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Abstract—As an application domain where the slightest qual-
itative improvements can yield immense value, finance is a
promising candidate for early quantum advantage. Focusing
on the rapidly advancing field of Quantum Natural Language
Processing (QNLP), we explore the practical applicability of the
two central approaches DisCoCat and Quantum-Enhanced Long
Short-Term Memory (QLSTM) to the problem of sentiment anal-
ysis in finance. Utilizing a novel ChatGPT-based data generation
approach, we conduct a case study with more than 1000 realistic
sentences and find that QLSTMs can be trained substantially
faster than DisCoCat while also achieving close to classical results
for their available software implementations.

Index Terms—Quantum Computing, Sentiment Analysis, Fi-
nance, QNLP, DisCoCat, QLSTM

I. INTRODUCTION

Predicting the price development of assets is one of the core
problems in finance. As the price of any asset is determined
by supply and demand, the individual valuation of each buyer
and seller constitutes essential information for the task of
price prediction. With the advent of social media platforms
like twitter, such data became freely available at massive
scale. This catalyzed the application of methods from natural
language processing (NLP) to allow for automated analysis of
investor’s sentiments [1]. While the field of NLP has achieved
tremendous success in recent history [2] – even showing
substantial evidence to pass the Turing test [3], [4] – the
compute used to achieve these advancements is enormous [5].

A particularly promising novel approach to NLP and com-
putational finance in terms of hardware requirements is quan-
tum computing, as it has been shown to need less training data
in machine learning [6] and allows for the efficient incorpo-
ration of grammatical structure in NLP [7], [8]. Motivated
by recent positive experimental results of two quantum NLP
(QNLP) methods, namely the Quantum-Enhanced Long Short-
Term Memory (QLSTM) neural networks [9], [10] and the
quantum native DisCoCat (Distributional Compositional Cate-
gorical) based QNLP [11]–[13], we evaluate their applicability
to sentiment analysis on financial datasets beyond existing
proofs of concept.

This work encompasses the following contributions:
• A comprehensive guide for the application of QLSTMs

and DisCoCat.
• Introducing a novel approach to generating datasets for

DisCoCat that enables automated data generation with
sufficient grammatical structure using ChatGPT.

• A case study comparing the applicability of two state-of-
the-art QNLP methods in a finance application.

The remainder of this paper is structured as follows. Sec. II
discusses theoretic preliminaries on QLSTMs and DisCoCat.
Sec. III shows how both methods can be applied to solve
the given task of sentiment analysis. Sec. IV contains the
evaluation and subsequent comparison of both approaches on
synthetic datasets. Sec. V concludes the findings.

II. BACKGROUND

A central component in state-of-the-art NLP approaches
is choosing how to model text mathematically using distri-
butional semantics, i.e., mapping each word onto a vector,
which generally leads to similar words being described by
vectors with a high similarity [14]. Historically, such word
embeddings where mainly done in a static manner, mean-
ing that words were mapped onto vectors based on their
possible meanings according to, e.g., dictionaries [15]. As
NLP evolved, more context aware word embeddings were
used, which allows solving potential problems raised from
homonyms [16]. Homonyms are words that have different
meanings based on the context they are used in, e.g., the word
“rock” can reference a stone or a genre of music. Today’s state-
of-the-art approaches in regards to qualitative performance
avoid such problems using dynamic embeddings, which is
heavily driven by the availability of massive amounts of data
and immense computing resources [17].

Expanding on the mathematical model for text, we now
examine methods to process it computationally. As text is a
form of temporal data with variable length, recurrent neural
networks (RNNs) have been extensively used to infer infor-
mation from the text [18]. However, ordinary RNNs have
difficulties accounting for a grammatical semantics that extend
beyond locally available information in a sentence [19], e.g.,
as in “The view from this ugly skyscraper was incredibly
beautiful”, where the semantically related words “view” and
“beautiful” are separated by almost the whole sentence. Long
term dependencies are successfully addressed in a special type
of RNNs, i.e., LSTMs, by using the propagation of a cell
state in addition to the hidden state over time [20]. Expanding
on this, the concept of transformers was introduced, which
focus on self-attention while shifting away from the recurrent
network structure to allow for parallelization in the otherwise
necessarily iterative training procedure [21].
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In combination with substantial compute and large amounts
of data, current high performance NLP approaches have shown
the ability to learn grammatical semantics without any explicit
knowledge about grammar. A completely different approach
from RNNs, LSTMs and Transformers is DisCoCat, which
natively integrates grammatical information given in syntax
trees1 using category theory to unify distributional semantics
with the principle of compositionality2. In essence, DisCo-
Cat exploits a mathematical similarity between grammar,
expressed through syntax trees, and quantum computing [11].

