
Toward a Unified Hybrid HPCQC Toolchain
Philipp Seitz

Chair of Scientific Computing in Computer Science
Technical University of Munich

Munich, Germany
philipp.seitz@tum.de

Amr Elsharkawy
Chair of Computer Architecture and Parallel Systems

Technical University of Munich
Munich, Germany

amr.elsharkawy@in.tum.de

Xiao-Ting Michelle To
MNM Team

Ludwig-Maximilians-Universität in Munich
Munich, Germany

michelle.to@nm.ifi.lmu.de

Martin Schulz
Chair of Computer Architecture and Parallel Systems

Technical University of Munich
Munich, Germany
schulzm@in.tum.de

Abstract—In the expanding field of quantum computing (QC),
efficient and seamless integration of QC and high performance
computing (HPC) elements (e.g., quantum hardware, classical
hardware, and software infrastructure on both sides) plays a
crucial role. This paper addresses the development of a unified
toolchain designed for hybrid quantum-classical systems. Our
work proposes a design for a unified hybrid high performance
computing - quantum computing (HPCQC) toolchain that tackles
pressing issues such as scalability, cross-technology execution, and
ahead-of-time (AOT) optimization.

Index Terms—Quantum Computing, High Performance Com-
puting, HPCQC Integration.

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

I. INTRODUCTION

In the rapidly evolving landscape of quantum computing
(QC), one of the most promising and challenging frontiers
is the integration of quantum and classical computing into
hybrid systems [1]–[4]. These quantum-classical systems seek
to leverage the unique strengths of both paradigms to solve
complex problems, such as quantum chemistry [5] or cryptog-
raphy [6], more efficiently (e.g., faster, using less resources, or
with higher precision) than either could independently. As this
novel computational paradigm emerges, the need for a unified
hybrid toolchain that can seamlessly manage and optimize
the interplay between quantum and classical high performance
computing (HPC) is more critical than ever [7], [8].

The toolchain in this context refers to a set of interconnected
software tools designed to manage the operation of a hybrid
quantum-classical system [9], [10]. Existing toolchains often
cater to either quantum or classical systems and exhibit
limitations when tasked to handle both simultaneously [11].
This limitation forms the problem space this paper addresses.

We introduce a unified hybrid toolchain explicitly designed
for hybrid quantum-classical systems. Its development is still
an ongoing process. In the future, we plan to refine the design,
test the implementation on actual hardware, and integrate
high performance computing - quantum computing (HPCQC)
compilation tools. This toolchain enhances the efficiency and

scalability of such systems, providing a more integrated plat-
form to manage the intricate computational dynamics involved.
Our toolchain stands out by its detailed architecture, designed
to manage both quantum and classical computations, and its
versatility, which allows the user to adapt it to various quantum
hardware and problem contexts.

The paper is structured as follows. In Section II, we intro-
duce the core concepts of HPCQC integration and highlight
the relevant ongoing research and the shortcomings of the
currently available toolchains. Section III contains a use case
and describes the guiding principles to our design. We present
our proposal for a unified HPCQC toolchain in Section IV.
Section V discusses the current state of our work, resulting
emerging insights and necessary future research, and we
conclude the work in Section VI.

II. BACKGROUND AND RELATED WORK

Integrating HPC and QC on the software level relies on
creating a robust software stack. This stack transforms hybrid
HPCQC algorithms into an executable form on both HPC
systems and quantum hardware [2], [4]. This seamless in-
teroperability is realized through intermediate representations
(IRs), which are a crucial bridge between hybrid high-level
programming languages and low-level machine languages. For
instance, the Quantum Intermediate Representation (QIR) [12]
is a recognized LLVM-based [13] intermediary for HPCQC
programs that underscores the necessity for standardization.
Such a standard provides a convenient way to support more
sophisticated HPCQC hardware architectures in data centers
as the technology matures. In our previous work, we have
identified four HPCQC hardware integration modes that either
are currently available or expected to exist in the future,
including loose integration (standalone or co-located) and tight
integration (co-located or on-node) [14].

There are already several approaches for a hybrid toolchain.
One of the first is the LLVM-based compiler ScaffCC [15]
for the quantum programming language Scaffold [16]. The
compiler separates the program into Scaffold-specific quantum

ar
X

iv
:2

30
9.

01
66

1v
2 

 [
qu

an
t-

ph
] 

 7
 S

ep
 2

02
3



modules represented with classical code, called CTQG, and
hybrid quantum modules. In CTQG modules, classical code is
transformed into quantum gates through a specific compilation
procedure, ultimately producing quantum assembly formats
like QASM. The remaining modules are translated to an
LLVM IR where classical control instructions are processed.
Next, the modules are translated to QASM and merged with
the CTQG modules in a common QASM variant. After gate
decomposition, the quantum program analysis checks the re-
sulting program using another LLVM IR. In an extension [17],
the LLVM IR is translated to OpenQASM [18] to run Scaffold
programs on quantum devices.

The most popular toolkit is Qiskit [19], implemented in
Python. Thus, the classical components are also run and
compiled in Python. However, it is also possible to define the
quantum circuit in OpenQASM [18], [20]. When users want
to execute a quantum circuit, they can simulate it locally or
send it to the IBM Quantum cloud platform. The toolchain
represents the circuit internally as a directed acyclic graph.
Before running, the given circuit is transpiled into the native
gate set of the quantum device the program should run on.
Finally, the job is scheduled for the specified hardware and
runs asynchronously.

