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Abstract—Quantum Transfer Learning (QTL) recently gained
popularity as a hybrid quantum-classical approach for image
classification tasks by efficiently combining the feature extrac-
tion capabilities of large Convolutional Neural Networks with
the potential benefits of Quantum Machine Learning (QML).
Existing approaches, however, only utilize gate-based Variational
Quantum Circuits for the quantum part of these procedures. In
this work we present an approach to employ Quantum Annealing
(QA) in QTL-based image classification. Specifically, we propose
using annealing-based Quantum Boltzmann Machines as part
of a hybrid quantum-classical pipeline to learn the classification
of real-world, large-scale data such as medical images through
supervised training. We demonstrate our approach by applying
it to the three-class COVID-CT-MD dataset, a collection of
lung Computed Tomography (CT) scan slices. Using Simulated
Annealing as a stand-in for actual QA, we compare our method
to classical transfer learning, using a neural network of the
same order of magnitude, to display its improved classification
performance. We find that our approach consistently outperforms
its classical baseline in terms of test accuracy and AUC-ROC-
Score and needs less training epochs to do this.

Index Terms—quantum transfer learning, quantum annealing,
simulated annealing, quantum machine learning, quantum boltz-
mann machine

I. INTRODUCTION

Promising great advantages such as speed-ups, increased
space efficiency and the ability to model probability distribu-
tions naturally, quantum computing is being heavily investi-
gated for usage in machine learning (ML) applications [1]-
[3. To combine these potential advantages with the ability
to efficiently extract “highly informative features” [4, p. 1]
from large-scale image data using pre-trained, state-of-the-
art classical Convolutional Neural Networks (CNNs), hybrid
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Quantum Transfer Learning (QTL) has recently seen a surge
in popularity in such applications [4]]-[12]. These approaches
combine said classical CNNs with Variational Quantum Cir-
cuits (VQCs) trained on the data to be learned in a supervised
manner [4]-[12]. They often achieve desirable results, even
though they use only the small qubit count available on the
current Noisy Intermediate-Scale Quantum (NISQ) computers
of the gate-model type [4]], [S], [10], [L1], [13]]. Another type
of still noisy [14], but currently available Quantum Computers
(QCs), namely Quantum Annealers, can also be used for
supervised QML: This happens e.g. in the form of Quantum
Boltzmann Machines (QBM) [15], which might offer a speed-
up and potential improvement of the training process [15]-
[18]. Eager to explore the applicability of Transfer Learn-
ing (TL) in Quantum Annealing (QA), we want to evaluate
the compatibility of QBMs with QTL approaches, to see if
we can combine the advantages of both concepts.

To do this, we propose an approach that combines the QTL-
method SEQUENT [5], a two-step process that connects a
CNN to a quantum classifier using a classical compression
layer, with an annealing-based QBM that takes the role of said
classifier. We test this approach by classifying the COVID-
CT-MD dataset [19], a large-scale, real-world, three-class
medical image dataset consisting of slices of lung Computed
Tomography (CT) scans. To save QPU time, we do this using
the Simulated Annealing algorithm (SA) [20] instead of QA,
and compare this approach to a classical TL one using a
similarly-sized Feed-forward Neural Network (FNN).

The rest of the paper is structured as follows: In Sec.
we introduce QBMs as well as QTL, and mention the most
relevant work in the area. We then present our architecture
in Sec. and describe the COVID-CT-MD dataset [[19] and
our experiments performed on it in Sec. We conclude by
discussing the implications and limitations of our work, as well
as the needs for future research derived from it, in Sec.
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II. BACKGROUND AND RELATED WORK
A. (Quantum) Boltzmann Machines

A Boltzmann Machine (BM) is an undirected, arbitrarily
connected, stochastic neural network (NN) whose neurons
s; € s, called visible and hidden units, can take the values 0
and 1 with a certain probability [21]]. The function modeled by
the BM takes the form of a Boltzmann distribution governing
said probabilities [21[]-[23]:

E(s)

ﬁ with E(s) = Zwijsisj + Zbisi
s ij i
(D

where w;; and b; are the networks weights and biases and E
is the energy function. The BM can be trained using stochastic
gradient descent to minimize the Kullback-Leibler divergence
(D) between Ppoqer and the distribution Py, underlying the
dataset to be learned, for which, in case of supervised learning,
the conditional distribution of the datapoints’ labels given their
input vectors is used [15]], [21]]. Training involves sampling
from both distributions, as the gradient of Dy, is [21f], [23[]:
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where (.) denotes averaging samples. Sampling thus means
determining the values of all units s; and s; that are not
clamped, i.e. fixed to values of a datapoint, several times, once
for each sample. In supervised learning, one always clamps
some of the visible units to the values of an input vector, and
sampling from Py, additionally involves clamping the rest of
them to the label [[15]], [21]. The difference between classical
BMs and QBMs lies in the way the values of the unclamped
units are obtained: Classically, one has to calculate the value
of each unit based on its probability of becoming 1 of
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which depends on the current values of its neighbors s; [21]],
[24]. This is done iteratively for all units in a sample until
their values do not change anymore [21]], [24]]. As this has to
be done for every sample taken for every datapoint in every
epoch, the process can become very time consuming [21]], [24].

This is why general classical BMs are only rarely used
nowadaysﬂ Instead, one mainly uses Restricted BMs (RBMs)
which make calculations more efficient by restricting their
connectivity to enable parallel calculations of some units’
values and approximating samples from Pj,04e1 by calculating
them using samples from Py, [25]-[27]. QBMs on the
other hand can sample the values of all unclamped units at
once, without any restrictions or approximations [15[. This
is possible as current Quantum Annealers do in general
return samples for entire bit-vectors s that are approximately
Boltzmann distributed with regards to an energy function that

I'This can be e.g. seen when searching Google Scholar for recent literature
on BMs while excluding results containing “restricted” and “quantum”: Most
of the few fitting results consider either niche scientific applications or special
types of BMs, such as Deep BMs, chaotic BMs or higher-order BMs.

they are given in the form of e.g. a Quadratic Unconstrained
Binary Optimization (QUBO) problem [15]]. Thus, mapping
each unclamped unit to a logical qubit of the annealer, one
can directly map a BMs weights and biases to a QUBO,
provided they are scaled with the appropriate inverse effective
temperature S of the hardware, and determine the units
values using one run of the QA process per sample [15]], [22].
Thus, previous work like [16]-[18]] and [28] that used
standalone QA-based QBMs trained with supervised learning
for image classification has observed benefits in terms of
computation time [16], [17] or less fluctuations in training
accuracy [ 18] in comparison to classical equivalents. However,
these papers usually classified only rather simple datasets like
the “bars-and-stripes” [18]] or the MNIST dataset [[16], [17],
[28], where extensive feature extraction as provided by a
TL approach using a large CNN is not necessary. The only
annealing-based work similar to ours is [29], which uses a
pipeline of a classical autoencoder and a Deep Belief Network
pre-trained with QA-based restricted QBMs to classify, among
others, medical images. Unlike this approach, we train our
QBM to directly classify the images using supervised learning,
instead of only using it to initialize a classical classifier.

B. (Quantum) Transfer Learning

Transfer learning (TL) is a ML technique which re-uses
previously learned knowledge by adapting an existing ML
model M4 (usually a large NN) which has been trained on
a dataset D4 to perform a similar learning task on a usually
similar dataset Dp [5], [[12f, [30]. This is done by replacing
part of M 4, in case of a large CNN usually the last (few) fully-
connected layers used for classification, by a new comparable
component such as an untrained classifier Mp (often also
consisting of fully connected layers) [12], [30]], [31]. The
resulting new model M 4. p is subsequently trained on the new
dataset Dp while either freezing the (usually convolutional)
layers M 4/ taken from M 4, meaning their weights and biases
are not trained, or just training them along with Mp [4],
[51, [12], [30], [31]. The first approach, which is used in
this work, is called feature extraction, as that is what M 1’4
is used for, the second is called fine-tuning (5], [30]], [31].
Both have the advantage that less datapoints are needed in
Dp to achieve a model with good generalization and less
computational resources are needed compared to training a
model M 4, p from scratch [5], [30]-[32].