Expanding on this brief overview of NLP, we now show how
quantum computing techniques can be productively applied to
enhance LSTMs and DisCoCat based NLP.

A. Using QLSTMs for QNLP

(Q)LSTMs can be viewed as an extension of conventional
(Q)RNNs with two core differences: (1) the introduction of an
additional cell state ct for long term memory storage besides
the hidden state ht and (2), the replacement of the single neural
network with a specific composition of neural networks (i.e.,
a (Q)LSTM cell) as shown in Fig. 1. [9], [20]

ct−1

ht−1

·

σ

(Q)NN1

σ

(Q)NN2

+

·

tanh
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Fig. 1: Structure of a (Q)LSTM in which the internal process-
ing pipeline is indicated by arrows. Inputs are the cell state
ct−1 of the previous time step, the corresponding hidden state
ht−1 and the current state of the time series data xt to be
processed. ct and ht denote the computed cell- and hidden
states passed to the next cell. The output of the cell is yt.

In this figure, σ denotes a sigmoid activation function,
analogue notation is used for tanh. The operations

⊙
and

⊕
denote element-wise multiplication and addition of vectors. xt
denotes the data input at point t and yt the output at the same
point in time, ht denotes the hidden state similar to the hidden
state in conventional RNNs and ct denotes the cell state of the
LSTM. [24]

The LSTM cell is divided into three neural networks acting
as gates:

1) The forget gate: The first (Q)NN determines the amount
of information to be forgotten about the state ct−1. The

1In the context of grammar, a syntax tree describes the parts of speech such
as nouns, verbs, adjectives, etc., and puts them in structural context [22].

2This principle states that the meaning of an expression is fully described
by the meaning and composition of its parts [23].

lower the value of σ ((Q)NN1 (ht−1, xt)), the more the
resulting entries of ct−1 approach zero.

2) The input gate: Involving the second and third QNN, the
update gate is split into deciding how much information
is to be updated ((Q)NN2) and which information is to
be updated ((Q)NN3).

3) The output gate: Determines the information to be
output based on all states xt, ht−1 and the processed
ct−1.

In the presented structure, additional postprocessing of the
generated state from the output gate is conducted individually
to allow for yielding different outputs ht and yt (in some
implementations, yt = ht is used). Choosing suitable dimen-
sionalities for h and c, as well as architectures for all (Q)NNs,
(Q)LSMTs can be used to process time series completely
analog to standard (Q)RNNs [25].

B. Using DisCoCat for QNLP

Following the original DisCoCat approach proposed by
Coecke et al. [23], [26], there are three steps to generate a
mathematical model of a sentence that can be processed using
quantum computers:

1) Parse the sentence into a pregroup expression.
2) Construct the corresponding DisCoCat diagram (incl.

possible reductions).
3) Translate the DisCoCat diagram into a quantum circuit

according to possibly parameterized word embeddings.
A pregroup

(
A, 1, ·,−l,−r,≤

)
can be understood as a special

non-commutative group, i.e., essentially a group with differ-
entiating between left and right inverses and an order relation.
By assigning a type (i.e., a pregroup element) to each word
in a sentence and concatenating these with suitable left and
right inverses depending on their grammatical function in the
sentence, we can express the sentence in form of a pregroup
expression. Considering the sentence “Alice loves Bob” and
following the established pregroup grammar for the English
language [26], all nouns are identified with the pregroup
element n and the verb “loves” is identified as nr · s · nl,
meaning that it expects a noun from the left and right and
yields a complete sentence s when concatenated with these:

“Alice loves Bob” 7→ n ·
(
nr · s · nl

)
· n (1)

=(n · nr) · s ·
(
nl · n

)
= 1 · s · 1 = s

Expanding on this model of grammar, we now introduce the
distributional semantics aspect of DisCoCat to construct the
DisCoCat diagram (step 2). This is done by mapping each
atomic type a ∈ A onto a vector space, i.e., n to N and s to
S, and their concatenation to tensor product spaces (nr · s ·nl
to N⊗S⊗N ). Therefore, a pregroup expression is then repre-
sented as a concatenation of functions, e.g., “loves” becomes
a bilinear map N×N → S while adjectives (of type n·nl) are
represented by a linear map N → N . Using the diagrammatic
calculus of compact closed categories, such computations can
be represented in so-called DisCoCat diagrams, as shown
in Fig. 2a. Following the established choices of maps and
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(a) Original form.
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(b) Reduced form.