QCOR [21] aims at heterogeneous HPC with quantum
processing units (QPUs) as a type of accelerator. It allows user-
defined compilation through a visitor pattern, which works
with multiple IRs, including QIR. Underneath, QCOR builds
on the XACC [11] runtime, which provides a memory model
and enables task-level parallelism. Multiple hardware back-
ends are supported through an accelerator abstraction.

Another example is the toolchain of PennyLane Cata-
lyst [22]: its infrastructure is designed to allow the compilation
of quantum circuits with classical control flow. A Python
program is first translated into MLIR [23], extended with
a quantum dialect, as input for the compiler. The compiler
consists of compilation passes, including custom ones, and the
execution follows a defined pass order. During the compilation,
different MLIRs are passed down to LLVM and QIR [12]
and then output as binary, which the runtime handles. The
Catalyst runtime then links the program to a quantum device
for execution. The toolchain also provides just-in-time (JIT)
quantum compilation: it compiles functions marked for JIT
compilation when called for the first time. The resulting
precompiled binary does not need recompilation; only the
parameter values must be inserted.

Intel recently introduced a LLVM-based compiler with
custom quantum extension as part of the Intel SDK [24].
It is proposed explicitly for implementing hybrid quantum-
classical algorithms. The rough workflow is as follows: the
input is a hybrid quantum-classical C++ source file, which is
then processed into a binary executable by the compiler. In
this compiler toolchain, Intel’s quantum-classical IR and their
own quantum instruction set architecture (ISA) is used. In the
next step, the quantum runtime resolves parameters unknown
at compile time and updates the corresponding variables. Then
the instructions are translated to control signals, which can be

used to run the program on quantum devices or simulators.
NVIDIA has published a similar stack called CUDA Quan-

tum [25]. The general concepts are similar to Catalyst: it is
compatible with LLVM and QIR, providing custom dialects
and passes for MLIR. It provides a compiler “NVQ++” which
compiles quantum kernels to customizable hardware. Quantum
kernels are called from C++ host code (entry-point kernels) or
other quantum kernels (pure-device kernels). CUDA Quantum
primarily targets graphics processing units (GPUs).

This work extends the existing research and developments,
proposing a novel, unified HPCQC toolchain that enhances
the interaction between classical and quantum computational
paradigms. Our work is distinguished by the in-depth inte-
gration of both computational models, classical and quantum,
utilizing emerging standards such as QIR and OpenQASM3.

III. GUIDING PRINCIPLES

The goal of our proposal is the application in the HPCQC
domain, which inhibits unique challenges. Our design choices
for the toolchain are motivated in this section. We evaluate
our approach in multiple dimensions derived from the require-
ments of the setting. HPCQC is subject to many different
stakeholders, which translates to multiple perspectives. Nat-
urally, we focus on the view of software developers, but we
strive to consider application engineers, hardware providers,
and HPC centers themselves as well.

To provide concrete insight, we focus on one generic use
case. We envision a hybrid quantum chemistry simulation
consisting of demanding classical tasks as well as QC tasks.
Each task could assemble a quantum subroutine with various
hardware requirements. A problem-specific technique con-
strues the assembly process available as a standalone tool. The
entire program gets deployed to an HPC center which offers
two interconnected QPUs, one integrated QPU, and multiple
classical nodes.

As mentioned in Section II, other toolchains already exist.
They fail to capture the full complexity of the described task
or come short in certain areas. To achieve the required level of
complexity, we follow some guiding principles detailed below.

A. Performance

Performance is a loosely defined concept and depends on
the context. From a user’s perspective, time-to-solution is
critical, as computation time is expensive. Multiple criteria
exist for the quantum domain, such as fidelity, number of
qubits, and gate depth. In a broader sense, the limited quantum
resources should also be utilized efficiently [26]. By building
on established classical approaches, as well as providing the
framework to implement novel solutions, performance can be
ensured. During the noisy intermediate-scale quantum (NISQ)
era, performance is critical to accommodate the short quantum
coherence times.

B. Scalability

A primary concern we address with our proposal is scalabil-
ity. Scalability itself is a multi-faceted problem, even without



including quantum assets. It contains software scalability,
accomodating multiple users, various problem sizes, and flex-
ibility in its solution approaches. Also, the toolchain does not
run in isolation as a single monolithic instance: it co-exists
with and leverages surrounding HPC software and hardware
infrastructure. On the quantum side, almost all vendors employ
proprietary interfaces. High variation in terms of quality and
functionality has to be managed correctly.

Besides the differences in software, hardware constraints
pose further requirements. Unique to QC is the variety of
technologies. Ensuring smooth cross-technology execution is
a significant challenge we want to overcome. A necessary
step is the division into hardware-independent and hardware-
dependent functionalities. Still, a generic interface can blend
both gradually. With continuous integration of quantum hard-
ware into classical environments, obstacles of distributed com-
puting have to be resolved. Also, resource and data manage-
ment will be relevant for the next generation of HPCQC.

As new network topologies arise, communication between
nodes will take significant effort. In Figure 1, we highlight
three modes of operation: HPC, quantum, and hybrid compo-
nents, which need to communicate. Intercommunication be-
tween different modes and inside hybrid nodes poses a massive
overhead. The communication interfaces and protocols require
establishing and unifying to resolve such issues.