In Quantum Transfer Learning (QTL), the same methods are
applied to hybrid QML models, meaning that either M4/ or
M p or both, contain or consist entirely of a QML component
such as a trainable VQC [4]. Using a classical M4 and
a hybrid quantum-classical Mp is particularly popular, as
employing a classical M4/ as a feature extractor allows to
drastically downsample inputs, making even large datapoints
small enough to be processed on a NISQ computer [|12].

VQC-based QTL approaches that process large datasets,
like the COVID-CT-Scans, on gate-model-type QCs are [0],
(71, 181, [9l, [10], [11]] and [12f]. A gate-based QTL approach
especially relevant to our work is SEQUENT [5]], a two-step



TL approach. Using a large pre-trained CNN like ResNet-18,
it first replaces the fully-connected layer(s) at the end of
this network with a classical compression layer, for further
down-sampling data, and a surrogate classical classification
layer [5]. These layers are both trained on a dataset Dp while
freezing the other layers of the CNN [5]. Then, in a second
step, the surrogate classification layer is replaced by a VQC,
which is trained while the rest of the network, including the
compression layer, is being frozen [5]. This way of training
allows the impact of this quantum part on the classification
performance to become more visible [5].

III. METHODOLOGY

Our approach for constructing a QA-based QTL pipeline
for large-scale image classification, which can be seen in
Fig. [1] follows a process very similar to SEQUENT [5]], only
replacing the VQC with an annealing-based QBM.

It starts with a pre-processing phase in which we resize and
subsequently crop the input images using functionalities of
the Pytorch library [33]] to scale them from their original size,
e.g. 512 x 512 pixels for our COVID-CT-MD dataset [19], to
a size of 224 x 224 pixels. After pre-processing, the image
is fed into a ResNet-18 [34] which was pre-trained on the
ImageNet data set [35]] for feature extraction. This network’s
last layer has been replaced by a compression layer which
further down-samples the data from dimensionality 512 to 64,
and has been pre-trained for 10 epochs on our COVID-CT-MD
dataset [[19] using a surrogate classification layer. This layer
has subsequently been replaced by a layer that binarizes the
data and a (deep) QBM, which classifies the data point into
one of our three categories. In our experiments, the number
of hidden layers h and the total number of hidden units n
of this (deep) QBM were treated as hyperparameters to be
optimized, /h ranging from 1 to 4 and n ranging from 12 to
500. These ranges were chosen to allow the exploration of
many combinations of h with different numbers of units per
layer, while ensuring that most of these combinations could
potentially be embedded into current QA hardware [36].

Regarding the rationale behind using this two-step
TL approach, we would like to point out that, being an
undirected neural network, a QBM cannot be trained
using backpropagation. This makes it impossible to train
any upstream classical feed-forward layers of a combined
neural network architecture simultaneously. Thus, using a
SEQUENT-like approach to train any compression layers is in
this case not only advantageous regarding the investigation of
the impact of this quantum-part on the network, it is outright
unavoidable if one wants to employ such a layer.

