
Towards Quantum Software Requirements
Engineering

Tao Yue
Simula Research Laboratory

Oslo, Norway
tao@simula.no

Shaukat Ali
Simula Research Laboratory and

Oslo Metropolitan University
Oslo, Norway

shaukat@simula.no

Paolo Arcaini
National Institute of Informatics

Tokyo, Japan
arcaini@nii.ac.jp

Abstract—Quantum software engineering (QSE) is receiving
increasing attention, as evidenced by increasing publications on
topics, e.g., quantum software modeling, testing, and debugging.
However, in the literature, quantum software requirements en-
gineering (QSRE) is still a software engineering area that is
relatively less investigated. To this end, in this paper, we provide
an initial set of thoughts about how requirements engineering for
quantum software might differ from that for classical software
after making an effort to map classical requirements classifica-
tions (e.g., functional and extra-functional requirements) into the
context of quantum software. Moreover, we provide discussions
on various aspects of QSRE that deserve attention from the
quantum software engineering community.

Index Terms—quantum software engineering, requirements
engineering, requirements

I. INTRODUCTION

Quantum software engineering (QSE) [1], [2], as classical
software engineering, is expected to focus on various phases of
quantum software development, including requirements engi-
neering, design and modeling, testing, and debugging. Various
studies have been conducted in the literature regarding most of
these phases. However, as reported in [3], [1], the requirements
engineering phase remains relatively untouched. Only a few
preliminary works exist on requirements engineering [4], [5].

Requirements engineering, like in the classical context, if
not conducted properly, will build incorrect quantum software
and cause high costs in fixing it once problems are discovered
in later phases of quantum software development. Thus, this
paper focuses on quantum software requirements engineering
(QSRE). In particular, we highlight the key aspects of QSRE
that differentiate itself from the classical domain. To illustrate
differences, we also present a motivating example of financial
risk management. Moreover, we shed light on how typical
requirements engineering will be impacted due to the quantum
context and suggest key following activities.

II. MOTIVATING EXAMPLE

We will use the motivating example of credit risk anal-
ysis with quantum algorithms from Qiskit [6]. Detailed
information about the algorithm is published in [7], [8].
The proposed quantum algorithm is more efficient than its
equivalent classical implementations, such as using Monte
Carlo simulations on classical computers. We calculate two

key risk measures, i.e., Value at Risk (VaR) and Conditional
Value at Risk (CVaR). Key requirements of the risk estimation,
including the calculation of these two risk measures (i.e.,
functional requirements), are shown in Figure 1. In addition,
we present extra-functional requirements specific to quantum
computing, e.g., estimating the number of gates and (ancilla)
qubits. Moreover, we show hardware constraints such as the
limited number of qubits and limited depth of circuits.

Figure 2 (a) present a use case diagram including actor
Credit Analyst responsible for managing risk in finance, as
illustrated with use case Manage risk in finance with quantum.
This use case includes use cases Determine Var and Determine
CVaR. Also, for calculating VaR or CVaR, a credit analyst
needs to define the confidence level, captured with use case
Define the confidence level. In Figure 2 (b), we use the use
case diagram notation to illustrate the main functionalities of
a quantum expert applying the Amplitude Estimation [7], [8]
algorithm for calculating VaR and CVaR.

III. QUANTUM SOFTWARE REQUIREMENTS ENGINEERING

A. Stakeholders

The ISO/IEC/IEEE 15288 standard defines stakeholders as:
“Individual or organization having a right, share, claim, or
interest in a system or in its possession of characteristics that
meet their needs and expectations” [9]. Identifying stakehold-
ers and their requirements is a crucial activity in requirements
engineering. When building quantum software systems, stake-
holders are the same as in the classical context. For example,
in our example, stakeholders related to the development of
the quantum risk management system include credit analysts
(domain experts), borrowers (customers), banks, and software
developers, all having different concerns on various aspects,
including functionality, ease of use, price, and performance.