C. Usability

One of the strengths of a unified toolchain for hybrid
HPCQC systems is the potential applicability across various
fields, such as cryptography [27], optimization [28], and quan-
tum simulations [29]. We harness this potential by providing
domain experts with a convenient way to plug their unique
software tools into a hybrid toolchain and give them control to
fine-tune the compilation and execution process. The inclusion
of well-defined interfaces and a well-designed pass manager
are essential, as we will explain later. Furthermore, HPC
scientists work continuously on the difficult task of upgrading
and maintaining efficient legacy code. Hence, such a hybrid
HPCQC toolchain allows for computational scientists to con-
sider accelerating legacy code with novel quantum modules.

D. Sustainability

The field of QC is rapidly evolving, with new algorithms
and techniques emerging and the invention of novel hardware
technologies, all while HPC centers build challenging HPCQC
integration setups. A hybrid toolchain should be adaptive
to quantum advances by adopting modular design, forward-
compatible data formats for future iterations, and offering a
flexible quantum hardware abstraction layer that can be seam-
lessly expanded as emerging QPU technologies are integrated.

Computational resources, whether classical HPC nodes,
quantum nodes, or hybrid, are expensive. HPC scientists try
to shift as much computation as possible from the expensive
run time to the cheaper compile time. Hence, one way to
make QC more efficient is to allow optimization ahead-of-
time (AOT), i.e., during compile time. Efficiency is gained not

Algorithm Description

Compilation

Scheduler

Orchestration

Login Node Cluster: HPC, Hybrid and Quantum Nodes

Pass Manager

Fig. 1. The unified HPCQC toolchain from a high-level view as a direct access
scenario. The algorithm is described and compiled on the login node. Once
the scheduler gets triggered, it assigns the user a portion of HPC, Quantum,
and Hybrid Nodes. The execution is orchestrated over multiple nodes by the
runtime environment.

Hybrid + QASM

Algorithm Description

LLVM IR Quantum IRLanguage Frontend

Binaries
Bytecode

Classical Compilation

Binaries
Bytecode

Quantum Compilation

Hardware Callibration

Allocation

Hybrid Orchestration

Hybrid Scheduler

eQASM
Circuit Generation

Meas.

Offloading

Shared Data
Management

Meta-Optimizer

Feedback Loop

Result Tracking

CPasses QPassesPass Manager
(AOT)

Hybrid Job

MD

Artifacts

Binaries

Bytecode

Metadata

QPasses

Pass Manager
(JIT)

Binaries Binaries
HardwareClassical Interfaces

(CPU, GPU, FPGA...)
Quantum

Technologies

Compile Time (Offline)

Run Time (Online)

Fig. 2. The unified HPCQC toolchain from an intermediate-level view.
The blue components produce metadata which is consumed by the orange
components. The meta-optimizer evaluates and uses the generated metadata
to control the consumers. Metadata is passed between every component. For
simplicity, the annotations have been omitted.

only through expressive standardized quantum intermediate
representations (SQIRs) but also by using well-developed
quantum and classical optimization passes controlled with a
pass manager.

IV. PROPOSAL: UNIFIED HPCQC TOOLCHAIN

In this section, we present our template of a unified HPCQC
toolchain. Similar to the standards in formats, it is crucial



to define the interaction behavior of individual components.
Standardization is a strict requirement in an HPC setting, as
all tools have to fit seamlessly to guarantee performance. We
base our proposal on existing standards to create a platform
to interchange tools when needed quickly. The success of a
unified toolchain is based on the adoption in the community
and depends on the quality of the available tools. Our proposal
aims at an HPC environment that applies to NISQ but is also
sustainable for fault-tolerant QC.

Additionally, it supports different interaction scenarios; Fig-
ure 1 depicts the direct access pattern of HPC. A user compiles
a program on a login node and submits it to the scheduler.
Cloud interfaces hide the toolchain behind the provider infras-
tructure for more abstraction. Specifically, the proposal bridges
the gap between user interactions and HPCQC hardware. It
contains a software tool with generic interfaces on both ends.
It is neither a user frontend nor a hardware controller, and is
not tied to a specific execution model.

Commercial quantum systems offer limited functionality
and a restricted execution model. Multiple integration sce-
narios are explored by computing centers involving various
hardware technologies. Settings range from loosely coupled
provider schemes to on-node quantum acceleration [14]. Con-
currently, researchers discover new compilation strategies and
introduce programming languages. It is essential to easily
integrate these findings and expose them to users as new func-
tionalities to accelerate the hybrid HPCQC development. The
software should not be the bottleneck once major hardware
breakthroughs are achieved. Figure 2 offers a detailed view of
the interactions between components in the toolchain proposal.
It generally describes the flow from a language-independent
algorithm formulation through a compilation stage and a
runtime stage at which distributed code gets executed. The
components of the proposed toolchain naturally depend on
the specific hardware that is used for execution. For instance,
different quantum hardware types differ in their native gate
sets, error rates, and qubit connectivity. The unified toolchain
uses abstraction layers to hide hardware details from the user.
Additionally, it contains a data and interfacing model, which
is adapted to multiple architectures. During the workflow, the
execution information is progressively exposed and used by
this model.

