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Because quantum simulation of molecular systems is expected to provide the strongest advantage
over classical computing methods for systems exhibiting strong electron correlation, it is critical that
the performance of VQEs be assessed for strongly correlated systems. For classical simulation, strong
correlation often results in symmetry-breaking of the Hartree-Fock reference, leading to Löwdin’s
well-known “symmetry dilemma” whereby accuracy in the energy can be increased by breaking spin
or spatial symmetries. Here, we explore the impact of symmetry breaking on the performance of
ADAPT-VQE using two strongly correlated systems: (i) the “fermionized” anisotropic Heisenberg
model, where the anisotropy parameter controls the correlation in the system, and (ii) symmetrically-
stretched linear H4, where correlation increases with increasing H-H separation. In both of these
cases, increasing the level of correlation of the system leads to spontaneous symmetry breaking
(parity and Ŝ2, respectively) of the mean-field solutions. We analyze the role that symmetry breaking
in the reference states and orbital mappings of the fermionic Hamiltonians have on the compactness
and performance of ADAPT-VQE. We observe that improving the energy of the reference states by
breaking symmetry has a deleterious effect on ADAPT-VQE by increasing the length of the ansatz
necessary for energy convergence and exacerbating the problem of “gradient troughs”.

I. INTRODUCTION

The simulation of ground electronic states of molec-
ular Hamiltonians is a fundamental goal of theoretical
chemistry. Several classes of methods exist within the
realm of classical computing for treating these systems,
including density functional theory (DFT),1,2 Hartree-
Fock (HF) theory,3,4 Møller-Plesset (MP) perturbation
theory,5 coupled cluster (CC) theory,6,7 configuration in-
teraction (CI), and many others. While DFT and HF are
by nature approximate, MP2, CC, and CI are systemat-
ically improvable. For systems with weakly correlated
electrons, inclusion of only single and double excitations
in MP or CC theory is sufficient for accurate results,
while for systems with strongly correlated electrons, low
excitation rank methods fail to capture the physics re-
quired to provide accurate energies, although increasing
the excitation rank leads to a rapid increase in the com-
putational resources required, with exact treatment [full
CI (FCI)] requiring combinatorial scaling with system
size to cover the Hilbert space of the system.
Simulation of chemical systems on quantum comput-

ers, however, offers an attractive alternative to classical
simulations, as the quantum mechanical structure is ef-
ficiently captured in the quantum nature of the device,8

i.e., the combinatorial growth of the Hilbert space with
system size is absorbed by the quantum processor.9 The
promise of quantum computation for chemistry is cur-
rently limited by the small numbers of qubits (101−102)
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in existing quantum devices and the quality of those
qubits (limited coherence times). In this noisy interme-
diate scale quantum (NISQ) era, the success of quan-
tum simulation depends on both the quality of qubits
and the ability of quantum algorithms to cope with these
limitations.10

The Variational Quantum Eigensolver (VQE), origi-
nally proposed by Peruzzo et. al.,11 offers an approach for
quantum simulation of chemical Hamiltonians. VQE is
a hybrid quantum-classical algorithm in which the com-
putational work is divided between a quantum proces-
sor and a classical co-processor.12 In this scheme, one

prepares parameterized trial states |ψ(~θ)〉 on the quan-
tum processor and minimizes the expectation value of the
Hamiltonian with respect to the ansatz parameters:

E = min
~θ

〈ψ(~θ)|Ĥ |ψ(~θ)〉 (1)

= min
~θ

∑

i

gi〈ψ(~θ)|ôi|ψ(~θ)〉, (2)

where gi are the classically precomputed one- and two-
electron integrals, and ôi are the corresponding one- and
two-electron operators. As the different ôi terms do not
generally commute, state preparation and measurement
of the terms in Eq. 2 must be performed multiple times
to statistically converge the expectation values.
Here, the quantum computer is used to prepare trial

states and measure the molecular Hamiltonian, while the
classical computer is used to determine ansatz parameter
updates. Trial states are prepared by applying a parame-

terized unitary operator, Û(~θ), to a reference state |ψ(0)〉:

|ψ(~θ)〉 = Û(~θ)|ψ(0)〉. (3)
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Several VQE ansätze have been explored for theoretical
studies11–20 and on quantum hardware,13,17,21–23 many
of which are modifications of the unitary coupled clus-
ter (UCC) ansatz24–27 from classical electronic structure
theory. While in principle a circuit implementation of an
arbitrarily expressive ansatz can map the reference to any
state in the Hilbert space (including the exact FCI state),
practical limits on the depth of circuits that may be im-
plemented within the coherence times of NISQ devices

imposes limits on the structure of U(~θ). Therefore, while
the reduced circuit depth of VQEs versus PEA (at the
cost of many more measurements) makes VQEs attrac-

tive for NISQ devices, the limits imposed on Û(~θ) mean
that VQEs typically produce approximate solutions. The
accuracy of VQEs is, therefore, ultimately limited by the
variational flexibility of the predefined ansatz.

Unlike VQEs with statically defined ansätze, the adap-
tive problem-tailored VQE (ADAPT-VQE) method, de-
veloped by Grimsley et al.,28 avoids a predefined uni-
tary ansatz by constructing an arbitrarily accurate quasi-
optimal ansatz on the fly. This is achieved by iteratively
growing the ansatz by adding operators from a pool one-
at-a-time as informed by the Hamiltonian. ADAPT-VQE
has been shown to simultaneously provide smaller gate
counts and errors than traditional VQE methods.28,29

Further improvements on the ADAPT-VQE framework
have come from the introduction of qubit-based opera-
tor pools (qubit-ADAPT-VQE)30 and minimally com-
plete pools to reduce measurement overhead.31 The
success of ADAPT-VQE has inspired the development
of other adaptive VQEs as well, including iterative
qubit excitation based VQE (QEB-ADAPT-VQE),32

mutual information-assisted adaptive VQE,33 and the
adaptive variational quantum imaginary time evolution
(AVQITE) method.34

An additional motivation for the adaptive construc-
tion of ansätze is the ability to adapt to systems that
are strongly correlated, where the performance of clas-
sical methods and even traditional VQEs is expected to
suffer. In this work, we investigate the performance of
ADAPT-VQE on two distinct systems that display vari-
able amounts of strong correlation: (i) the fermionized
anisotropic Heisenberg model, where the anisotropy pa-
rameter allows for control over the level of correlation in
the system, and (ii) the symmetric dissociation of lin-
ear H4. In both of these cases, increasing the level of
correlation of the system leads to spontaneous symmetry
breaking (parity and Ŝ2, respectively) of the mean-field
solutions. We explore the roles played by these symme-
tries, both in the reference state and the operator pool,
for ADAPT-VQE, highlighting their importance in gen-
erating compact ansätze and preventing premature con-
vergence of the algorithm. Our results bolster the find-
ings of Barron et al.35 and Shkolnikov et al.31 on the im-
portance of building the symmetries of the Hamiltonian
into the operator pools.