IV. EXPERIMENTS

To show that this architecture can be used for large-scale
image classification, we perform experiments on the COVID-
CT-MD dataset [19]. Like Stein et al. [23]], we do this using SA
instead of actual QA, as the hyperparameter optimization we

perform in our experiments requires an extremely large amount
(hundreds of millionﬂ of annealing runs, which is currently
not feasible for us to execute on quantum hardware given
the scarce availability of QA machines. We consider it to be
reasonable to use SA as a stand-in for QA in this context, even
though it has slightly different working mechanisms due to the
absence of quantum tunneling in the algorithm and might take
a lot more execution time on certain problem instances [37]-
[39], as it also returns approximately Boltzmann-distributed
results, just like QA [[15]], [20]], [40]]. This is also stated in the
documentation of D-Wave’s SA implementation [41]], which
we use in our experiments.

A. Dataset

The COVID-CT-MD dataset [[19] consists of lung CT scan
slices labeled as COVID-19 pneumonia (“Covid”), Commu-
nity Acquired Pneumonia (“Cap”) and healthy (“Normal”f]
which we convert from DICOM format to gray-scale PNG
images sized 512 x 512 pixels. We split this dataset into a train
and a test set which each contain a small, but equal amount of
patients for each class (20 for the train set, 5 for the test set),
the number of which is limited by the available amount of
Cap patients (which is 25). We also balance the sets regarding
the total amount of images per class, by deleting images as
necessary, always selecting the patients of whom we had the
most slices when doing so. This results in 905 images per
class in the training and 275 images per class in the test set.
In order to be able to increase the size of the training and
test sets regarding the number of patients, as well as to save
valuable computation time running the SA or, in the future,
QA algorithm, we refrain from using validation.

B. Experimental setup and results

The first step of our experiments is to perform a hyperpa-
rameter optimization, using the Bayesian search algorithm of
the weights and biases framework [42] to find hyperparameters
that maximize the average of training accuracy and training
AUC-ROC-Score. The hyperparameters being optimized can
be taken from the top line of Table [} We continue this process
for 55 runs, each time averaging over 10 random seeds.

To assess the benefits of using an annealing-based QBM in
this pipeline, we compare our approach to a classical one using
the same pipeline, but replacing the QBM with a simple FNN
using sigmoidal unitsﬂ with a similar amount of parameters
to optimize (again having the number of its hidden units be
subject to optimization).

2One arrives at this order of magnitude by multiplying 55 runs * 10 seeds
* 2715 training data points * 2 sampling phases (from Py, and Ppoder) *
between 1 and 20 epochs * between 5 and 100 samples per sampling phase.

3In contrast to both other classes, the “Normal” images are not labeled per
slice, but only per patient. Hence, we here selected random slices between
the indexes 15 and 112, in most of which the lung takes up a decent part of
the image.

4The sigmoid activation function was chosen due to being almost equivalent
to @ [24)., causing it to give the neurons comparable outputs to the average
values of units in a BM and thus maximizing the similarity of both approaches.
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Fig. 1: Our hybrid QTL pipeline. The QBM is the only part of this pipeline that can be run on a Quantum Annealer (even
though we used SA in our experiments), the rest is executed on a classical computer. (CT image from [[19]])

We chose this as a classical baseline instead of a classical
(R)BM since it falls into the category of backpropagation-
based approaches, which are much more commonly used in
state-of-the-art medical image classification techniques [J]],
[32]. Furthermore, FNNs are one of the most common options
for this type of component in classical feature-extraction-
based transfer learning for medical image classification [30],
[31]], making them suitable our setting. This baseline was also
subjected to the same hyperparameter optimization procedure.

When plotting the training accuracy values and AUC-ROC-
Scores of the resulting three best identified hyperparameter
settings for both of these models, listed in Table E] and shown
in Fig. 2] one can see that the annealing-based approach not
only reaches significantly higher values, training results are
also significantly more consistent over different training seeds
compared to the classical approach. And while the training
with SA does take far more wall clock time compared to the
classical baseline, the figure also shows it executes less epochs
in said time to reach this performance. This might lead to a
future speed-up in training if using actual QA were to greatly
reduce the time needed per training step in comparison to SA.