For completeness, we have included a language frontend,
which handles hybrid and QASM code, and a hardware cali-
bration component. The internals of either component exceed
the scope of this work and we will not detail them further.
In the following subsections, we comprehensively explain the
toolchain, which covers the novel additions to the approach.

A. Stages

As in classical computing, our toolchain acknowledges two
distinct stages. The compilation stage happens at compile time,
and the runtime stage happens at run time. In HPC, this
distinction is critical. A user triggers the compilation stage on
a login node, where computation is cheap, and the quantum
hardware is not yet known. Most existing toolchains consider

only fully defined quantum programs (kernels), which they
generate AOT [11]. From this point on, most components are
working hardware-dependently. The final quantum hardware
is selected as late as possible, but earliest at this point. In an
arbitrary execution scenario, the full extent of the program
might be unknown, and the scheduler selects hardware on
the fly. In these circumstances, a JIT compiler transforms the
circuit, where the HPC system is either idling or used for the
process. We believe that both compilation modes, AOT and
JIT, should be based on the same pass manager, which is
detailed in Section IV-C1.

B. Producers and Consumers

Our design follows the separation of the stages; furthermore,
we subdivide into producers and consumers of metadata.

One single experiment can contain multiple quantum cir-
cuits or variants thereof. Each entire procedure, from compi-
lation to the results, produces a multitude of metadata. The
metadata includes quantum circuit information (e.g., structure
and components of the quantum circuit), compilation data
(e.g., optimizations applied and error mitigation strategies),
execution metadata (e.g., run time and the number of shots),
performance metrics (e.g., error rates and circuit depth), as
well as system status and environment (e.g., calibration status
of the qubits and noise levels). It can be used to supervise the
system continuously and also improves the chances of success.

We aim to update scheduling and JIT compilation based
on the generated metadata. Its inclusion adds more depth and
complexity to the process, but it is crucial to deviate from
fixed routines by adding metadata in the form of contexts.
For example, variational algorithms could benefit from this
to overcome plateaus or to near convergence. One can fully
optimize performance only with context-aware components,
which is desirable in HPCQC.

C. Components

Existing proposals, for example CUDA Quantum [25], cover
the compilation stage. They leverage the well-established
LLVM framework to compile hybrid HPCQC code efficiently.
This approach is reasonable, but we extend it with a dynamic
pass manager, meta-optimizer, and hardware calibration. There
is no established solution for the runtime stage, and we
include only the bare minimum. We are confident that some
objectives are necessary, including ad-hoc circuit generation,
data management and offloading, post-processing, and result
tracking. In which form and to what extent this is applicable
will be shown by future benchmarks.

1) Pass Manager: We extend the concept of compilation
passes as used by Qiskit [19] and LLVM [13] to the runtime
stage. This extension is necessary, assuming future programs
build circuits during their execution without relying on prede-
fined kernels. JIT compilation is an essential part to achieve
this vision and already supported by the LLVM compiler
Kaleidoscope. Figure 3 shows all quantum passes the pass
manager can execute, some of which are optional (purple
boxes). It follows a hybrid compilation process, interweaving



classical and quantum optimization routines. Various tech-
niques transform an input circuit; we have categorized them
according to the boxes. Only the hardware-aware steps are
mandatory (green boxes) and can only act once the hardware
has been allocated. However, the compilation is still hybrid
during compile and run time. Classical compilation techniques,
like loop unrolling or function inlining, are interleaved with the
quantum steps. Collecting all passes in one component enables
unique possibilities and poses a set of new requirements. An
essential concept for this component is reusability. Existing
compilation techniques are not limited to one stage and can
be applied multiple times on multiple levels.

Dynamic adaption of circuits is possible based on metadata
that becomes available at run time. E.g., if qubits show subpar
fidelity performance, they can be avoided in mappings if
the number of available qubits exceeds the demand. Such
context-aware decisions improve the overall quality of service.
Metadata outlives single experiments. Hence it is available for
AOT compilation of subsequent experiments. A similar level
of flexibility is also exposed to the user. Custom compilation
sequences can be defined to finetune individual experiments.

All passes must be available in a modular and self-contained
package to enable a system to have this level of flexibility.
These packages must clearly define their capabilities, inputs,
outputs, and a way to evaluate their performance. Additionally,
since execution is already in an HPC environment, passes
should leverage the available resources in a parallel fash-
ion. We advocate using Spack [30], an open-source package
manager, to provide passes to the system. If passes are self-
contained units, they can be managed efficiently by leveraging
the utility Spack provides to deploy them as packages. As an
internal representation, we adhere to QIR. Its suitability for the
runtime stage is still under our review. It is clear that QIR and,
by extension, LLVM are designed for compile time use. While
it is worthwhile to reuse passes, including LLVM as a run time
dependency might not be optimal. Operations at this stage are
time-critical; therefore, they could execute distributed, and the
overhead of linking LLVM might not be worthwhile.

2) Meta-Optimizer: Using machine learning to optimize
quantum compilation has been shown to be valid [32]–[34].
In our toolchain, the meta-optimizer component acts as a
global optimization agent. It improves the complete work-
flow from selecting and arranging compilation passes, sug-
gesting hardware resources, and recommending decisions on
orchestration and data management. From this context-aware
approach, we expect to boost the efficiency and performance
of hybrid programs. As for most machine learning systems,
the foundation is the available metadata. Components must
provide information about their progress, hence the division
into producers and consumers.