B. Requirements classifications

Requirements are commonly classified into functional and
extra-functional (Section III-B1). A further classification spe-
cific to QSRE is whether requirements are related to the
quantum or the classical part (Section III-B2) of the system.

ar
X

iv
:2

30
9.

13
35

8v
1 

 [
cs

.S
E

] 
 2

3 
Se

p 
20

23



Fig. 1. Finance application for credit risk analysis – key requirements,
in the SysML requirements diagram notation. Stereotypes «qReq», «cReq»,
and «hReq» are applied to distinguish quantum requirements, classical re-
quirements and the hybrid of both, respectively. Stereotypes «Functional
Requirement» and «Extra-functional Requirement» distinguish functional and
extra-functional requirements.

1) Functional requirements and extra-functional require-
ments: Functional requirements are related to the functionality
that a quantum software system is expected to provide. For
instance, the functional requirements of our example are
indicated with «Functional Requirement», such as Determine
Value at Risk (VaR) with the 95% of confidence level (see
Figure 1). Identifying functional requirements for quantum
software shall be the same as for the classical one.

SEBoK defines non-functional requirements (also com-
monly named extra-functional) as “Quality attributes or char-
acteristics that are desired in a system, that define how a
system is supposed to be” [10]. These attributes vary from
one system to another. For instance, safety requirements (i.e.,
one type of extra-functional requirements) will only apply
to a safety-critical system. All the relevant extra-functional
requirements from classical software systems generally apply
to quantum software systems. However, there are additional re-
quirements. For instance, Figure 1 shows three extra-functional
requirements: Estimation accuracy shall be a quadratic speed-
up over classical methods (e.g., Monte Carlo), which is further
decomposed into another two extra-functional requirements on
estimating the required numbers of gates and (ancilla) qubits.
These two requirements relate to the hardware constraints:
Limited number of qubits and Limited depth of quantum cir-
cuits. Identifying and realizing these extra-functional require-
ments require knowledge of quantum computing. The good
news is that such requirements are common across various
quantum software applications, implying that they can be
reused and that common solutions can be proposed to address
them. We would also like to point it out that Saraiva et al. [5]
have already identified such five common extra-functional
requirements. Moreover, such extra-functional requirements
might need to be elicited step-wise, as their elicitation depends
on identifying other requirements. Ideally, when available in
the future, an actionable requirements elicitation process could
clearly guide users through all required activities.

Fig. 2. (a) Application for credit risk analysis – key use cases. (b) Key
functionalities of realizing Determine VaR and Determine CVaR in (a).

2) Quantum requirements vs. classical requirements: It is
crucial to distinguish requirements that should be addressed
with classical computers and those to be addressed with
quantum computers. Moreover, there should be high-level
requirements that are hybrid. For instance, Figure 1 defines
three stereotypes «qReq», «cReq», and «hReq» to distinguish
requirements that need to be addressed in the classical, quan-
tum, or hybrid manner, respectively. Doing so is essential, as
mentioned by Weder et al. [10], [11]; indeed, the first phase of
their proposed quantum software lifecycle is about performing
quantum-classical splitting. Requirements engineering, espe-
cially requirements analysis, and optimization, is typically
performed in this phase to decide which parts of a targeted
problem need to be solved on a quantum computer and
which parts go to classical hardware. Consequently, require-
ments specification and modeling solutions should provide
mechanisms to support the problem separation into classical
and quantum parts. We explain this idea by applying three
stereotypes to use case modeling (see Figure 2).

C. Specific extra-functional concerns

1) Portability: Near future quantum computers will be built
with different hardware technologies; thus, portability will
remain a key requirement to be captured. For example, a quan-
tum software system for our example (i.e., credit risk analysis)
may need to be deployed to different quantum computers.
Moreover, in the near future, various quantum computing
resources and classical computing will be pooled so that more
computations can be performed jointly. Thus, converting a
problem into a set of requirements, where requirements shall
be addressed with different types of quantum computers and
classical computers, is needed.

