
A Hybrid Classical-Quantum HPC Workload
Aniello Esposito∗, Jessica R. Jones†, Sebastien Cabaniols‡ and David Brayford§

HPC/AI EMEA Research Lab
Hewlett Packard Labs

Location: ∗Basel Switzerland, †Bristol UK, ‡Grenoble France, §Munich Germany
Email: ∗aniello.esposito@hpe.com, †j.r.jones@hpe.com, ‡sebastien.cabaniols@hpe.com, §david.kenneth.brayford@hpe.com

Abstract—A strategy for the orchestration of hybrid classical-
quantum workloads on supercomputers featuring quantum de-
vices is proposed. The method makes use of heterogeneous job
launches with Slurm to interleave classical and quantum compu-
tation, thereby reducing idle time of the quantum components.
To better understand the possible shortcomings and bottlenecks
of such a workload, an example application is investigated that
offloads parts of the computation to a quantum device. It executes
on a classical high performance computing (HPC) system, with
a server mimicking the quantum device, within the multiple
program, multiple data (MPMD) paradigm in Slurm. Quantum
circuits are synthesized by means of the Classiq software suite
according to the needs of the scientific application, and the Qiskit
Aer circuit simulator computes the state vectors. The Harrow-
Hassidim-Lloyd (HHL) quantum algorithm for linear systems
of equations is used to solve the algebraic problem from the
discretization of a linear differential equation. Communication
takes place over the message passing interface (MPI), which is
broadly employed in the HPC community. Extraction of state
vectors and circuit synthesis are the most time consuming, while
communication is negligible in this setup. The present test bed
serves as a basis for more advanced hybrid workloads eventually
involving a real quantum device.

Index Terms—quantum, hybrid, simulation, supercomputing,
hpc

I. INTRODUCTION

Quantum computers hold the potential to solve certain very
difficult problems with moderate input sizes efficiently but
accessibility and usability lag behind. On the other hand,
supercomputers and their data-intensive applications are large
but operate with proven tools developed over decades. Several
promising algorithms for quantum architectures have been
developed over the past decades [1]. However, as was ex-
plained in [2, Sec. 1.1], parallelism is not as easy to realise
in quantum algorithms. A more suitable approach therefore,
given the small size of early noisy, intermediate-scale quantum
(NISQ) devices, is to offload portions of a classical code
that would most benefit from quantum speed-up. Many HPC
applications could profit from this approach in a hybrid
workload, but how that might happen in a practical sense has
not been standardized yet. It is therefore crucial that today’s
computational scientists are able to adapt early on to make
use of these machines as they become available, while ideally
keeping as much as possible from the proven HPC ecosystem,
in order to shape hybrid workflows to their needs. In [2]
some of the challenges that will need to be addressed to
make a hybrid classical-quantum supercomputer truly useful
to the wider scientific community are explained. Assuming

that those challenges can be addressed, a hybrid classical-
quantum system can be thought of as broadly similar to any
other HPC system with more than a single node architecture,
e.g. with a mixture of accelerators such as GPUs and FPGAs.
That means that most of the tools at our disposal today, such
as Slurm [3] and MPI [4], can be repurposed. Slurm already
supports heterogeneous jobs and can be configured to schedule
hybrid classical-quantum jobs on a suitable hybrid machine.

The first part of this work presents an example hybrid
workload as described above. It makes use of the HHL
quantum algorithm to solve a system of linear equations
repeatedly, where a quantum device is mimicked by a circuit
simulator within the MPMD paradigm. This testbed allows the
investigation of possible shortcomings and bottlenecks of the
workload design, which is the main purpose and contribution
of this part. A solid understanding of this preliminary stage
is crucial before including a real quantum device, which
would then allow investigation of the performance of both
the hardware and software. In the second part, a general
and more sophisticated strategy for hybrid classical-quantum
workloads is proposed that employs heterogeneous Slurm jobs.
This approach allows the idle time of a quantum device to
be further reduced, thereby increasing the efficiency of hybrid
workloads. This is an improvement over MPMD from the first
part, where the quantum device is not released during a Slurm
job and can be left idle.