II. BACKGROUND

A. ADAPT-VQE Algorithm

Unlike traditional VQE, which begins with a predeter-

mined form of the unitary U(~θ), ADAPT-VQE iteratively
grows a problem-tailored unitary ansatz by adding oper-
ators one-at-a-time from a predetermined operator pool.
Before the algorithm begins, the Hamiltonian coefficients
are computed and mapped to a qubit representation, as
in traditional VQE. The operators, Âk, in the pools used
in this work take the form of anti-Hermitian sums of gen-
eralized excitation and de-excitation operators, e.g.,

Âp
q = t̂pq − t̂qp,

= tpq
(

â†pâq − â†q âp
)

, (4)

Âpq
rs = t̂pqrs − t̂rspq,

= tpqrs
(

â†pâ
†
q âsâr − â†râ

†
sâqâp

)

, (5)

where p, q, r, and s are arbitrary spin-orbital indices.
Exponentiation of these anti-Hermitian operators yields
unitary operators. While other operator pools have been
explored,30–32,36 we focus here on the fermionic opera-
tor pool. The ADAPT-VQE trial state is then initialized
with a reference state that is easily prepared on the de-
vice, typically a product state corresponding to the HF
determinant. To grow the ansatz, the current trial state,
|ψ(n)〉, is prepared on the device and the gradient of the
energy with respect to the operator parameters θk for
each operator Âk in the pool is measured. This is done
by measuring the expectation value of commutator of the
Hamiltonian and the operators for the current state:

∂E(n)

∂θk
=

〈

ψ(n)
∣

∣

∣

[

Ĥ, Âk

]∣

∣

∣
ψ(n)

〉

. (6)

This gradient measurement step of ADAPT-VQE is
highly parallelizable over multiple uncoupled devices.
The operator corresponding to the largest gradient mag-
nitude is then used to form the new trial state ansatz:

|ψ(n+1)(~θ(n+1))〉 = eθn+1Ân+1|ψ(n)〉
= eθn+1Ân+1eθnÂn · · · eθ1Â1 |ψ(0)〉. (7)

The new parameter θn+1 is initialized to 0, while the
initial values for the other parameters are taken to be
the optimized values from the previous iteration. The

new ansatz is then optimized over all ~θ(n+1) via a VQE
subroutine to yield |ψ(n+1)〉. From here the algorithm
repeats by returning to the operator gradient measure-
ment step. Convergence of the ADAPT-VQE algorithm
may be determined in a number of ways, including the

norm (l2 or l∞) of the operator gradient
∣

∣

∣

∂E(n)

∂θk

∣

∣

∣
< ǫ,

the variance of the ADAPT-VQE state 〈ψ(n)|Ĥ2|ψ(n)〉−
(E(n))2 < ǫ, and the energy change between iterations
|E(n)−E(n−1)| < ǫ. The operator pools are not “drained”
by the addition of an operator to the ansatz; a given
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operator may be added to the ansatz more than once,
with different parameters for each occurrence. Because
of this, ADAPT-VQE can be viewed as an algorithm that
approximates the exact (FCI) ground state to arbitrary
accuracy by appending multiple instances of the opera-
tors:

|ψFCI〉 =
∞
∏

l

∏

k

eθ
(l)
k

Âk |ψ(0)〉, (8)

where the parameters θ
(l)
k are allowed to vary indepen-

dently for different l. Ref. 28 presents a more detailed ex-
planation and demonstration of ADAPT-VQE and this
connection to FCI. Similar work on the exactness of gen-
eral trotterized UCC variants has been explored by Evan-
gelista et al.37

B. The Heisenberg Model

While spin Hamiltonians are most often associated
with condensed matter physics, these Hamiltonians are
also often used in the context of chemistry as model sys-
tems to develop a coarse-grained understanding of cer-
tain molecular interactions.38–48 Such models are useful
for describing the interactions between open-shell frag-
ments, such as metal atoms in multi-metal organometal-
lic complexes. These interactions are broadly classified
as ferromagnetic coupling or antiferromagnetic coupling
based on whether or not the ground state has a spin mag-
netic moment.
In this picture, the unpaired electrons on a given metal

atom are aligned parallel to each other while the un-
paired electrons on different metal atoms align either
parallel (ferromagnetic coupling) or antiparallel (antif-
eromagnetic coupling) to each other. While purely ab

initio approaches to describe these systems must contend
with strongly interacting electrons within nearly degen-
erate orbitals, the effective-Hamiltonian approaches re-
duce these to the interactions between the net spins on
different fragments. The exchange interaction, a conse-
quence of Fermi statistics, provides the energetic driving
force behind this coupling. For fixed oxidation states, the
Heisenberg-Dirac-van Vleck Hamiltonian (HDvV)49–51

provides a simple model that depends on the net spin
of the different metal centers:

ĤHDvV = −2
∑

ij

Jij ~̂Si · ~̂Sj (9)

= −2
∑

ij

Jij

(

Ŝx
i Ŝ

x
j + Ŝy

i Ŝ
y
j + Ŝz

i Ŝ
z
j

)

. (10)

Jij > 0 couples sites i and j ferromagnetically while
Jij < 0 couples them antiferromagnetically. The problem
then shifts (slightly) from describing the many interac-
tions between the electrons to describing the interactions
between the spins, namely obtaining values for Jij .
The Heisenberg spin Hamiltonian can also be con-

sidered as a model for strong fermionic correlation as

well, when viewed in the strong-correlation limit of
the fermionic Hubbard model. The fermionic Hubbard
Hamiltonian is given as

ĤHubbard = t
∑

ij

∑

σ

â†i,σâj,σ +
1

2
U
∑

i

n̂i,σn̂i,σ̄, (11)

where t is the single-electron hopping, and U is the two-
electron repulsion. When t

U
≫ 1, the system is domi-

nated by hopping (kinetic energy-like), and in the limit
U → 0 it becomes a free-electron system where the elec-
trons delocalize over the entire lattice. In this regime
the delocalized state may be taken as the zeroth-order
solution, with correlations between electrons handled by
perturbation theory. In the opposite limit, where t

U
≪ 1,

the system becomes localized. In this regime, degenerate
perturbation theory may be used to treat delocalization
as a perturbation to the

(

N
k

)

-fold degenerate localized
ground states, where N is the number of sites and k the
number of electrons. This approach yields the Heisenberg