2) Performance: Performance requirements over classical
implementation are essential to justify the need for quantum
computing. For example, our example requires that the estima-
tion accuracy be a quadratic speed-up over classical methods
(see Figure 1). Such requirements may consider other require-
ments, e.g., the estimation accuracy depends on the number
of gates and the number of (ancilla) qubits that need to be



estimated at the requirements level to check whether or not the
expected quadratic speed-up on the estimation accuracy can be
achieved. These are two additional requirements. Such require-
ments are common across quantum software, as, currently and
in the near future, the capabilities of quantum computers are
limited. Thus, deciding early on whether available resources
can achieve the expected performance requirements and, if
yes, with which margin is important.

3) Reliability: Currently, hardware errors affect the relia-
bility of their computations and consequently constrain how
quantum computers should be used and how quantum software
should be designed. For instance, performing a reset after
running several calculations for a period of time might be
needed; this means that a quantum algorithm might not be
run for a long time [12]. Thus, when identifying requirements
of quantum software, it is essential to identify reliability
requirements and associated constraints, especially considering
the impact of hardware errors on the reliability of quantum
software systems. Decisions such as introducing Quantum
Error Correction [13] (which requires additional quantum re-
sources) or other fault tolerance mechanisms might be needed
early in the quantum software development lifecycle.

4) Scalability: Current quantum computers support a lim-
ited number of qubits, i.e., resources are scarce and expensive.
Therefore, scalability requirements are carefully considered
while designing quantum software. For instance, as discussed
in [8], in the context of quantum risk analysis (our motivating
example), based on the results of the authors’ investigation,
more qubits are needed to model more realistic scenarios,
thereby achieving practically meaningful advantages over
Monte Carlo simulations, which represent state of the art
in risk management. Moreover, scalability requirements (e.g.,
on the number of parameters and constraints expected to be
handled in the risk analysis) should be carefully defined such
that they can be satisfied with a limited depth of the quantum
circuit to mitigate the impact of decoherence, with limited use
of two-qubit gates (e.g., CNOT gates) to reduce the effect of
crosstalk, and so on, which can be ensured with more powerful
quantum computers, dedicated error mitigation mechanisms,
and even carefully-designed quantum algorithms.

5) Maintainability: Like classical software, quantum soft-
ware will require maintainability. Given that, as expected,
quantum hardware will continue to evolve, existing quantum
software needs to be updated (in some cases) to deal with the
hardware changes. For example, with the decreased hardware
error rates provided by the latest technological advancements,
error handing mechanisms in quantum software systems must
be updated to improve performance and reduce the cost of
additional error correction. Thus, quantum software systems
shall identify and capture such maintainability requirements.

6) Reusability: Like classical software, the reusability of
quantum software is essential to be easily reused across
different systems. Thus, such requirements shall be captured
during requirements engineering. However, some specific re-
quirements related to quantum software shall be explicitly
captured. For instance, quantum software is often built as

hybrid software. Therefore, having tight coupling between the
two parts would reduce the reusability of quantum software.
Instead, the high cohesion of the quantum software part is
expected to enable more reusability.

IV. DISCUSSIONS AND SUGGESTIONS

Requirements elicitation elicits software requirements, i.e.,
quantum software in our context. Given that, in this phase,
we investigate what problem a quantum software should
solve rather than how the software should be implemented
to address this problem, the requirements engineering for
quantum software shall remain similar to the classical one.
For instance, identifying stakeholders and defining system
boundaries remain the same. However, one difference might be
in checking whether it is needed to solve a problem that has
been solved in the classical world with quantum, especially
considering the known limitations of quantum computing. For
example, in our running example (see Figure 1), we need to
consider requirements specific to the quantum domain, such
as the required number of qubits (i.e., a hardware constraint).
Regarding stakeholders, there remain similarities between the
classical and quantum requirements elicitation. For instance, a
possible stakeholder in our example is the credit analyst, which
would remain the same as in the classical domain. Existing
methods, such as interviews and prototyping for requirements
elicitation, are also expected to be largely similar.