II. THE HYBRID WORKFLOW

A. General Considerations

A realistic architecture of a hybrid classical-quantum system
in the near future could consist of a large number of classical
compute nodes, as found in today’s supercomputers, and at
least one or two orders of magnitude fewer nodes with quan-
tum hardware, likely NISQ devices with 10-100 qubits each,
sharing a common high-speed interconnect as shown in Fig. 1.
The quantum devices are exposed as regular compute nodes
to a workload manager (WLM) using a hardware interface
that is assumed to be compatible with the possibly very
different cooling requirements of the various architectures.
From an algorithmic point of view, offloading portions of a
classical code to quantum devices presents another challenge,
namely that of data transfer speed, which will affect how
those portions are selected. Hoefler et.al. [5] demonstrated,
with some fairly pessimistic, if realistic, assumptions about
I/O speed, that it is necessary to minimise the amount of data

ar
X

iv
:2

31
2.

04
93

3v
1

 [
qu

an
t-

ph
]

 8
 D

ec
 2

02
3

Figure 1. Schematic representation of a tightly coupled hybrid system, where
quantum devices access via an interface the same high-speed network as the
classical compute nodes and service nodes.

Figure 2. Schematic representation of the interaction between a classical
application running on the HPC system and an interface server for a quantum
device. A WLM spans a single job that includes both components running in
a MPMD model. The subroutine qsolve_Axb(...) handles the synthesis
of the quantum circuit depending on A and b on the HPC system, as well as
the communication with the quantum device. For the present case, a quantum
circuit simulator mimics the quantum device.

being transferred to benefit from the advantages conferred by
quantum computation. Algorithm selection is therefore key
in realising quantum advantage. The problem of quantum
error correction (QEC) is ignored for the moment. However,
it is important to note that this must be addressed before
widespread adoption of systems of this type in the HPC
community. See [2, Sec. 1.2] for further discussion on this
issue.

B. Example Application

The discretization of linear differential equations is a stan-
dard numerical method for solving problems in engineering.
The resulting algebraic problem in the form of a system of
linear equations Ax = b can be solved in principle on a
quantum device by the HHL [6] algorithm. Fig 2 shows a clas-
sical application calling a subroutine qsolve_Axb(...)
that passes the the matrix A and right-hand-side b and returns
the solution x. The routine synthesizes the HHL quantum
circuits based on A and b by means of the Classiq [7]
software suite. The circuits are represented by strings of
quantum circuit intermediate representation code (quantum

Figure 3. Iterative solution of a linear system of equations Ax = b as it is
used for the time evolution of a discretized partial differential equation. At
each time step the circuit for the HHL algorithm is synthesized for a different
right hand side and the solution is computed on a quantum device (quantum
circuit simulator in the present case). Note that the matrix A is synthesised
only once as long as the discretization grid does not change.

assembly language (QASM)) [8], and these are transferred
via MPI_Send/Recv calls using mpi4py [9]. MPI has been
chosen for communicating data because of its established role
in supercomputing, but other mechanisms are also imaginable,
such as the Maestro middleware [10]. The quantum device
that is supposed to process the quantum circuit is accessed
through an interface running in another application. Though,
in the present case, the quantum device is mimicked by the
Qiskit Aer [11] circuit simulator, which computes the
final state vector and sends the solution back to the classical
application. In the simplest scenario, both applications are
executed within a single job using the MPMD model, where
the job is allocated and started by Slurm (see appendix A). The
classical application and the quantum circuit simulator share
a single MPI_COMM_WORLD, which required minor changes
in Qiskit Aer. Alternatively, dynamic process management
in MPI could be used to create an inter-communicator from
the individual communicators of the two applications in order
to send and receive information. In the case of a linear time-
dependent differential equation, a system of linear equations
needs to be repeatedly solved, as illustrated in Fig 3. When
a discretization grid does not change over time, the matrix A
remains the same. The Classiq software allows the right-
hand-side b to be synthesized separately, and then combined
the final circuit without having to synthesize A again. In
the present use case, the circuit for every time step is sent
to the quantum device, which then computes the solution
and sends it back to the classical application where the b
vector is assembled for the next time step. Experiments have
been conducted on a HPE Cray EX system featuring two
AMD EPYC 7763 (Milan) CPUs per node, giving a total of
128 cores and 512GB memory connected via the Slingshot
interconnect. The NumPy [12] and mpi4py packages made
use of the highly tuned math and MPI libraries from the HPE
Cray programming environment. Only moderate matrices and
right-hand-sides of sizes up to N = 64 have been considered
and the number of qubits needed for the quantum algorithm
is O(log(N)). The present implementation uses Python and

