way, the number of parameters for each
placeholder depends on the operation type and working range,
and the search space can thus be reduced by controlling the
working range of operation candidates. One parameterized
block can then be described as

P
U=]Juw®) . 6)
i=0
where u; stands for unitary placeholder and can be replaced
by any o; € O. 6; can vanish if o; has no trainable parameter.
Furthermore, the depth of the block increases with every filled
placeholder.

B. Operation pool

Operation pool O in size of s = |O| is a set of quantum gate
candidates. Each operation in O contains the type of operation
and its working range. If there is a circuit with four qubits, an
operation pool can be defined with elements:

O={o :[1,2,3,4] ,00:[1,2,3,4], (7
~ —
Type Working range
3:[1,2,3],04 1 [2,3,4], E : [1,2,3,4]}

The o; denotes the type of operation, and it could be any 1-
qubit gate or multi-qubits gate (e.g., RZ, U3, or CNOT). The
corresponding array shows the range in which the operation
works. For example, if operation 0; = CNOT is selected for
one placeholder, four CNOT gates will work on all qubits with
ring connections. This work defines two operation pools op3
and op4. op3 contains candidates such as ry, rz, cz, cnot
and identity on all qubits, and there are candidates ry and rz
both further working on {[1,2, 3], [2, 3, 4], [1, 2], [2, 3], [3, 4]}
op4 contains almost the same candidates but has no cz, neither
ry nor rz on {[1,2],[2,3],[3, 4]}

|
|

|

|

/

0 200 400 600 800 1000 4

epoch
2
0 500 1000 1500 2000 2500 3000 3500 o 1000 2000 3000 4000 5000
epoch epoch

(a) Frozen Lake (b) Cart Pole

90— g W
a——-o—— o —— - +f‘"
% ——8 ———HE—— qz——I—
lh—~— ——.——

(c) Architecture Auto-fl-op3 (d) Architecture Auto-cp-0p4

Fig. 1: Evaluation and information of newly found architec-
tures on the simulator without noise. The results are averaged
over five agents, where each agent has five parameterized
blocks.

C. Objectives and gradients

In this work, the objective function takes two Q-values as
inputs, created from two quantum circuits (predicting circuit
and target circuit). The predicted Q-value should gradually
converge to the target Q-value. The local objective L(U, 0) is
calculated as the mean squared error (MSE) between predicted
Q-values and target Q-values

L(U,0) =

where U stands for circuit architecture and 6 represents circuit
parameter tensor. The global objective function is defined as
the total sum of local objectives according to the architecture
distribution model P(U, «):

>

Un~P(U,a)

(Q predlcted target) 2

U,0*

; (®)

L= LU0 .)

The Q-value for action a € A is calculated by the circuit mea-
surement with the corresponding observable O,. In order to
compare Q-values easily, we shift and scale the measurement
result by 1 and 1 respectively.

We will iteratively update the parameters by gradient de-
scent, including the circuit parameter tensor 6, the architecture
parameter matrix «, and the input weights w®", the output
weights w°“® if needed. Since the circuit tensor @ is inde-
pendent of the architecture distribution, its gradient takes the
form

VoLl =

> VeL(U,0) (10)

U~P(U,a)

In practice, this gradient can be calculated by the parameter
shift rules [12], [23]], [24]. The gradient of the architecture
parameter matrix « is related to the architecture distribution
and calculated as described in DQAS [4].

IV. EXPERIMENTS AND RESULTS
A. Experiment setting

In this chapter, we conduct two benchmark RL experiments
(e.g., Cart Pole vO [25] and Frozen Lake vO [26]) from
OpenAl Gym. This work uses four qubits and repeats one
parameterized block five times to create the super-circuit. Each
block has four placeholders. We select the same encoding
scheme and observables used in quantum deep Q-learning [20]
for both experiments, and their manually designed circuit
architecture is referred to as our baseline. The baseline cir-
cuit has five parameterized blocks, each composed of three
operations columns. Each column covers all qubits, followed
by ry, rz, cz.

B. Results and discussion

We first focus on the most surprising result shown in
Fig. [I] The automatically-designed architecture (green lines)
improves the performance by about 200% compared to the
baseline, decreasing the average solving point from around 800
to 400 for the cart pole and 1000 to 400 for the frozen lake.
Furthermore, the shaded standard deviation of this architecture
is much smaller than the baseline, showing the homogeneous
training performance of agents.