Functional and non-functional requirements are typically
specified during requirements specification at various for-
malization degrees, ranging from informal natural language
specifications to fully formal specifications. Examples include
semi-formal notations such as use cases and entity-relations di-
agrams or formal notations such as Hoare logic [14]. Require-
ments specifications for quantum software will be changed
to accommodate concepts related to quantum software. For
example, when using use case diagrams, as shown in our
example, it is helpful to distinguish use cases from the classical
world, the quantum world, and the mix of the two. Moreover,
when specifying requirements with modeling notations (e.g.,
SysML requirements diagram), they need to be extended to
capture novel concepts from quantum software. Finally, formal
methods are also relevant to investigate for specifying quantum
software requirements as surveyed in [15]. Nonetheless, such
methods are also quite early in their stage of development [15].

Requirements verification of quantum software has received
less attention; when considering formal methods, only prelim-
inary tools and methods are available as discussed in [15].
Moreover, the survey discusses the need for new methods
for formal verification for complex quantum software. Re-
quirements validation via automated testing is getting popular
in the software engineering community, with several new
works being published (e.g., [16], [17], [18], [19], [20], [21]).
Nonetheless, as discussed in [22], many testing challenges
remain unaddressed. Finally, the classical verification and
validation methods, e.g., inspection and walk-through, apply
to some extent to quantum software requirements.

Based on our investigation, we recommend the following:



(1) Carefully consider separating parts of the problem that
should be addressed in the classical world and those on
quantum computers; (2) Identify and specify requirements
related to various constraints, especially those about quantum
hardware. Realizing these requirements depends on available
and realistic quantum computing resources and explicitly
specifying such requirements support requirements analysis on
the feasibility of the realization; (3) Identify existing quantum
algorithms that could be incorporated. Selecting which quan-
tum algorithms to use is a decision that might need to be made
at the early stage, as the availability and capability of such
quantum algorithms have an impact on the quantum part of the
realization of certain extra-functional requirements; (4) Based
on the identified and specified requirements, requirements
analysis might be needed to identify key factors (e.g., selection
of quantum algorithms, determining quantum hardware re-
sources, assessing the feasibility of satisfying extra-functional
requirements) that have a significant impact on the develop-
ment of quantum software, and potential trade-offs among
these factors. Doing so is expected to effectively support
decision-making on selecting quantum hardware resources;
(5) Identify requirements whose realization strongly depends
on constantly emerging quantum algorithms and advanced
quantum computers. Doing so is necessary because as soon as
more advanced quantum algorithms or quantum computers are
available, such requirements could be realized (if not possible
before) or realized better. Also, decisions made regarding the
satisfaction of certain requirements (e.g., the required number
of gates) and rationales behind these decisions are highly
recommended to be recorded.

V. CONCLUSIONS AND FUTURE WORK

Requirements engineering (RE) for quantum software has
gotten less attention than other phases, such as quantum
software testing. Thus, we present some ideas on how RE for
quantum software will differ from the classical counterpart.
For instance, what will be the key differences for extra-
functional requirements? Finally, we discussed how various
steps in RE, such as requirements elicitation, specification,
verification, and validation, will be impacted, including devel-
oping requirements specification/modeling, analyses, verifica-
tion, and validation methods, with tool support, for supporting
quantum software development at the RE phase.

REFERENCES

[1] S. Ali, T. Yue, and R. Abreu, “When software engineering meets
quantum computing,” Communications of the ACM, vol. 65, no. 4, pp.
84–88, 2022.

[2] M. Piattini and J. M. Murillo, Quantum Software Engineering Landscape
and Challenges. Cham: Springer International Publishing, 2022, pp. 25–
38. [Online]. Available: https://doi.org/10.1007/978-3-031-05324-5_2

[3] J. Zhao, “Quantum software engineering: Landscapes and horizons,”
CoRR, vol. abs/2007.07047, 2020.