Hamiltonian and at second order J
(2)
ij = − t2

U
(see deriva-

tion in Ref. 52). This connection between the Hubbard
model in the limit of large electron-electron repulsion and
the Heisenberg spin Hamiltonian suggests the latter as a
model for studying strong correlation. While our use of
the Heisenberg model is as a proxy for chemical systems,
the use of quantum computers to simulate model Hamil-
tonians is an important field in its own right, with much
recent work in this context.35,53–61

1. Anisotropic Heisenberg Hamiltonian

The HDvV Hamiltonian given in Eqs. (9) and (10) is
referred to as being isotropic, meaning that the x, y, and
z components of the total spin are treated equivalently. If
interactions are present that break this equivalence (e.g.
dipolar-like couplings), the resulting effective spin Hamil-
tonian becomes anisotropic. The anisotropic Heisenberg
model, also known as the XXZ model, has a Hamiltonian
given by

Ĥaniso = −2J
∑

〈ij〉

(

Ŝx
i Ŝ

x
j + Ŝy

i Ŝ
y
j

)

− 2K
∑

〈ij〉

Ŝz
i Ŝ

z
j , (12)

where 〈ij〉 restricts the sum over nearest-neighbor sites.

2. Fermionization of 1D spin Hamiltonians

While application of degenerate perturbation theory
to the Hubbard model in the t

U
≪ 1 limit to yield

the Heisenberg Hamiltonian provides a connection be-
tween fermions and spins, this connection is made more
general by the Jordan-Wigner (JW) transform.62 The
JW transform has become ubiquitous in quantum sim-
ulation of chemistry Hamiltonians as a means to map
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fermionic Hamiltonians onto qubit Hamiltonians; how-
ever, the transformation was originally proposed as a
means to map spins onto fermions. For a one-dimensional
(1D) spin-1/2 lattice, the anisotropic Heisenberg Hamil-
tonian is “fermionized” by first writing Eq. 12 in terms of
Pauli ladder operators and then substituting them with
fermionic creation/annihilation operators:

Ĥaniso = −J
2

∑

i

(

σ̂x
i σ̂

x
i+1 + σ̂y

i σ̂
y
i+1

)

−K
2

∑

i

σ̂z
i σ̂

z
i+1 (13)

= −J
∑

i

(

σ̂+
i σ̂

−
i+1 + σ̂−

i σ̂
+
i+1

)

−K
2

∑

i

σ̂z
i σ̂

z
i+1 (14)

= −J
∑

i

(

â†i âi+1 + âiâ
†
i+1

)

−K
∑

i

(

2â†i âiâ
†
i+1âi+1 − â†i âi

−â†i+1âi+1 +
1

2

)

. (15)

For K = 0, this fermionized Hamiltonian reduces to a
one-electron Hamiltonian that is easily diagonalized to
yield non-interacting fermions. This model is known as
the XY model, and despite acting on the full Hilbert
space in the spin representation, it has a trivially simple
solution in the fermionic representation. Table I sum-
marizes the different limits of the anisotropic Heisenberg
Hamiltonian. The ratio of K/J is seen as a correlating
parameter, as below the isotropic point (K/J = 1) in-
creasing K/J increases the correlation in the system by
encouraging localization. Above the isotropic point this
correlation decreases with increasing K/J . Beginning at
the isotropic point and for all larger K/J , the mean-field
solution is seen to break spatial (parity) symmetry. In the
first set of results, we apply ADAPT-VQE to the fermion-
ized anisotropic Heisenberg model to investigate the role
of parity symmetry in the performance of ADAPT-VQE
for both local and non-local representations.

III. COMPUTATIONAL DETAILS

We employ an antiferromagnetically coupled (J < 0;
K < 0) anisotropic Heisenberg Hamiltonian on a 1D,
eight-site lattice as a model system for our calculations.
Calculations are performed within the Ms = 0 space,
which after JW transformation yields a four-fermion sys-
tem (half-filling). We survey correlation parameter val-
ues K/J ranging from 0.001 to 100. The OpenFermion63

electronic structure theory package is used to build the
nearest-neighbor (local) spin Hamiltonians and trans-
form them into local fermionic Hamiltonians.64 These

local fermionic Hamiltonians are diagonalized to yield
full configuration interaction (FCI) energies and wave-
functions. For each surveyed value of K/J , the ground
state wavefunction has even symmetry (gerade, g) with
respect to the lattice, and the first excited state has odd
symmetry (ungerade, u). These two states become de-
generate in the K/J → ∞ limit. The local Hamiltoni-
ans are then read into the PySCF65,66 electronic struc-
ture theory package to perform HF. For K/J < 1, a
wavefunction stability analysis of the HF solutions con-
firms that the stable HF solution has an even symme-
try with respect to the center of the lattice. We follow
this solution for K/J ≥ 1 to yield symmetry-preserving
HF solutions; however, performing a stability analysis
on these solutions yields a more stable broken-symmetry
solution. The “molecular” orbitals (MOs) from both the
symmetry-preserving and symmetry-broken HF solutions
are then used to transform the local Hamiltonians into
non-local MO bases.

We perform second-order Møller-Plesset perturba-
tion theory (MP2),5 and traditional (non-unitary) cou-
pled cluster theory with single and double excitations
(CCSD)67 on top of these HF solutions with PySCF.
The non-local fermionic Hamiltonians are then translated
into non-local qubit Hamiltonians within the ADAPT-
VQE procedure. This process of transforming from local
spin Hamiltonians to non-local spin Hamiltonians is il-
lustrated in Fig. 1.

For linear H4, we survey H–H separations from 0.50 Å
to 3.00 Å. Classical electronic structure calculations are
performed with PySCF, and the STO-3Gminimal basis68

is used for both the classical methods and ADAPT-VQE
simulations.

The ADAPT-VQE calculations are simulated without
noise on a development branch of our in-house code,69

which in turn uses OpenFermion63 for the JW operator
transformations and SciPy70 for BFGS optimization of
the parameters in the VQE subroutine.

For the fermionized, anisotropic Heisenberg Hamilto-
nians, we perform ADAPT-VQE simulations with five
combinations of reference states and orbital bases (used
to transform the Hamiltonians and define the fermionic
operator pools) to investigate the roles that symmetry
plays in ADAPT-VQE as correlation increases.

1. Symmetry-preserving HF orbitals and refer-

ence state: The canonical HF orbitals are used
to transform the Hamiltonians from the local site
orbital basis to the nonlocal, symmetry-preserving
MO bases. When the parity of the system is en-
forced at the HF level, these canonical orbitals
are of either g or u character, and as such the
determinants are eigenstates of the parity opera-
tor with parities determined by the occupied or-
bitals. Similarly, the parities of the pool operators
are determined by the orbitals used to define the
excitations/de-excitations. The reference state is
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TABLE I. Different cases of the Hamiltonian in Eq. (12) and comparisons to fermionic models when fermionized.