Table I
COMPLEXITY OF THE VARIOUS PHASES OF SOLVING A LINEAR SYSTEM OF

EQUATIONS IN THE HYBRID WORKFLOW AND A COMPARISON TO THE
CLASSICAL COUNTERPART. THE SYNTHESIS OF THE CIRCUIT FOR THE

MATRIX A HAS TO BE DONE ONLY ONCE, DEPENDING ON THE CHANGE IN
DISCRETIZATION, AND κ IS THE CONDITION NUMBER OF A.

operation quantum classical
Solving Ax = b O(κ log(N)) O(N)

Synthesis of circuit for b O(log(N) N/A
Synthesis of circuit for A O(log(N) N/A

Readout information from quantum device O(1)−O(N) N/A

data is represented by NumPy arrays, but an implementation
in C/C++ that passes pointers or references to arrays of
floating point numbers is straightforward. This workload has
been demonstrated during the International Supercomputing
Conference (ISC) 2023.

C. Results and Discussion

The most time consuming portion of the workload in Fig. 3
is the synthesis of A and b into quantum circuits, followed by
the extraction of the state vector from the circuit simulator.
The former is most probably due to the connection of the
Classiq software to an external server, which could be
highly improved by using an on-premise solution, and further
optimizations of the synthesis can be considered once this
bottleneck has been removed. The matrix A is usually sparse
in terms of non-zero entries depending on the discretization
scheme, but for the circuit generation an efficient decomposi-
tion in tensor products of Pauli matrices is more important.
The full extraction of the state vector is not necessary as
long as only a portion of the simulation domain in real-space
is of interest, although this could be insufficient in a time-
dependent problem. The precision of the solution is another
peculiarity of the quantum algorithm that deviates by several
percent from the classical solution. As long as precision can
be traded for efficiency this is not an issue, but otherwise one
has to include more qubits for precision and error correction.
Another approach would be use the approximate solution as
an input to an iterative refinement procedure. Finally, the com-
plexities of the individual portions of the quantum algorithm
are summarized in Table I. Assuming that only part of the
state vector is needed and that the injection of the circuit in
the quantum device, as well as the circuit transfer time, remain
negligible, the conditions under which this hybrid workload
can eventually outperform its purely classical counterpart are
given.

D. Anatomy of an Improved Hybrid Workload

The MPMD model used in Sec. II-B is simple, but it blocks
a quantum device for the whole duration of the classical
application and so potentially wastes precious resources. A
reduction of this idle time can be achieved by using the Slurm
support for heterogeneous jobs (hetjobs) to split a job
across differing hardware. A simple scenario consists of two
heterogeneous jobs {job1,job2} , each requiring classical
and quantum computing resources. As is typical in HPC, the

Figure 4. Schematic representation of two Slurm heterogeneous jobs requiring
a quantum device that is exposed as a compute node. As soon as the quantum
device is no longer needed by the first heterogeneous job it can be released
while the classical part continues to run. The second heterogeneous job can
start using the quantum device.

two jobs are submitted to a queue. Once resources are available
to start, both the classical and quantum parts of job1 begin.
At a crucial point in the execution, there is a synchronisation
to allow the classical part to wait on results from its quantum
counterpart. The classical part polls the quantum resource for
completion. Once the quantum computation is finished, the
resource is freed and then immediately consumed by the quan-
tum part of job2, which has been waiting in the queue for the
resource to become available. This is illustrated in Fig 4, where
it is assumed that the quantum device is the bottleneck, since
their availability will initially be limited compared to that of
traditional hardware. Sources for the job scripts can be found
in the appendix A. Usually, the consumption of classical and
quantum resources does not start at the same time, however
this can be achieved by splitting, checkpointing, and restarting
the classical part appropriately. Here follow screen captures of
the output of squeue at critical moments during the execution
of the two hetjobs. The various states of a job can be
“pending” (PD), “completing” (CG), or “running” (R).