3) Hybrid Scheduler: Classical scheduling is an active
area of research. Adding quantum resources increases the
complexity manyfold. The meta-optimizer can help making
informed decisions, but more is needed. We want to point
out some of the challenges subject to our future work. Our
system recognizes two new resource types: HPCQC hybrid

and pure quantum nodes. Due to the various quantum tech-
nologies, run time decisions must be made based on different
properties. These may include connectivity restraints, available
gate sets and more, based on different available metrics.
Furthermore, new network topologies have to be supported
to accommodate quantum communication. Existing heuristics
can be extended for some of the problems, e.g., resource
allocation, utilization, and fair sharing. One promising idea is
to approach quantum resources as a multilevel system, which
would allow to schedule quantum systems separately. State
of the art schedulers support new resource types, but depend
on a common interface. These interfaces are implemented to
support various layers of abstraction.

4) Hybrid Orchestration: We include a component called
hybrid orchestration, which is part of the runtime environment.
As for the scheduler, the complexity of executing hybrid
programs is much higher than the classical counterpart. The or-
chestration is responsible for managing heterogeneous loosely
coupled components and devise an overall workflow of as-
signed resources. Some conditions must be met to enable tight
interaction between components, mainly to avoid performance
loss with idle times. During the execution of a parallel classical
problem, (parallel) circuit generation starts, and at the same
time, the required resources are allocated and prepared for
execution. For now, we have used eQASM as a placeholder
exchange format. Eventually, different quantum technologies
can be utilized similarly to classical cache hierarchies. Au-
tomatic data offloading to the correct levels is inevitable in
this situation. Similarly, the heterogeneous result data has to
be consolidated and post-processed. The main goal behind
orchestration is to reduce the system complexity. Instead of
having one omniscient component, the responsibilities are
shared over multiple components.

D. Interfaces

In this section, we focus on software interfaces; hardware
interfaces should be as uniform as possible, but some details
can be hidden behind wrappers. The interfaces define the
communication and interaction between different components
of the toolchain. In combination with the artifacts, interfaces
provide the basis for the unified toolchain. They are still under
active development as requirements still need to be solidified.
Generally, we have a separation between compile time and run
time components which interact through common artifacts. In
Figure 2, the interfaces are illustrated with arrows between
interacting components. In the figure, the meta-optimizer inter-
faces with artifacts, but by extension it is possible to connect it
to all producers and consumers. All components should adhere
to a standard interface to allow for scalability and reduce
communication overhead. It clearly defines inputs, outputs,
capabilities, errors, and formats. We strive for a description
similar to the Message Passing Interface (MPI) [35], a foun-
dational HPC pillar. The aim is to provide an extensive, yet
generic description of how the user can control the interaction
between components. A generic hardware interface should also
allow for at-run-time choices for versatile execution.



Global Optimization Multi-Qubit Gate
Decomposition Error Correction Mapping Routing Native Gate

Synthesis
Low-level

Optimization

Inlining

In
pu

t

Loop Unrolling Other

O
ut

pu
t

DCE Constant Propagation

Fig. 3. Pass categories utilized by the pass manager. Quantum and classical passes can freely interact. The green steps are mandatory, the purple steps
optional. It is possible to repeat or rearrange the steps. Every pass should operate on the same IR and have a well defined interface. Implementing this modular
structure enables adaptability and customizability. The chaining of tools has been inspired by t|ket〉 [31].

E. Artifacts

We identify three types of artifacts: binaries, bytecode, and
metadata. Binaries contain runnable code; whether quantum,
classical, or hybrid. These programs can be immediately
scheduled and executed. Bytecode requires additional pro-
cessing. We assume some parameterized kernels are known
ahead of time, such that they can be precompiled. Under
optimistic assumptions about the parameters or the availability
of hardware, kernels can be optimized beforehand and final-
ized at run time with minimal overhead. In Figure 2, both
formats lie at the intersection of compile time and run time.
Metadata stretches over the complete flow from top to bottom.
Metadata is optional, but highly valuable, as mentioned in
Section IV-C2. We include hardware calibration under this
term as well, as it has the similar function to continuously
improve operation. Metadata must be structured and unified
to make it accessible to the user and prepare it for internal
use. To our knowledge, there exists no suitable format, and
one must be established.

V. CURRENT STATUS AND FUTURE WORK

Currently, two separate groups, both lacking the necessary
knowledge, are operating in the quantum domain: on the one
hand, experimental physicists provide the hardware; on the
other hand, application engineers use the quantum advantage.
HPC is the connective link, enabling both to maximize their
gains. Thus, the HPC community has to start embracing the
quantum advantages. This link also opens up access to QC
for a broader community independent of the existing provider
model. In the long run, this will also facilitate use cases as
described in Section III. For complex hybrid algorithms, even
small inconsistencies can become a bottleneck when scaling
up. This is reflected in the guiding principles, but can only be
explored iteratively.

In the current state, we concentrate our work on immediately
applicable solutions, while keeping the long term implications
in mind. The pass manager concept is already valuable for
single QPU use in the NISQ era, hence we started internal
development. We already use a mix of self-developed and
external (quantum) compilation techniques, which we use as
basis for our evaluation. Still, we are limited to existing
implementations and are open for any contributions. For the
other components, we are still in the conceptual phase and
explore prototypes with limited scope.