Case Hamiltonian Features

K = 0 ĤXY = −2J
∑

〈ij〉

(

Ŝx
i Ŝ

x
j + Ŝy

i Ŝ
y

j

)

Free fermion model, completely delocalized, no entangle-
ment in the ground state

K = J ĤHDvV = −2J
∑

〈ij〉

(

Ŝx
i Ŝ

x
j + Ŝy

i Ŝ
y

j + Ŝz
i Ŝ

z
j

)

Isotropic, competition between localization and delocal-
ization, entangled ground state

J = 0 ĤIsing = −2K
∑

〈ij〉

Ŝz
i Ŝ

z
j Degenerate Néel ground states, completely localized, no

entanglement in ground state

Spin Hamiltonian: Non-local

Fermionic Hamiltonian: Non-local

Fermionic Hamiltonian: Local

Spin Hamiltonian: Local

Jordan-Wigner

Orbital Rotation

Jordan-Wigner

(a)

(b)

(c)

(d)

FIG. 1. Depiction of the use of the Jordan-Wigner transfor-
mation and Hartree-Fock to transform the anisotropic Heisen-
berg Hamiltonian from a local representation to a non-local
representation. Grey lines between points depict interactions
(not all are shown, but meant to represent the locality/non-
locality of the system). Constant terms are neglected and J
is set to 1.

the JW transformed HF state,

|ψ(0)
HF〉 = |11110000〉, (16)

which has g symmetry, and where orbitals are or-
dered in increasing energy from left to right. This
reference state is the exact ground state in the free-
fermion limit (K → 0).

2. Symmetry-breaking HF orbitals and refer-

ence state: The canonical HF orbitals are used
to transform the Hamiltonian from the local site
basis to the nonlocal, broken-symmetry HF or-
bitals. With the onset of symmetry-breaking, these
canonical orbitals are of neither g nor u character,
and therefore neither the determinants nor oper-
ators have parity symmetry. The reference state
is the JW transformed HF state (Eq. 16) which
also breaks parity symmetry due to the symmetry-
breaking of the underlying orbitals.

3. Local orbital basis, Néel reference state: The
Hamiltonian is expressed in the local site basis. As
the site orbital basis has no parity symmetry, the
determinant basis and operators lack parity sym-
metry. The reference state is the Néel state,

|ψ(0)
Néel〉 = |10101010〉, (17)

which does not have parity symmetry. This refer-
ence state is energetically exact, though symmetry-
broken, in the Ising limit (J → 0), analogous to
how unrestricted HF becomes exact for separated
hydrogen atoms.

4. Local orbital basis, cat+ reference state: The
Hamiltonian is expressed in the local site orbital ba-
sis. While the basis and operators have no parity
symmetry due to the asymmetry of the site orbital
basis, the cat+ state, given as the plus superposi-
tion of the two complementary Néel states,

|ψ(0)
cat+〉 =

1√
2
(|10101010〉+ |01010101〉) , (18)

is used as the reference state and has g symmetry.
This reference state lies in the two-fold degenerate
subspace of the exact ground state in the Ising limit
(J → 0).
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5. SALC orbital basis, cat+ reference state: A
symmetry-adapted basis formed by taking the plus
and minus linear combinations of complementary
site orbitals is used to transform the Hamiltoni-
ans from the site orbital basis to the SALC orbital
basis. By construction, these SALC orbitals are
of either g or u character, and as such the deter-
minant basis has parity symmetry. Similarly, the
parities of the operators are determined by the or-
bitals used to define the excitations/de-excitations.
The reference state is the cat+ state in the SALC
orbital basis,

|ψ(0)
SALC,cat+

〉 = 1√
2
(|10101010〉+ |01100110〉

+ |10011001〉+ |01010101〉
− |01101001〉 − |10100101〉
−|01011010〉− |10010110〉) , (19)

which has g symmetry.

For all five combinations of orbital bases and reference
states, we use a fermionic generalized singles and doubles
(GSD) operator pool without symmetry adaptation of
the fermionic operators.
For the symmetric dissociation of H4, we compare the

performance of ADAPT-VQE when performed with spin-
restricted HF (rHF) and spin-unrestricted HF (uHF)
orbitals. This allows us to determine the impact of
symmetry breaking in the representation. For rHF
we further explore the impact of spin-adapting the op-
erator pool, by using both the singlet-GSD (sGSD)
pool, where the pool operators are symmetry-adapted
linear combinations of excitation/de-excitation opera-
tors, and the unrestricted-GSD (uGSD) pool, where the
excitation/de-excitation operators in the operator pool
are not symmetry-adapted.

IV. RESULTS

A. Anisotropic Heisenberg Model

Fig. 2(a) presents the absolute errors for the symmetry-
preserving HF, MP2 and CCSD on top of these refer-
ences, and the energy gaps between the ground and first
excited FCI states. For K/J > 10, the HF solutions be-
gin to spontaneously break the parity symmetry of the
system even when using the previous solutions at lower
values of K/J as initial guesses. We are also unable to
converge the CCSD amplitude equations for K/J > 3.16.
The kink in the CCSD data observed at K/J = 1.12 cor-
responds to the onset of CCSD having a lower energy
than the FCI ground state. This non-variational behav-
ior persists for all larger values of K/J .
In the weakly correlated limit K/J ≪ 1, MP2 reduces

the energy error of HF by three orders of magnitude,
demonstrating a success of simple perturbation theory.

As more correlation is added to the system, the break-
down of MP2 becomes evident as its improvement over
HF decreases significantly. For K/J > 1, the error of
HF and MP2 continues to increase with increasing K/J .
The HF and MP2 errors exceed the gap between the
ground and first excited FCI states for K/J > 1.78 and
K/J > 3.16, respectively. The error reduction of CCSD
is more resilient to increasing correlation, though scan-
ning from K/J = 0.001 to K/J = 1 the improvement in
errors over HF reduces from over seven orders of magni-
tude to three orders of magnitude.

For K/J ≥ 1, the symmetry-preserving HF solutions
are found to be unstable to symmetry breaking. Fig. 2(b)
presents the absolute errors for HF (BS-HF), MP2 (BS-
MP2), and CCSD (BS-CCSD), where the HF solutions
are allowed to break the parity symmetry of the lattice.
The energy gap between the ground and first excited
FCI states are also plotted. For K/J < 1, the HF so-
lutions do not break symmetry and therefore the HF,
MP2, and CCSD curves in this region are identical to
those in Fig. 2(a). The cusp seen at K/J = 1 in the
CCSD data arises from the change in character of the un-
derlying HF reference due to symmetry breaking. Unlike
in the symmetry-preserving case, the symmetry-broken
CCSD remains above the FCI value for all surveyed val-
ues of K/J .