Fig. 2: DisCoCat diagrams for “Alice loves Bob”.

using complex vector spaces, these diagrams can be reshaped
according to mathematical properties as, e.g., the isomorphism
between row and column vectors through taking the conjugate
transpose. A possible reduction of the example in Fig. 2a is
depicted in Fig. 2b.

To finally conduct step 3, i.e., mapping the resulting DisCo-
Cat diagram onto a quantum circuit, ▽ boxes are substituted
by quantum states |ψ⟩ based on the chosen word embedding,
while △ boxes correspond to their adjoints ⟨ψ|. Reading the
DisCoCat diagrams from top to bottom and defining straight
wires | as identity operations, this leads to the quantum circuit
shown in Fig. 3. The different structures shown in equation (1),
the diagrammatic representation in Fig. 2 and the quantum
circuit in Fig. 3 are equivalent in a categorical sense.

Note that this QNLP approach requires classical postselec-
tion, i.e., to extract the meaning of the sentence |s⟩, wires 1
and 3 have to be measured in the |0⟩⊗|N | state. In practice,
this can contribute to a potentially immense increase in overall
runtime, especially when scaling up the number of qubits per
DisCoCat wire, i.e., in this case, the dimensionality of N .

III. METHODOLOGY

In the following, we describe our process of data generation,
the choice for the classical baseline facilitating meaningful
evaluation of the results, as well as the implementation of the
QLSTM and the DisCoCat approach.

A. Dataset generation

Aiming to use the same datasets for the QLSTM and
DisCoCat approaches, the sentences must inherit a gram-
matical structure that is comprehensible to the syntax parser
employed in DisCoCat. To the authors’ awareness, no real
world datasets inheriting this property while also being small
enough for current quantum circuit simulators are available to
date. Motivated by the recent success of large language models
like ChatGPT [27], we propose to employ such means to
create suitable synthetic datasets. To generate simple sentences
containing sentiments on finance topics, we interacted with
ChatGPT in the following way:

|0⟩⊗ν

Uloves

U†
Bob |0⟩⊗ν

|0⟩⊗⌈log2(|S|)⌉ |s⟩

|0⟩⊗ν U†
Alice |0⟩⊗ν

Fig. 3: A quantum circuit for “Alice loves Bob” when using
an arbitrary word embedding Uword, where ν := ⌈log2 (|N |)⌉.

Generate sentences with a maximum length of five
words discussing financial topics or stocks in a
positive, neutral or negative way. At the end of each
sentence, mention its respective label with negative
being 0, neutral being 1 and positive being 2. [Query]

Inflation fears rattle markets (Negative - 0)
Interest rates stay steady (Neutral - 1)

[ChatGPT] Apple reports record profits (Positive - 2)

To generate more complex statements, we altered the input
to: “Generate detailed sentences discussing financial topics or
stocks in a positive, neutral or negative way. [...]”. An example
of a positive reply to this was “The rise of online banking has
made it easier and more convenient for customers to manage
their finances”.

An overview of the generated datasets is displayed in Tab. I.

Class
Complexity − ◦ + � word count vocabulary size

Low 34% 18% 48% 4.9 913
Moderate 37% 17% 46% 18.4 1608

TABLE I: Data class distribution of both generated datasets
encompassing roughly 1000 sentences each.

B. Classical Baseline LSTM

To allow for a meaningful comparison of results, we employ
a LSTM as the classical baseline. Following Sec. II-A, a
hyperparameter search the low (moderate) complexity datasets
lead to the use of the ReLU activation function, a trainable
word embedding layer with size 5 (10), one unidirectional
LSTM layer, one fully connected hidden layer of size 8 (16),
followed by a dropout layer with rate 0 (0.1).

C. QLSTM Implementation

Analogously, QLSTM implementation also follows the gen-
eral architecture described in Sec. II-A but differs from the
classic baseline by exchanging the LSTM with a QLSTM
cell. As a result of a basic hyperparameter tuning for the low
(moderate) complexity datasets, we choose: A three qubit one
hot encoding for yt, four qubits and one ansatz layer in each
QNN, whereas the ansatz corresponds to that proposed in the



original QLSTM paper3 for the low (moderate) complexity
datasets [9]. The shape of h and c inside the (Q)LSTM cell
are determined by concatenation vt of the previous hidden
state ht−1 and current input vector xt.