An open problem is how to address run time orchestration
correctly. As we stated before, it is clear which steps must
be performed, but not how. Only through rigorous testing and
benchmarking we can establish the requirements. We plan to
do this based on our current work.

The development of the unified HPCQC toolchain is an
ongoing process. The future work will include, but not be
limited to, refining the design, testing the implementation on
actual hardware offered by the LRZ, and integrating HPCQC
compilation tools developed within the Munich Quantum
Valley (MQV). Standardization of new interfaces and the
extension of existing ones are a continuous process. While
some specifications still need to be prepared for publication,
we plan to put them forward in the future.

VI. CONCLUSION

We proposed a unified hybrid quantum-classical toolchain.
It is based on emerging standards to facilitate adoption in the
community. Our choices are motivated by HPC guiding princi-
ples and aim for a generic and customizable solution. Beyond
that, we provide additions to a context-aware, multi-stage pass
manager for hybrid compilation. The meta-optimizer provides
this context and also guides scheduling and orchestration.
Interaction between components is primarily clear, but the
interfaces need continuous refinement. Mainly run time com-
ponents require further research by the community.

ACKNOWLEDGMENT

The research is part of the Munich Quantum Valley (MQV),
which is supported by the Bavarian state government with
funds from the Hightech Agenda Bayern Plus. Moreover, this
project is also supported by the Federal Ministry for Economic
Affairs and Climate Action on the basis of a decision by
the German Bundestag through project QuaST, as well as by
the Bavarian Ministry of Economic Affairs, Regional Devel-
opment and Energy with funds from the Hightech Agenda
Bayern. Furthermore, this work is supported by BMW.

REFERENCES

[1] T. S. Humble, A. McCaskey, D. I. Lyakh, M. Gowrishankar, A. Frisch,
and T. Monz, “Quantum computers for high-performance computing,”
IEEE Micro, vol. 41, no. 5, p. 15–23, sep 2021. [Online]. Available:
https://doi.org/10.1109/MM.2021.3099140

[2] M. Ruefenacht, B. G. Taketani, P. Lähteenmäki, V. Bergholm, D. Kran-
zlmüller, L. Schulz, and M. Schulz, “Bringing quantum acceleration
to supercomputers,” 2022. [Online]. Available: https://meetiqm.com/
uploads/documents/IQM HPC-QC-Integration-Whitepaper.pdf

https://doi.org/10.1109/MM.2021.3099140
https://meetiqm.com/uploads/documents/IQM_HPC-QC-Integration-Whitepaper.pdf
https://meetiqm.com/uploads/documents/IQM_HPC-QC-Integration-Whitepaper.pdf


[3] V. Bartsch, G. Colin de Verdière, J.-P. Nominé, D. Ottaviani,
D. Dragoni, C. Bouazza, F. Magugliani, D. Bowden, C. Allouche,
M. Johansson, O. Terzo, A. Scarabosio, G. Vitali, F. Shagieva, and
K. Michielsen, “<qc|hpc>: Quantum for hpc,” Oct. 2021. [Online].
Available: https://doi.org/10.5281/zenodo.5555960

[4] M. Schulz, M. Ruefenacht, D. Kranzlmüller, and L. B. Schulz,
“Accelerating hpc with quantum computing: It is a software challenge
too,” Computing in Science & Engineering, vol. 24, no. 4, pp. 60–64,
2022. [Online]. Available: https://doi.org/10.1109/MCSE.2022.3221845

[5] C. S. Wang, J. C. Curtis, B. J. Lester, Y. Zhang, Y. Y. Gao, J. Freeze,
V. S. Batista, P. H. Vaccaro, I. L. Chuang, L. Frunzio, L. Jiang,
S. M. Girvin, and R. J. Schoelkopf, “Efficient multiphoton sampling of
molecular vibronic spectra on a superconducting bosonic processor,”
Phys. Rev. X, vol. 10, p. 021060, 06 2020. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevX.10.021060

[6] J. Yin, Y.-H. Li, S.-K. Liao, M. Yang, Y. Cao, L. Zhang,
J.-G. Ren, W.-Q. Cai, W.-Y. Liu, S.-L. Li et al., “Entanglement-
based secure quantum cryptography over 1,120 kilometres,” Nature,
vol. 582, no. 7813, pp. 501–505, 2020. [Online]. Available:
https://doi.org/10.1038/s41586-020-2401-y

[7] A. McCaskey, E. Dumitrescu, D. Liakh, and T. Humble, “Hybrid
programming for near-term quantum computing systems,” in 2018 IEEE
International Conference on Rebooting Computing (ICRC), 2018, pp.
1–12. [Online]. Available: https://ieeexplore.ieee.org/document/8638598

[8] A. J. McCaskey, E. F. Dumitrescu, D. Liakh, M. Chen, W.-c. Feng,
and T. S. Humble, “A language and hardware independent approach to
quantum–classical computing,” SoftwareX, vol. 7, pp. 245–254, 2018.
[Online]. Available: https://doi.org/10.1016/j.softx.2018.07.007

[9] H. Ali, A. Saleh, and E. Ameen, “Towards an intelligent and
complete compiler for conventional computer with co-quantum
processor,” in 2012 8th International Computer Engineering Conference
(ICENCO). IEEE, 2012, pp. 100–106. [Online]. Available: https:
//ieeexplore.ieee.org/document/6487098