In the symmetry-breaking regime, the errors in the HF,
MP2, and CCSD solutions are much closer to one another
compared to the K/J < 1 regime. CCSD improves upon
the HF error by two orders of magnitude (1. × 10−3 J
versus 2. × 10−1 J) for K/J = 1 while at K/J = 100,
CCSD only improves on the HF error by 20% (8. ×
10−6 J versus 1.×10−5 J). For allK/J , the errors in the
broken-symmetry HF, MP2, and CCSD results fall below
the energy gap between the ground and first excited FCI
states.

The instability of HF to symmetry breaking forK/J >
1 is an example of the “symmetry dilemma” discussed by
Löwdin,71 wherein the most energetically favorable single
determinant (classical state) breaks an intrinsic symme-
try of the system, while the most energetically favorable
symmetry-preserving state is higher in energy.

Using the five calculation settings described above, we
now investigate the roles that parity symmetry and local-
ity play in the compactness of the ADAPT-VQE ansätze.
In Fig. 3, we report the absolute error from the ex-
act ground state energy, the norm of the ADAPT-VQE
gradient, and the infidelity from the exact ground state
wavefunction all versus the number of parameters in the
ADAPT-VQE trial state. The infidelity, presented as a
measure of closeness of the ADAPT-VQE wavefunction
|ψADAPT〉 to the exact ground state wavefunction |ψFCI

0 〉,
is given by

Inf
(

|ψFCI
0 〉, |ψADAPT〉

)

=1− F
(

|ψFCI
0 〉, |ψADAPT〉

)

(20)

=1−
∣

∣〈ψFCI
0 |ψADAPT〉

∣

∣

2
, (21)
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FIG. 2. Absolute energy errors from FCI for HF, MP2, and CCSD versus the correlation parameter K/J presented alongside
the energy gap between the ground and first excited FCI states (FCI E1). (a) Reference state is the symmetry preserving
orbitals. (b) Reference state is the broken-symmetry orbitals.

where F is the fidelity of the two states.

1. Symmetry breaking slows energy convergence

Looking across panels 3(a), 3(d), and 3(g), we see that
in each case, both symmetry preserving calculations (HF
and SALC/cat+) converged to the exact solution with
only 37 parameters. This reduced number of parameters
arises from the fact that when symmetry is preserved
throughout the state preparation, we only need to pa-
rameterize states within the corresponding g-symmetry
subspace, which for this 8-site lattice has a dimension of
38. For all the other cases, which involve some symmetry
breaking (either in the orbitals, reference state, or both),
the full 70-dimensional Hilbert space must be spanned
to achieve exact convergence. The 52 CCSD amplitudes
can be divided into 28 g excitations and 24 u excitations.
In Fig. 3, we only report CCSD as having 28 parame-
ters, since the remaining 24 u-symmetry excitations can-
not contribute when applied to a symmetry-preserving
reference state. As such, CCSD does not have enough
parameters to span the 38-dimensional g subspace. This
is also obvious from the fact that CCSD has neither con-
nected triple nor quadruple excitations, interactions that
ADAPT-VQE is able to include by sequential application
of one- and two-particle rotations.

For the weaker-correlation case (K/J = 0.1), the
symmetry-preserving calculations always outperform the
symmetry-violating cases (the red curve is always be-
low the rest). This is not too surprising, given that
the HF reference state is the most stable product state
available. With the onset of symmetry-breaking in HF
(K/J = 1), the broken-symmetry HF is slightly more
favorable. However, ADAPT(HF) begins to outper-
form ADAPT(BS-HF) after a single iteration. On the
other hand, when the correlation increases to K/J =

10, the symmetry-preserving HF reference is no longer
the lowest-energy product state, but instead is now the
highest-energy reference state considered in our data. As
a consequence, in this strong-correlation regime, the use
of a broken-symmetry reference leads to lower energy at
early stages of the algorithm. However, this energetic
advantage of the broken-symmetry reference quickly be-
comes a disadvantage due to a very slow convergence at
later stages [seen as the flat-lining of the green and orange
curves in Fig. 3(g)].

2. Symmetry breaking worsens gradient troughs

As reported recently,72 strongly correlated systems are
susceptible to exhibiting gradient troughs, whereby the
gradients of the pool operators initially diminish before
eventually increasing prior to convergence. This non-
monotonic convergence is problematic because it appears
to the user as false convergence. For the fermionized,
anisotropic Heisenberg model studied here, we again ob-
serve the onset of gradient troughs when the correlation
is increased, as is clearly evident in Fig. 3(h). However,
when we allow the symmetry to break, we find that prob-
lems with gradient troughs worsen.

For both symmetry-breaking references, ADAPT(BS-
HF) (orange) and ADAPT(local/Néel) (green), the norm
of the operator pool gradient is seen to decrease with
the addition of operators to the ansatz and then sud-
denly jump by several orders of magnitude. Before es-
caping from the gradient trough, the energy errors for
ADAPT(BS-HF) and ADAPT(local/Néel) lie close to
that of broken-symmetry CCSD, which is approximately
one half of the gap between the exact ground and first
excited FCI states [panel 3(g)]. Additionally, the infi-
delities of the ADAPT(BS-HF) and ADAPT(local/Néel)
states are approximately 0.5 before escaping the gradi-
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FIG. 3. ADAPT-VQE results for the fermionized, anisotropic Heisenberg Hamiltonian. Absolute energy errors [(a), (d), and
(g)], ADAPT-VQE gradient norms [(b), (e), and (h)], and infidelities from the exact wavefunction [(c), (f), and (i)] as the
ADAPT-VQE ansätze grow are presented for K/J = 0.1, K/J = 1, and K/J = 10. The ADAPT-VQE methods surveyed use
symmetry-preserving HF orbitals and reference state (HF); broken symmetry HF orbitals and reference state (BS-HF); local
site orbital basis, Néel reference state (Local, Néel); local site orbital basis, cat+ reference state (Local, cat+); and symmetry-
adapted linear combination orbital basis, cat+ reference state (SALC, cat+). Absolute energy errors for the classical methods
and the energy gap between the ground and first excited FCI states are presented alongside the ADAPT-VQE errors.

ent trough [panel 3(i)]. In these cases, broken-symmetry
CCSD, ADAPT(BS-HF), and ADAPT(local/Néel) ap-
pear to be approximating a broken-symmetry state which
is an equal superposition of the ground and first-excited
states:

|ψBS〉 = 1√
2

(

|ψFCI
0 〉+ |ψFCI

1 〉
)

. (22)

The energy error associated with this state is

∆EBS = 〈ψBS|Ĥ|ψBS〉 − E0

=
1

2
(E1 + E0)− E0 (23)