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
105756+1 Q job2 seb PD 0:00 1 (Resources)
105754+1 Q job1 seb R 0:21 1 qnode1
105756+0 HPC job2 seb PD 0:00 2 (Resources)
105754+0 HPC job1 seb R 0:21 2 hpcn[136-137]

Listing 1. job2 waits while job1 uses the quantum resource

In Listing 1, job1 has been allocated the quantum resource,
qnode1 and, the two HPC machines are waiting for the end
of the quantum computation. job2 is waiting on resources
because the quantum machine, qnode1 is busy.

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
105754+1 Q job1 seb CG 0:31 1 qnode1
105756+1 Q job2 seb PD 0:00 1 (Resources)
105756+0 HPC job2 seb PD 0:00 2 (Resources)
105754+0 HPC job1 seb R 0:33 2 hpcn[136-137]

Listing 2. The quantum part of job1 is completing.

In Listing 2, the quantum part of job1 is done; the quantum
resource is being liberated, while the classical part of job1

is still running. Meanwhile, job2 is still pending as it waits
for the resources it needs to become available.

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
105756+1 Q job2 seb PD 0:00 1 (Resources)
105756+0 HPC job2 seb PD 0:00 2 (Resources)
105754+0 HPC job1 seb R 0:45 2 hpcn[136-137]

Listing 3. Classical part of job1 is still computing, while job2 is still
pending, but the Q resource is almost ready again now.

In Listing 3 job1’s classical part is still computing, while
job2 is still pending, but the quantum resource is almost
ready again now.

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
105756+1 Q job2 seb R 0:01 1 qnode1
105754+0 HPC job1 seb R 1:01 2 hpcn[136-137]
105756+0 HPC job2 seb R 0:01 2 hpcn[138-139]

Listing 4. Classical part of job1 is still computing, while job2 is running

Listing 4 shows job1 is continuing its classical computation.
job2 is now running, with the quantum computation in
progress and the classical computation eventually waiting for
the results (blocking MPI call).

III. CONCLUSION

A hybrid classical-quantum workload for the repeated so-
lution of a system of linear equations has been executed on
a single HPE Cray EX system within the MPMD model of
Slurm. The circuits are generated by a classical scientific appli-
cation and then evaluated by a simulator imitating a quantum
device. Synthesis of a circuit is ideally done locally and not
remotely, which is really an administrative or legal (licensing)
issue, rather than a technical one. The lower precision of
the results from a quantum device needs to be taken into
account and improved by either using more qubits and an
improved algorithm, or by classical techniques such as iterative
refinement for this particular use case. Extraction of the full
state vector has to be avoided if possible. For the more flexible
case, where a quantum resource does not have to be bound to
a classical application until its termination in an MPMD job, a
strategy using heterogeneous jobs in Slurm has been presented,
where the quantum device can be freed up during the job run-
time, and used by the next heterogeneous job. In the next
step the use case will be executed as a heterogeneous job to
profile the framework and eventually, the circuit simulator will
be replaced by an actual quantum device.

APPENDIX

Listing 5 shows the MPMD Slurm job script for the example
in Sec. II-B

#!/bin/bash

#SBATCH -N 1
#SBATCH -t 10
#SBATCH --exclusive

srun -n 2 -c 1 -u -l --multi-prog multi.conf

Listing 5. Slurm MPMD job script

with the configuration file

0 python hhl_demo.py
1 python circuit_simulator.py

Listing 6. multi.conf Slurm MPMD configuration file

The heterogeneous Slurm jobs shown in Sec. II-D are based
on a script like the following

#!/bin/bash
#
The first allocation is the classic HPC allocation and

will survive
the computational tasks even when the quantum part of the

job is finished.
#
The -C quantum is our quantic resource selector and we

only have one (mimicked by
requiring qnode1, a unique, particular system).