The best architecture Auto-op4 shown in Fig. [Td] derives
from the super-circuit op4 during the training process. By
manual design, CNOT gates are placed at a block’s front or
back end, and people rarely reuse gates. In contrast, the ma-
chine places the CNOT gates in the middle of the parameterized
block and then chooses to add some additional RZ gates on
part of qubits. This design could provide more control for
the z-axis on these selected qubits and improve the mapping
between agent state and agent action. Although the reason for
this selection is unknown, in practice, this design improves the
training performance significantly and is hard to mimic.

As shown in Fig the architecture has redundant gates -
RZ gates at the rear, which is distinct from manually designed
architectures. These redundant gates might improve the train-
ing performance through stacking parameterized blocks.

We now show the performance of discovered architectures
and corresponding super-circuits in Fig. 2] While the super-
circuit op4 (dashed green line) learns well during the training
process, the super-circuit op3 (dashed blue line) has a bad
performance, which might be caused by instability of RL or
bad super-circuit definition. The difference in learning perfor-
mance between these two super-circuits results in the evalua-
tion difference between corresponding designed architectures.
Additionally, the circuit architectures of the five agents do not
show convergency, while the training performance converges
to the top. Different architectures could perform similarly. The
performance and architectural similarity could be discussed
in the future. Consequently, the performance of the designed
circuit depends on whether the corresponding super-circuit
learns well during the training process. A badly performing
architecture can be ascribed to the failure of the training
process of the super-circuit.

-~ Training-op4
--- Training-op3
—— Evaluating-op4
— Evaluating-op3

o 1000 2000 3000 4000 5000
epoch

Fig. 2: Relationship between training and evaluation.

= |
[| 10 —_—
pi /]
06 [0.8 / o006 | 08 //
B [/ B
H | Tos 7/ H | Tos /
2oa g / “oa | g
T / | Bos
/
02 | 92 Y, 02 | 2 /
| 00 | 00—
w0 60 y ° 200 a0 00
epoch 00 epoch
0 500 1000 1500 2000 2500 3000 3500 © 500 1000 1500 2000 2500 3000 3500
epoch epoch

(b) op4

(a) op3

Fig. 3: Evaluation in the frozen lake environment. (IBM noisy
simulator qiskit-aer "ibmg-quito").

In addition, as shown in Fig. we investigate whether
these two architectures work in the same environment on the
noisy device. Due to unpredictable delays of real hardware,
we utilize the noisy simulator to evaluate two architectures in
the frozen lake environment. We are surprised that the newly
discovered circuit architectures performed well on the noise
model, although one is designed for another experiment. It will
also encourage further investigation into a general architecture
based on the gradient-based QAS for multiple QRL tasks. In
the next chapter, we will conclude.

V. CONCLUSION AND OUTLOOK

In this work, we apply DQAS for QRL. The results show
that it can design quantum circuit architectures in different
RL environments (cart pole and frozen lake) efficiently and
automatically. We successfully searched with different super-
circuits, and the newly discovered architectures differed from
and outperformed the manually designed architecture. Further-
more, we show that the evaluation depends on the training
performance. We find a general architecture in the noisy model
for the frozen lake. This work is the first to show that gradient-
based QAS applies to QRL tasks.

This work uses a shallow super-circuit and mini-learning-
step for the training process. However, better architecture
might hide in a deep super-circuit. Furthermore, we could
find some common circuit architecture features for multiple
RL tasks.

ACKNOWLEDGMENT

The project of this workshop paper is based on was
supported with funds from the German Federal Ministry of
Education and Research in the funding program Quantum
Reinforcement Learning for industrial Applications (QLindA)
- under project number 13N15644. The sole responsibility for
the paper’s contents lies with the authors.

[1]

[2]

[3]

[4]

[6]
[7]

[8

=

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

REFERENCES

F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell, ef al., “Quantum
supremacy using a programmable superconducting processor,” Nature,
vol. 574, no. 7779, pp. 505-510, 2019.

M. Alam, S. Kundu, R. O. Topaloglu, and S. Ghosh, “Quantum-classical
hybrid machine learning for image classification (iccad special session
paper),” arXiv preprint arXiv:2109.02862, 2021.

S. Y.-C. Chen, C.-H. H. Yang, J. Qi, P-Y. Chen, X. Ma, and H.-S.
Goan, “Variational quantum circuits for deep reinforcement learning,”
IEEE Access, vol. 8, pp. 141007-141024, 2020.

S.-X. Zhang, C.-Y. Hsieh, S. Zhang, and H. Yao, “Differentiable
quantum architecture search,” arXiv preprint arXiv:2010.08561, 2020.
Y. Ma, V. Tresp, L. Zhao, and Y. Wang, “Variational quantum circuit
model for knowledge graph embedding,” Advanced Quantum Technolo-
gies, vol. 2, no. 7-8, p. 1800078, 2019.