=
1

2
(E1 − E0)
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and the infidelity of this state is

Infidelity
(

|ψFCI
0 〉, |ψBS〉

)

= 1−
∣

∣〈ψFCI
0 |ψBS〉

∣

∣

2

=
1

2
. (24)

To explain this behavior, consider the Néel reference
state |10101010〉 and its complement |01010101〉. The
exact solution has equal weights for these states.73 As
K/J becomes large, the Hamiltonian more strongly pe-
nalizes states with occupation on consecutive sites. Be-
cause the operator pool includes only single and double
excitations, a single operator cannot enact the quadruple
excitation required to go between the reference state and
its complement. The weight of the complement state
in the ADAPT-VQE wavefunction therefore is gener-
ated via products of multiple lower-rank excitation op-
erators, putting it out of reach for a single pool oper-
ator. ADAPT-VQE(local/Néel) first touches the com-
plement Néel state after four operator additions. De-
spite having access to this determinant, ADAPT-VQE
does not have the variational flexibility to significantly
weigh this state, as doing so would consequently weigh
higher-energy intermediate determinants, raising the en-
ergy. As ADAPT-VQE continues to add operators, ad-
ditional excitation pathways begin to form, though the
VQE subroutine keeps the weight on the complemen-
tary state small. With the addition of the 52nd op-
erator, ADAPT-VQE achieves the variational flexibility
to substantially increase the weight of the complemen-
tary Néel state. This significant change in the character
of the ADAPT-VQE state is reflected in subplots 3(g),
3(h), and 3(i): the energy begins to significantly decrease
again, the gradient norm jumps, and the infidelity drops.
The suppression of these pathways leads to a deeper

gradient trough with increasing K/J . To further explain
this suppression of the operator gradient, we consider
Eq. 6 with the ADAPT-VQE state expressed in terms of
the eigenstates |ψFCI

i 〉 of Ĥ :

|ψ(n)〉 =
∑

i

c
(n)
i |ψFCI

i 〉 (25)

∂E

∂θk
=
∑

i

∑

j

c
(n)∗
i c

(n)
j

〈

ψFCI
i

∣

∣

∣

[

Ĥ, Âk

]
∣

∣

∣
ψFCI
j

〉

(26)

=
∑

ij

c
(n)∗
i c

(n)
j (Ei − Ej)

〈

ψFCI
i

∣

∣

∣
Âk

∣

∣

∣
ψFCI
j

〉

. (27)

The energy difference term here is seen to suppress the
gradients when a contaminant state and the target state
become close in energy. As K/J becomes large, the gap
between the exact ground and first excited states shrinks,
suppressing the gradients in this regime when the first
excited state is a major contaminant in the ADAPT-
VQE trial state, as in the cases with broken-symmetry
reference states.
For even stronger correlation (K/J = 100),

ADAPT(BS-HF) and ADAPT(local/Néel) become fa-
tally trapped in a gradient trough (see Supplementary

Information). This can be seen as suppression of the
operator gradient below the tolerance of the numerical
noise of the VQE optimizer. As such, these methods with
broken-symmetry reference states retain high infidelities
and energy errors. We speculate that, with a numerically
exact optimizer, ADAPT-VQE should be able to escape
even these gradient troughs, although this would not be
possible for a quantum computer with finite noise.
The emergence of deep gradient troughs is not seen for

ADAPT(local/cat+), even for large K/J . ADAPT(HF)
exhibits a shallow gradient trough at the start of the
ADAPT-VQE procedure. In this case, the g-symmetry
reference state is a superposition of the ground state
and excited states with g-symmetry. The high infidelity
(0.98) of the initial state indicates severe contamina-
tion. The symmetry of the operator pool made from
symmetry-preserving HF orbitals, however, prevents con-
tamination from the low-lying, u-symmetry first excited
state. This restriction is seen to limit the depth of the
trough. These results highlight the importance of sym-
metry in avoiding these deep gradient troughs.

B. H4

In Fig. 4 we present the absolute errors for a series
of “classical” quantum chemistry methods. Fig. 4(a)
presents restricted HF (rHF), MP2 and CCSD on top
of this reference (rMP2 and rCCSD, respectively), and
the energy gaps between the FCI singlet ground state
and the next lowest singlet (S1), triplet (T0), and quintet
(Q0) FCI excited states for the dissociation of H4. These
excited states become degenerate with the ground state
in the dissociation limit. CCSD yields a lower energy
than the FCI ground state for values of RH-H > 1.05 Å,
yielding a kink in the absolute energy errors.
For RH-H = 0.90 Å, near the equilibrium geometry,

rMP2 improves upon the rHF reference error by more
than a factor of two (2.× 10−2Eh versus 6.× 10−2Eh),
while rCCSD improves upon the reference by nearly four
orders of magnitude. This improvement of rMP2 over
rHF increases near the dissociation limit as the rMP2 en-
ergy begins to “turn over”, with the rMP2 energy peaking
at RH-H = 2.45 Å. Beginning at the onset of the non-
variational behavior, the improvement of rCCSD over
rHF absolute errors decreases with increasing H–H sepa-
ration to just over one order of magnitude (−0.03Eh ver-
sus 0.5Eh) at RH-H = 2.50 Å, at which point the rCCSD
energy begins to “turn up”. The rCCSD energies are
seen to be “chemically accurate” (errors less than one
kcal mol−1) for RH-H ≤ 1.50 Å. For large H–H separa-
tions, the rHF, rMP2, and rCCSD absolute errors exceed
the energy gaps between the FCI ground state and the
T0, S1, and Q0 states.
Fig. 4(b) presents the absolute errors for unrestricted

HF (uHF), MP2 and CCSD on top of this reference
(uMP2 and uCCSD, respectively), and the energy gaps
between the FCI singlet ground state and the next lowest
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FIG. 4. Absolute energy errors from FCI for HF, MP2, and CCSD versus the H-H separation presented alongside the energy
gaps between the ground and next lowest singlet (S1), triplet (T0), and quintet (Q0) excited states. HF spontaneously breaks

Ŝ2-symmetry for RH-H > 1.00 Å. The shaded area denotes “chemical accuracy” (errors less than one kcal mol−1). (a) Reference
state is restricted HF (rHF). (b) Reference state is unrestricted HF (uHF).

singlet (S1), triplet (T0), and quintet (Q0) FCI excited
states for the dissociation of H4. The uHF references

spontaneously break Ŝ2 symmetry for RH-H > 1.00 Å.
The kinks observed in the uMP2 and uCCSD errors at
these points correspond to the change in the underlying
HF reference. The uCCSD energy errors remain positive
for all RH-H surveyed.