[10] E.-M. M. Ameen, H. A. Ali, M. M. Salem, and M. Badawy,
“Towards implementation of a generalized architecture for high-
level quantum programming language,” International Journal of
Theoretical Physics, vol. 56, pp. 2376–2412, 2017. [Online]. Available:
https://doi.org/10.1007/s10773-017-3391-x

[11] A. J. McCaskey, D. I. Lyakh, E. F. Dumitrescu, S. S. Powers,
and T. S. Humble, “XACC: a system-level software infrastructure
for heterogeneous quantum–classical computing,” Quantum Science
and Technology, vol. 5, p. 024002, 2020. [Online]. Available:
https://doi.org/10.1088/2058-9565/ab6bf6

[12] QIR Alliance, QIR Specification, QIR Alliance, 2021, also see https:
//qir-alliance.org. [Online]. Available: https://github.com/qir-alliance/
qir-spec

[13] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis and transformation,” in International Symposium on
Code Generation and Optimization, San Jose, CA, USA, 2004, pp. 75–
88. [Online]. Available: https://ieeexplore.ieee.org/document/1281665

[14] A. Elsharkawy, X.-T. M. To, P. Seitz, Y. Chen, Y. Stade, M. Geiger,
Q. Huang, , X. Guo, M. A. Ansari, C. B. Mendl, D. Kranzlmüller, and
M. Schulz, “Integration of quantum accelerators with high performance
computing — a review of quantum programming tools,” 2023, submitted
for publication.

[15] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T.
Chong, and M. Martonosi, “Scaffcc: Scalable compilation and analysis
of quantum programs,” Parallel Computing, vol. 45, pp. 2–17,
2015, computing Frontiers 2014: Best Papers. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167819114001422

[16] A. J. Abhari, A. Faruque, M. J. Dousti, L. Svec, O. Catu,
A. Chakrabati, C.-F. Chiang, S. Vanderwilt, J. Black, F. Chong,
M. Martonosi, M. Suchara, K. Brown, M. Pedram, and T. Brun,
“Scaffold: Quantum Programming Language,” Princeton Univ NJ
Dept of Computer Science, Tech. Rep., 2012. [Online]. Available:
https://www.cs.princeton.edu/research/techreps/TR-934-12

[17] A. Litteken, Y.-C. Fan, D. Singh, M. Martonosi, and F. T. Chong, “An
updated llvm-based quantum research compiler with further openqasm
support,” Quantum Science and Technology, vol. 5, no. 3, p. 034013, may
2020. [Online]. Available: https://dx.doi.org/10.1088/2058-9565/ab8c2c

[18] A. Cross, L. Bishop, J. Smolin, and J. Gambetta, “Open Quantum
Assembly Language,” Jul. 2017. [Online]. Available: http://arxiv.org/
abs/1707.03429

[19] G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-Haim,
D. Bucher, F. J. Cabrera-Hernández, J. Carballo-Franquis, A. Chen,
C.-F. Chen et al., “Qiskit: An open-source framework for quantum
computing,” 2019. [Online]. Available: https://qiskit.org/

[20] A. Cross, A. Javadi-Abhari, T. Alexander, N. De Beaudrap, L. S.
Bishop, S. Heidel, C. A. Ryan, P. Sivarajah, J. Smolin, J. M.
Gambetta, and B. R. Johnson, “OpenQASM 3: A Broader and
Deeper Quantum Assembly Language,” ACM Transactions on Quantum
Computing, vol. 3, no. 3, pp. 1–50, Sep. 2022. [Online]. Available:
https://dl.acm.org/doi/10.1145/3505636

[21] T. M. Mintz, A. J. Mccaskey, E. F. Dumitrescu, S. V. Moore, S. Powers,
and P. Lougovski, “Qcor: A language extension specification for the
heterogeneous quantum-classical model of computation,” ACM Journal
on Emerging Technologies in Computing Systems (JETC), vol. 16, no. 2,
pp. 1–17, 2020. [Online]. Available: https://doi.org/10.1145/3380964

[22] J. Izaac. (2023, Mar.) Pennylane blog - intro-
ducing catalyst: Quantum just-in-time compilation. Pen-
nyLane. [Online]. Available: https://pennylane.ai/blog/2023/03/
introducing-catalyst-quantum-just-in-time-compilation/

[23] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “MLIR:
Scaling compiler infrastructure for domain specific computation,”
in 2021 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), 2021, pp. 2–14. [Online]. Available:
https://ieeexplore.ieee.org/document/9370308

[24] P. Khalate, X.-C. Wu, S. Premaratne, J. Hogaboam, A. Holmes,
A. Schmitz, G. G. Guerreschi, X. Zou, and A. Y. Matsuura, “An llvm-
based c++ compiler toolchain for variational hybrid quantum-classical
algorithms and quantum accelerators,” 2022. [Online]. Available:
https://doi.org/10.48550/arXiv.2202.11142

[25] NVIDIA. (2023, Mar.) Cuda quantum for hybrid quantum-classical
computing — nvidia developer. NVIDIA. [Online]. Available: https:
//developer.nvidia.com/cuda-quantum

[26] N. Herrmann, D. Arya, M. W. Doherty, A. Mingare, J. C. Pillay,
F. Preis, and S. Prestel, “Quantum utility – definition and assessment
of a practical quantum advantage,” 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2303.02138