E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.

K. Beer, D. Bondarenko, T. Farrelly, T. J. Osborne, R. Salzmann,
D. Scheiermann, and R. Wolf, “Training deep quantum neural networks,”
Nature communications, vol. 11, no. 1, pp. 1-6, 2020.

J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum,
vol. 2, p. 79, 2018.

M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii,
J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, et al., “Variational
quantum algorithms,” Nature Reviews Physics, vol. 3, no. 9, pp. 625—
644, 2021.

E. Farhi and H. Neven, “Classification with quantum neural networks
on near term processors,” arXiv preprint arXiv:1802.06002, 2018.

V. Havlicek, A. D. Coércoles, K. Temme, A. W. Harrow, A. Kandala,
J. M. Chow, and J. M. Gambetta, “Supervised learning with quantum-
enhanced feature spaces,” Nature, vol. 567, no. 7747, pp. 209-212, 2019.
K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, “Quantum circuit
learning,” Physical Review A, vol. 98, no. 3, p. 032309, 2018.

M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe, “Circuit-centric
quantum classifiers,” Physical Review A, vol. 101, no. 3, p. 032308,
2020.

M. H. Amin, E. Andriyash, J. Rolfe, B. Kulchytskyy, and R. Melko,
“Quantum boltzmann machine,” Physical Review X, vol. 8, no. 2,
p- 021050, 2018.

S. Chakrabarti, Y. Huang, T. Li, S. Feizi, and X. Wu, “Quantum wasser-
stein generative adversarial networks,” arXiv preprint arXiv:1911.00111,
2019.

B. Coyle, D. Mills, V. Danos, and E. Kashefi, “The born supremacy:
quantum advantage and training of an ising born machine,” npj Quantum
Information, vol. 6, no. 1, pp. 1-11, 2020.

C. Zoufal, A. Lucchi, and S. Woerner, “Variational quantum boltzmann
machines,” Quantum Machine Intelligence, vol. 3, no. 1, pp. 1-15, 2021.
S. Y.-C. Chen, C.-M. Huang, C.-W. Hsing, H.-S. Goan, and Y.-
J. Kao, “Variational quantum reinforcement learning via evolutionary
optimization,” Machine Learning: Science and Technology, vol. 3, no. 1,
p. 015025, 2022.

S. Jerbi, L. M. Trenkwalder, H. P. Nautrup, H. J. Briegel, and V. Dun-
jko, “Quantum enhancements for deep reinforcement learning in large
spaces,” PRX Quantum, vol. 2, no. 1, p. 010328, 2021.

A. Skolik, S. Jerbi, and V. Dunjko, “Quantum agents in the gym: a
variational quantum algorithm for deep g-learning,” Quantum, vol. 6,
p- 720, 2022.

S.-X. Zhang, C.-Y. Hsieh, S. Zhang, and H. Yao, “Neural predictor
based quantum architecture search,” Machine Learning: Science and
Technology, vol. 2, no. 4, p. 045027, 2021.

Y. Miao, X. Song, J. D. Co-Reyes, D. Peng, S. Yue, E. Brevdo, and
A. Faust, “Differentiable architecture search for reinforcement learning,”
in First Conference on Automated Machine Learning (Main Track),
2022.

G. E. Crooks, “Gradients of parameterized quantum gates using
the parameter-shift rule and gate decomposition,” arXiv preprint
arXiv:1905.13311, 2019.

M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran, “Eval-
uating analytic gradients on quantum hardware,” Physical Review A,
vol. 99, no. 3, p. 032331, 2019.

[25] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,

J. Tang, and W. Zaremba, “Openai gym, wiki, cartpole v0.” https:
//github.com/openai/gym/wiki/CartPole-v0, 2016.

[26] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,

J. Tang, and W. Zaremba, “Openai gym, wiki, frozenlake v0.” https:
//github.com/openai/gym/wiki/FrozenLake-v0, 2016.

https://github.com/openai/gym/wiki/CartPole-v0
https://github.com/openai/gym/wiki/CartPole-v0
https://github.com/openai/gym/wiki/FrozenLake-v0
https://github.com/openai/gym/wiki/FrozenLake-v0

	Introduction
	Related work
	DQAS
	QRL

	Method
	Super-circuit
	Operation pool
	Objectives and gradients

	Experiments and results
	Experiment setting
	Results and discussion

	Conclusion and Outlook
	References