Unlike in the restricted case, the improvement of uMP2
over uHF becomes negligible as the H–H separation in-
creases. The improvement of uCCSD over uHF de-
creases from over two orders of magnitude at the onset
of symmetry breaking (RH-H = 1.05 Å; 3.× 10−4Eh ver-
sus 7. × 10−2Eh) to a factor of five at RH-H = 3.00 Å
(6. × 10−4Eh versus 1. × 10−4Eh). The uCCSD en-
ergies are chemically accurate for RH-H ≤ 1.10 Å and
RH-H ≥ 2.30 Å. Both uHF and uMP2 energies are chem-
ically accurate for RH-H ≥ 2.75 Å. The errors for uHF,
uMP2, and uCCSD fall below the energy gaps between
the FCI ground and excited states for all H–H separations
investigated.

We now investigate the role that spin symmetry
plays in the compactness of the ADAPT-VQE ansätze
for the symmetric dissociation of linear H4. Fig. 5
presents the absolute energy errors ((a), (d), and (g)),
ADAPT-VQE gradient norms ((b), (e), and (h)), and
infidelities from the exact wavefunction ((c), (f), and
(i)) as the ansätze grow for ADAPT-VQE applied to
the symmetric dissociation of H4 at RH-H = 1.00 Å,
RH-H = 2.00Å, and RH-H = 3.00Å. The ADAPT-
VQE methods surveyed are ADAPT-VQE using rHF or-
bitals, rHF reference states, and singlet GSD operator
pools [ADAPT(rHF/sGSD)]; ADAPT-VQE using rHF
orbitals, rHF reference states, and unrestricted GSD op-
erator pools [ADAPT(rHF/uGSD)], and ADAPT-VQE
using uHF orbitals, uHF reference states, and unre-

stricted GSD operator pools [ADAPT(uHF/uGSD)].

1. Spin symmetry breaking slows energy convergence

Comparing panels 5(a), 5(d), and 5(g), we see that
ADAPT(rHF/sGSD) converges to the exact solution
with 11, 12, and 13 parameters for RH-H = 1.00Å,
RH-H = 2.00Å, and RH-H = 3.00Å, respectively. The
use of the sGSD operator pool ensures the ADAPT-
VQE state remains an eigenstate of Ŝ2. While there
are 20 determinants in the basis of rHF orbitals that
contribute to the exact ground state, by enforcing spin-
symmetry, ADAPT(rHF/sGSD) is able to converge to
the exact solution with as few as 11 parameters. For
RH-H = 2.00Å and RH-H = 3.00Å, ADAPT(rHF/sGSD)
converges to local minima when 11 operators have been
added, and the addition of one and two additional op-
erators, respectively, increases the variational flexibility
of the ADAPT-VQE state and allows it to recover the
global minimum. For ADAPT(rHF/uGSD), the uGSD

operator pool contains operators that break Ŝ2 symme-
try. Therefore despite beginning with the rHF reference
state, as the ADAPT(rHF/uGSD) ansatz grows the 〈Ŝ2〉
expectation value is seen to deviate from 0. Without
the efficient parameterization offered by the sGSD op-
erator pool, ADAPT(rHF/uGSD) requires at least 19
parameters to converge to the exact solution of the 20-
dimensional subspace. For ADAPT(uHF/uGSD), the
use of uHF orbitals breaks the symmetries between the
α and β orbitals, and thus there are 36 unrestricted de-
terminants (corresponding to all Ŝz-preserving determi-
nants) that contribute to the exact ground state. In
this case the full 36-dimensional Hilbert subspace must
be spanned to achieve convergence to the exact ground
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FIG. 5. ADAPT-VQE results for the symmetric dissociation of linear H4. Absolute energy errors ((a), (d), and (g)), ADAPT-
VQE gradient norms [(b), (e), and (h)], and infidelities relative to the exact wavefunction ((c), (f), and (i)) as the ADAPT-
VQE ansätze grow are presented for RH-H = 1.00Å, RH-H = 2.00Å, and RH-H = 3.00Å. The ADAPT-VQE methods with
restricted HF orbitals, reference states, and singlet GSD operator pools (rHF/sGSD); restricted HF orbitals, reference states,
and unrestricted GSD pools (rHF/uGSD); and unrestricted HF orbitals, reference states, and unrestricted GSD operator pools
(uHF/uGSD) are presented. Absolute energy errors for the classical methods and the energy gaps between the ground state
and the 9 lowest excited states are presented alongside the ADAPT-VQE errors.

state, requiring at least 35 parameters.

Comparing ADAPT(rHF/sGSD) and

ADAPT(rHF/uGSD), the use of the Ŝ2-preserving
operator pool not only accelerates convergence to the
exact ground state but is also seen to require fewer
parameters to achieve chemical accuracy for all H-H

separations surveyed. After the onset of symmetry-
breaking in the HF reference state (beginning near
RH-H = 1.05 Å), ADAPT(uHF/uGSD) initially outper-
forms ADAPT(rHF/sGSD) and ADAPT(rHF/uGSD)
by virtue of a more energetically favorable reference
state. Despite this, the more efficient parameteri-
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zation offered by preserving symmetries allows both
ADAPT(rHF/sGSD) and ADAPT(rHF/uGSD) to
outperform ADAPT(uHF/uGSD) after the addition
of only a few operators. For RH-H = 2.00 Å, these
crossovers occur before ADAPT(uHF/uGSD) has
achieved chemical accuracy, whereas for RH-H = 3.00 Å,
ADAPT(uHF/uGSD) achieves chemical accuracy before
ADAPT(rHF/sGSD) and ADAPT(rHF/uGSD), as the
uHF reference state is already chemically accurate.
Despite this, ADAPT(uHF/uGSD) shows very limited
improvement in error as more operators are added, and
it has not significantly improved upon the reference
energy when the crossovers with ADAPT(rHF/sGSD)
and ADAPT(rHF/uGSD) are reached.
For RH-H = 1.00 Å, the rHF reference state provides

a reasonable zeroth order description of the system, and
as such rCCSD is able to provide a competitive perfor-
mance to ADAPT(rHF/uGSD) with the same number
of parameters despite the lack of connected triple and
quadruple excitations. As the H-H separation increases,
the rHF reference state becomes a poorer description of
the true ground state, as seen by the initial infidelities
[panels 5(c), 5(f), and 5(i)]. Here these excitations be-
come more important in accurately describing the ansatz,
and as such the performance of rCCSD is seen to suffer
relative to ADAPT(rHF/uGSD) for the same number of
parameters.