#SBATCH -N2
#SBATCH -C classic
#SBATCH -p HPC
#SBATCH --exclusive
#SBATCH hetjob
#SBATCH -N1
#SBATCH -C quantum
#SBATCH -p Q
#SBATCH -w qnode1
#SBATCH --exclusive

srun -n2 --ntasks-per-node=1 python hhl_demo.py : -n1 --
ntasks-per-node=1 python circuit_simulator.py

Listing 7. hetjob.sh, the main job script

ACKNOWLEDGEMENTS

The authors would like to thank Alfio Lazzaro for proof
reading and helpful comments, Frédéric Ciesielski and Yann
Maupu for their Slurm expertise and testbed, and also the
team at Classiq for allowing the authors access to their
professional tool suite and for continuous support during our
collaboration. Thanks also are due to the reviewers, whose
comments helped guide improvements to this work.

REFERENCES

[1] A. Montanaro, “Quantum algorithms: an overview,” npj Quantum Infor-
mation, vol. 2, no. 1, pp. 1–8, 2016.

[2] J. H. Davenport, J. R. Jones, and M. Thomason, “A practical overview
of quantum computing: Is exascale possible?” 2023.

[3] “Slurm workload manager,” https://slurm.schedmd.com/. [Online].
Available: https://slurm.schedmd.com/

[4] Message Passing Interface Forum, MPI: A Message-Passing Interface
Standard Version 4.0, Jun 2021. [Online]. Available: https://www.
mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

[5] T. Hoefler, T. Häner, and M. Troyer, “Disentangling hype
from practicality: On realistically achieving quantum advantage,”
Communications of the ACM, vol. 66, no. 5, p. 82–87, apr 2023.
[Online]. Available: https://doi.org/10.1145/3571725

[6] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for
linear systems of equations,” Physical review letters, vol. 103, no. 15,
p. 150502, 2009.

[7] “Classiq: Create quantum computing software without limits,” https:
//www.classiq.io/. [Online]. Available: https://www.classiq.io/

[8] L. S. Bishop, “Qasm 2.0: A quantum circuit intermediate representation,”
in APS March Meeting Abstracts, vol. 2017, 2017, pp. P46–008.

[9] L. Dalcin and Y.-L. L. Fang, “mpi4py: Status update after 12 years of
development,” Computing in Science & Engineering, vol. 23, no. 4, pp.
47–54, 2021.

https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://doi.org/10.1145/3571725
https://www.classiq.io/
https://www.classiq.io/
https://www.classiq.io/

[10] C. Haine, U.-U. Haus, M. Martinasso, D. Pleiter, F. Tessier, D. Sar-
many, S. Smart, T. Quintino, and A. Tate, “A middleware supporting
data movement in complex and software-defined storage and memory
architectures,” in High Performance Computing: ISC High Performance
Digital 2021 International Workshops, Frankfurt am Main, Germany,
June 24–July 2, 2021, Revised Selected Papers 36. Springer, 2021, pp.
346–357.

[11] J. Doi and H. Horii, “Cache blocking technique to large scale quantum
computing simulation on supercomputers,” in 2020 IEEE International
Conference on Quantum Computing and Engineering (QCE). IEEE,
2020, pp. 212–222.

[12] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J.
Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett,
A. Haldane, J. F. del Rı́o, M. Wiebe, P. Peterson, P. Gérard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant, “Array programming with NumPy,” Nature,
vol. 585, no. 7825, pp. 357–362, Sep 2020. [Online]. Available:
https://doi.org/10.1038/s41586-020-2649-2

https://doi.org/10.1038/s41586-020-2649-2

	Introduction
	The Hybrid Workflow
	General Considerations
	Example Application
	Results and Discussion
	Anatomy of an Improved Hybrid Workload

	Conclusion
	Appendix
	References