Subsequently, we apply all of the models trained with the
respective three best identified hyperparameter configurations
to our test set. For each of these models, of which we
have 10 per hyperparameter configuration (as we used 10
training seeds), we run the test 10 times, each time using
a different test seed. Subsequently, we determine the test
values by averaging over these test seeds. The distribution
of the test values over the different models can be seen
in Fig. While the results are generally not optimal, the
annealing models on average outperform the classical models
and again show more consistent behavior across training seeds.

V. DI1SCUSSION AND CONCLUSION

In this work, we have used a hybrid QTL approach including
an annealing-based QBM to classify images of a large real-
world dataset, namely the COVID-CT-MD dataset. While the
classification performance of the approach with under 70%
test accuracy and a test AUC-ROC-Score of only around 80%

is not very high, it on average significantly outperforms a
similarly-sized sigmoidal FNN. Also, even though it still takes
significantly more wall clock time when using SA, it needs
a smaller amount of training epochs to reach this level of
performance and is less variable in its performance when using
different training seeds. This indicates that, whilst not optimal
yet, the approach seems promising for further research into the
possible advantages of QML for large-scale image recognition,
be it regarding classification performance or execution speed.

Future work should thus include three aspects:

Firstly, possibilities to achieve higher classification perfor-
mance with the current approach should be investigated. Its
suboptimal classification performance is likely due to over-
fitting on the training dataset, which is neither very large nor
diverse, considering it only contains images of a small amount
of patients which, when coming from the same person, are
very similar. Thus, methods to circumvent this problem, such
as employing validation and early stopping, or using another
dataset with more different pictures, should be explored.

Secondly, a strong limitation of this work is that so far,
we have only used SA to evaluate our approach. Performing
experiments on quantum hardware is however a necessary
step to determine the actual capability of the approach to
enable effectively utilizing near-term available QCs in large-
scale image classification. The reason for this is that Quantum
Annealers come with a lot of physical properties that might
cause their behavior to differ from that of SA: Features like
quantum tunneling might have the potential to improve the
performance of the approach, while effects of noise, early
freeze-outs of the physical dynamics of the annealing process
or the “breaking” of entanglement between visible and hidden
units might harm it [15], [22], [44], [45]. In this context, it
might also be interesting to see how our approach compares
to the original SEQUENT approach using VQCs and how it
compares to a version using supervised classical RBMs instead
of the QBM or FNN, to explore the performance of different
comparable approaches.

Lastly, while we do suspect that using our pipeline for large-
scale image classification is beneficial, due to its employment
of feature extraction and further data compression that casts



TABLE I: Best identified hyperparameter settings (rounded to 5 decimal places). Ser and the sample count are not applicable
to the learning procedure of the classical approach. 31, B2 and € are parameters of the Adam optimizer we used.

approach | name | batch size | epochs | h n learning rate | Adam’s 81 | Adam’s $2 | Adam’s € Bett sample count
SA ba_86 86 11 1 | 332 0.02810 0.57372 0.87481 0.46784 5.57229 60
SA ba_87 87 8 1 | 253 0.05893 0.57614 0.85976 0.57921 7.33457 51
SA ba_99 99 6 1 | 492 0.06456 0.73595 0.89025 0.61694 9.31536 94
classical ba_29 29 13 1] 279 0.05120 0.53482 0.87913 0.22486 - -
classical ba_35 35 15 1 | 294 0.02592 0.57760 0.80141 0.16210 - -
classical ba_77 77 18 1 82 0.09008 0.71723 0.83271 0.10328 - -
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Fig. 2: Accuracies and AUC-ROC-Scores of SA and classical models with the best identified hyperparameter settings over the
course of the training. The solid line shows the average over 10 seeds, the transparent area around it the standard deviation.
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the data into a more information-dense form, we have yet
to investigate experimentally how this compares to using a
stand-alone QBM on this type of data, without involved pre-
processing.

Thus, although the approach presented in this work may
seem promising, the question as to whether it will lead to a
near-term quantum advantage remains open.
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