2. Spin symmetry breaking worsens gradient troughs

For large H-H separations, all three of the ADAPT-
VQE methods surveyed exhibit gradient troughs, as is
evident in Fig. 5(h). These gradient troughs are accom-
panied by a flattening of the energy error curve [Fig. 5(g)]
and large infidelities [Fig. 5(i)].
The rHF and uHF reference states at this geometry

have high infidelities with respect to the exact ground
state, (0.482 and 0.442, respectively), indicating that
these trial ground states contain significant contributions
from excited FCI states. Additionally, the lowest singlet
(S1), lowest triplet (T0), and lowest quintet (Q0) excited
states lie close in energy to the ground state. Recall-
ing Eq. (27), we see that the ADAPT-VQE gradients are
suppressed when the overlap between the ADAPT-VQE

state and the target state are small (small c
(n)
0 ) and when

the contaminant states are close in energy to the target
state [small (Ej − E0)].
For ADAPT(rHF/sGSD), the rHF reference state is

a singlet and as such all states contributing to it are
singlet in nature. By enforcing the ADAPT-VQE trial
state to be a singlet, the effect of the sGSD operator
pool is to limit the possible contaminant states. This
results in a gradient trough that is relatively shallow,
and ADAPT(rHF/sGSD) acquires the variational flex-
ibility to escape the trough by adding only a few op-
erators. While ADAPT(rHF/uGSD) utilizes the same
singlet rHF reference state as ADAPT(rHF/sGSD) and

as such begins with only singlet contaminant states, the
use of the uGSD operator pool introduces contaminant
states of higher spin multiplicities as the ADAPT-VQE
procedure proceeds, beginning with the second opera-
tor addition. This is evidenced by the initial growth of
the 〈Ŝ2〉 expectation value, and can be understood as a
variational conversion of higher-energy, singlet contami-
nant states to lower-energy, higher-spin-multiplet states.
The uHF reference state has an 〈Ŝ2〉 expectation value
of 1.996, indicating significant contamination from the
T0 and Q0 excited states. ADAPT(rHF/uGSD) and
ADAPT(uHF/uGSD) are both seen to exhibit two gra-
dient troughs. Escaping each of these gradient troughs is
accompanied by a drop in the 〈Ŝ2〉 expectation value. In
the case of ADAPT(uHF/uGSD), this can be understood
as ADAPT-VQE acquiring the variational flexibility to
project out contamination from Q0, corresponding to a
drop in 〈Ŝ2〉 from ∼2 to ∼0.6, and subsequently acquir-
ing the variational flexibility to project out contamina-
tion from T0, corresponding to a drop in 〈Ŝ2〉 from ∼0.6
to 0 at convergence to the exact ground state.

V. CONCLUSIONS

In this work, we have investigated two strongly corre-
lated systems that exhibit two different kinds of spon-
taneous symmetry breaking at the mean-field level as
correlation increases. In each case, we explore the role
that breaking/preserving these symmetries in the refer-
ence states, operator pools, and representations of the
Hamiltonian has on the performance of ADAPT-VQE.
While reducing symmetry through the use of UHF

orbitals often improves the energy accuracy of classical
electronic structure theory methods, the use of broken-
symmetry HF solutions is a detriment to ADAPT-
VQE. For fermionic operator pools without symmetry-
adaptation of the operators, the symmetry (or lack
thereof) of the pools is determined by the symmetries of
underlying orbitals. With the onset of symmetry break-
ing in the MO basis, the number of determinants with
nonzero weights in the expansion of the exact ground
state increases significantly. In order to create the exact
ground state, each of the determinants contributing to
the exact ground state requires the addition of an oper-
ator to the ansatz. Thus, the use of symmetry-broken
HF as a reference for ADAPT-VQE, though improving
the energy of the reference, leads to much larger exact
ansätze compared to symmetry-preserving HF/rHF.
In the local representation of the Hamiltonian, the un-

derlying site orbital basis is inherently symmetry-broken,
and as such the representation of the exact ground state
in the determinant basis made of the site orbitals is dense.
For these systems, the use of operator pools that are
not symmetry-adapted again requires a larger number
of operators to converge ADAPT-VQE. This is the case
whether the reference state is symmetrized (cat+) or bro-
ken symmetry (Néel).
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Symmetries can be introduced to the operator pool
by changing the underlying orbital basis (SALC) or via
symmetry-adaptation of the pool operators (using the
sGSD pool for H4). In both cases, the preservation of
these symmetries leads to shorter ansätze with ADAPT-
VQE. In the former, transformation of the site basis
yields a sparser representation of the exact ground state
in the new orbital basis, and thus an operator pool with-
out symmetry-adaptation using this orbital basis leads
to ADAPT-VQE convergence with a smaller number of
operators compared to the original site orbital basis. In
the latter, the singlet GSD pool more efficiently spans
the subspace of determinants that overlap with the ex-
act ground state by parameterizing a symmetry-adapted
combination of fermionic operators with a single param-
eter.
With respect to the issue of gradient troughs in

ADAPT-VQE, we make the following observations:

1. Gradient troughs appear when excited states be-
come close in energy to the ground state, such as
the large K/J limit of the fermionized, aniostropic
Heisenberg model or in the limit of large H–H sep-
aration in linear H4.

2. Reference states that have a high fidelity with the
exact ground state do not exhibit deep gradient
troughs (cat+), while the reference states with low
fidelities are seen to exhibit them when low-lying
excited states are present.

3. For systems where the reference state is symmetry-
preserving, the use of symmetry-adapted opera-
tor pools leads to shallow troughs [ADAPT(HF),
ADAPT(rHF/sGSD)], while symmetry-agnostic
operator pools can lead to deep gradient troughs
when the overlap with the exact ground state

is low [ADAPT(rHF/uGSD)]. Using symmetry-
adapted operator pools limits the possible contami-
nant states in the ADAPT-VQE state to those that
obey the symmetry in question, while symmetry-
agnostic pools may introduce new contaminants
into trial states that were not initially present.

4. For symmetry-broken reference states, the presence
of deep gradient troughs is endemic (ADAPT(BS-
HF), ADAPT(local/Néel), ADAPT(uHF/uGSD)).

While preparing this manuscript for publication, a rel-
evant preprint by Tsuchimochi et al74 appeared that also
looks at spin-symmetry breaking in ADAPT-VQE. In
their work they highlight the unfavorable behavior of the
“spin-dependent fermionic operator pool” (unrestricted
operator pools in this work) and spin-complemented op-

erator pools to break Ŝ2 symmetry. The authors sim-
ilarly find that spin-symmetry breaking leads to an in-
crease in the quantum computational resources (both pa-
rameter counts and CNOT gates required) compared to
their spin-projected ADAPT-VQE, which applies a spin
projection operator to restore the Ŝ2 symmetry. They
further apply this spin-projected ADAPT-VQE to the
computation of molecular properties and geometry opti-
mization.
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