D. DisCoCat Implementation

For implementing the DisCoCat approach, we follow the
procedure stated in Sec. II-B. In doing so, the first key
component is a suitable pregroup parser. As no stable pre-
group parsers exists at the time of conducting this research,
we use the common, closest suited substitution: A CCG
parser [28]. In our implementation we used the BobCatParser
from the Lambeq [29] python library for this task. For
translating the DisCoCat diagrams into quantum circuits, we
follow [12] by choosing these ansätze: Single qubit words
are embedded with the standard Euler parameterization (i.e.,
Rx(θ3)Rz(θ2)Rx(θ1) |0⟩) and words spanning over d > 1
qubits are embedded with d many IQP layers [30], which
initially apply a Hadamard gate to each qubit and then apply
parameterized, controlled Rz gates in a chain-like pattern
iteratively for all neighboring wires.

As the only available software implementation for DisCo-
Cat4 merely supported CPU-based circuit simulation (opposed
to the available GPU-support for the (Q)LSTM implemen-
tation) lead to major wallclock time issues, we restricted
the DisCoCat approach to binary classification by dropping
the neutral data class data. While this generally makes the
results less comparable, its impact is arguably negligible in
the encountered case where QLSTM outperforms DisCoCat.
The fundamental benefit of this is, that |s⟩ can be represented
with a single qubit, as it only needs to carry binary information
hence requiring the least possible computational effort.

IV. EVALUATION

To evaluate the applicability of QLSTMs and DisCoCat
to sentiment analysis in finance, we employ both approaches
as specified in Sec. III on the generated datasets using an
80/10/10 train/validation/test split and employing the binary
cross entropy loss. As displayed in Fig. 4, the classical and
the QLSTM are capable of learning the data in merely 20
epochs with validation accuracies over 80%, hence showing
very promising performance. For the moderate complexity
dataset, much longer training times appear to be necessary,
especially for the QLSTM, where it takes about 100 epochs
before training progress starts to manifest, indicating possible
barren plateaus. A more extensive hyperparameter search
might circumvent this issue, but as the simulation already took
10 hours with a small sized cloud compute approach, classical
circuit simulation appears to become a substantial bottleneck.

3The ansatz consists of a data input layer, a variational layer and a
measurement layer. The data input layer starts with Hadamard gates on every
qubit qi (where i ∈ {1, ..., n}), then proceeds with Ry gates rotating for
arctan (xi) and finishes analogously with Rz rotating for arctan

(
x2
i

)
,

where xi denotes the scalar data inputs. The variational layer starts with
cyclic CNOTs where every qubit qi iteratively acts as the control for the
qi+k mod n-th qubit, where k ∈ {1, 2}.

4For details, see https://github.com/ichrist97/qnlp finance.
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Fig. 4: Training curve for LSTM and QLSTM on both datasets.

In course of the conducted hyperparameter optimization, this
effect appears to be strongly correlated with the number of
ansatz layers employed, which is sensible, as an increased
number of layers leads to a bigger number of parameters
– which is a natural cause of barren plateaus [31]. This
correspondence indicates a time/quality trade-off which should
be investigated more closely in future work.

For the DisCoCat approach, only the low complexity data
was used, as the hardware requirements were substantially
higher with 100 epochs taking roughly 82 hours of wallclock
time with the same setup used for the QLSTM evaluation.
Examining the results of DisCoCat displayed in Fig. 5, we
can observe that while a slight trend of improvement in the
loss and accuracy is visible over the course of all 100 epochs,
it is barely better than random guessing, which would achieve
a 50% accuracy. This indicates that QLSTMs are a lot faster to
train than DisCoCat based approaches for realistic data sizes
and complexities when using the employed CPU based circuit
simulator. However, we argue against generalizing these results
towards ”QLSTMs outperform DisCoCat“, as a clear learning
progress of DisCoCat is observable. Extrapolating from sim-
ilar studies [12], we expect reasonably accurate results for
DisCoCat given a more efficient software implementation.

V. CONCLUSION

In sight of current QC hard- and software limitations,
QLSTMs seem to be better suited when solving QNLP tasks
like sentiment analysis on the employed datasets, which appear
to be a lot more realistic than those used in existing proofs of
concept for both approaches. Notably, the employed ChatGPT-
based data generation approach enabled producing realistic

https://github.com/ichrist97/qnlp_finance
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Fig. 5: Training curve for DisCoCat on low complexity data.

data, while preserving necessary grammatical correctness,
which facilitates more practical testing. A future possibility
to overcome the experienced circuit simulation bottleneck
might be the support of GPU based circuit simulation for the
employed implementation using pennylane and Lambeq.
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