[27] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar,
R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. L. Pereira,
M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone,
P. Villoresi, and P. Wallden, “Advances in quantum cryptography,”
Adv. Opt. Photon., vol. 12, no. 4, pp. 1012–1236, Dec 2020. [Online].
Available: https://opg.optica.org/aop/abstract.cfm?URI=aop-12-4-1012

[28] Y. Li, M. Tian, G. Liu, C. Peng, and L. Jiao, “Quantum optimization and
quantum learning: A survey,” IEEE Access, vol. 8, pp. 23 568–23 593,
2020. [Online]. Available: https://ieeexplore.ieee.org/document/8972916

[29] S. Lloyd, “Universal quantum simulators,” Science, vol. 273, no. 5278,
pp. 1073–1078, 1996. [Online]. Available: https://www.science.org/doi/
abs/10.1126/science.273.5278.1073

[30] T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R.
de Supinski, and S. Futral, “The spack package manager: bringing
order to hpc software chaos,” in SC15: International Conference
for High-Performance Computing, Networking, Storage and Analysis.
Los Alamitos, CA, USA: IEEE Computer Society, nov 2015, pp.
1–12. [Online]. Available: https://doi.ieeecomputersociety.org/10.1145/
2807591.2807623

[31] S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington, and
R. Duncan, “t|ket〉 : A Retargetable Compiler for NISQ Devices,”
Quantum Science and Technology, vol. 6, no. 1, p. 014003, 2020.
[Online]. Available: http://arxiv.org/abs/2003.10611

[32] B. Mete, M. Schulz, and M. Ruefenacht, “Predicting the optimizability
for workflow decisions,” in 2022 IEEE/ACM Third International
Workshop on Quantum Computing Software (QCS), 2022, pp. 68–74.
[Online]. Available: https://ieeexplore.ieee.org/document/10025536

[33] L. Moro, M. G. A. Paris, M. Restelli, and E. Prati, “Quantum
compiling by deep reinforcement learning,” Communications Physics,
vol. 4, no. 1, p. 178, Aug 2021. [Online]. Available: https:
//doi.org/10.1038/s42005-021-00684-3

[34] N. Quetschlich, L. Burgholzer, and R. Wille, “Compiler optimization
for quantum computing using reinforcement learning,” 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2212.04508

[35] Message Passing Interface Forum, MPI: A Message-Passing Interface
Standard Version 4.0, Message Passing Interface Forum, 2021. [Online].
Available: https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

https://doi.org/10.5281/zenodo.5555960
https://doi.org/10.1109/MCSE.2022.3221845
https://link.aps.org/doi/10.1103/PhysRevX.10.021060
https://doi.org/10.1038/s41586-020-2401-y
https://ieeexplore.ieee.org/document/8638598
https://doi.org/10.1016/j.softx.2018.07.007
https://ieeexplore.ieee.org/document/6487098
https://ieeexplore.ieee.org/document/6487098
https://doi.org/10.1007/s10773-017-3391-x
https://doi.org/10.1088/2058-9565/ab6bf6
https://qir-alliance.org
https://qir-alliance.org
https://github.com/qir-alliance/qir-spec
https://github.com/qir-alliance/qir-spec
https://ieeexplore.ieee.org/document/1281665
https://www.sciencedirect.com/science/article/pii/S0167819114001422
https://www.cs.princeton.edu/research/techreps/TR-934-12
https://dx.doi.org/10.1088/2058-9565/ab8c2c
http://arxiv.org/abs/1707.03429
http://arxiv.org/abs/1707.03429
https://qiskit.org/
https://dl.acm.org/doi/10.1145/3505636
https://doi.org/10.1145/3380964
https://pennylane.ai/blog/2023/03/introducing-catalyst-quantum-just-in-time-compilation/
https://pennylane.ai/blog/2023/03/introducing-catalyst-quantum-just-in-time-compilation/
https://ieeexplore.ieee.org/document/9370308
https://doi.org/10.48550/arXiv.2202.11142
https://developer.nvidia.com/cuda-quantum
https://developer.nvidia.com/cuda-quantum
https://doi.org/10.48550/arXiv.2303.02138
https://opg.optica.org/aop/abstract.cfm?URI=aop-12-4-1012
https://ieeexplore.ieee.org/document/8972916
https://www.science.org/doi/abs/10.1126/science.273.5278.1073
https://www.science.org/doi/abs/10.1126/science.273.5278.1073
https://doi.ieeecomputersociety.org/10.1145/2807591.2807623
https://doi.ieeecomputersociety.org/10.1145/2807591.2807623
http://arxiv.org/abs/2003.10611
https://ieeexplore.ieee.org/document/10025536
https://doi.org/10.1038/s42005-021-00684-3
https://doi.org/10.1038/s42005-021-00684-3
https://doi.org/10.48550/arXiv.2212.04508
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

	Introduction
	Background and Related Work
	Guiding Principles
	Performance
	Scalability
	Usability
	Sustainability

	Proposal: Unified HPCQC Toolchain
	Stages
	Producers and Consumers
	Components
	Pass Manager
	Meta-Optimizer
	Hybrid Scheduler
	Hybrid Orchestration

	Interfaces
	Artifacts

	Current Status and Future Work
	Conclusion
	References