[4] N. Chancellor, R. Cumming, and T. Thomas, “Toward a standardized
methodology for constructing quantum computing use cases,” CoRR,
vol. abs/2006.05846, 2020. [Online]. Available: https://arxiv.org/abs/
2006.05846

[5] L. Saraiva, E. H. Haeusler, V. G. Costa, and M. Kalinowski,
“Non-functional requirements for quantum programs,” in Short
Papers Proceedings of the 2nd International Workshop on Software
Engineering & Technology (Q-SET 2021), ser. CEUR Workshop
Proceedings, vol. 3008. CEUR-WS.org, 2021, pp. 89–73. [Online].
Available: http://ceur-ws.org/Vol-3008/paper4.pdf

[6] Qiskit Finance Development Team, “Credit risk analysis.” [Online].
Available: https://qiskit.org/documentation/finance/tutorials/09_credit_
risk_analysis.html

[7] D. J. Egger, R. García Gutiérrez, J. C. Mestre, and S. Woerner,
“Credit risk analysis using quantum computers,” IEEE Transactions on
Computers, vol. 70, no. 12, pp. 2136–2145, 2021.

[8] S. Woerner and D. J. Egger, “Quantum risk analysis,” npj
Quantum Information, vol. 5, no. 1, Feb 2019. [Online]. Available:
http://dx.doi.org/10.1038/s41534-019-0130-6

[9] “Systems and software engineering — System life cycle processes,”
Standard, May 2015.

[10] B. Weder, J. Barzen, F. Leymann, M. Salm, and D. Vietz,
“The quantum software lifecycle,” in Proceedings of the 1st ACM
SIGSOFT International Workshop on Architectures and Paradigms for
Engineering Quantum Software, ser. APEQS 2020. New York, NY,
USA: Association for Computing Machinery, 2020, pp. 2–9. [Online].
Available: https://doi.org/10.1145/3412451.3428497

[11] B. Weder, J. Barzen, F. Leymann, and D. Vietz,
Quantum Software Development Lifecycle. Cham: Springer
International Publishing, 2022, pp. 61–83. [Online]. Available:
https://doi.org/10.1007/978-3-031-05324-5_4

[12] M. J. Biercuk, H. Slatyer, and M. Hush, “Boost-
ing quantum computer hardware performance with Ten-
sorFlow,” 2020. [Online]. Available: https://q-ctrl.com/blog/
boosting-quantum-computer-hardware-performance-with-tensorflow

[13] G. La Guardia, Quantum Error Correction: Symmetric, Asymmetric,
Synchronizable, and Convolutional Codes. Springer, 01 2020.

[14] L. Zhou, N. Yu, and M. Ying, “An applied quantum hoare logic,” in
Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2019, pp. 1149–1162.

[15] C. Chareton, S. Bardin, D. Lee, B. Valiron, R. Vilmart, and Z. Xu,
“Formal methods for quantum programs: A survey,” 2021.

[16] X. Wang, P. Arcaini, T. Yue, and S. Ali, “Generating failing test suites for
quantum programs with search,” in Search-Based Software Engineering.
Cham: Springer International Publishing, 2021, pp. 9–25.

[17] S. Honarvar, M. R. Mousavi, and R. Nagarajan, “Property-based testing
of quantum programs in Q#,” in Proceedings of the IEEE/ACM 42nd
International Conference on Software Engineering Workshops, ser. IC-
SEW’20. New York, NY, USA: Association for Computing Machinery,
2020, pp. 430–435.

[18] S. Ali, P. Arcaini, X. Wang, and T. Yue, “Assessing the effectiveness
of input and output coverage criteria for testing quantum programs,”
in 2021 14th IEEE Conference on Software Testing, Verification and
Validation (ICST), 2021, pp. 13–23.

[19] X. Wang, P. Arcaini, T. Yue, and S. Ali, “Application of combinatorial
testing to quantum programs,” in 2021 IEEE 21st International Con-
ference on Software Quality, Reliability and Security (QRS), 2021, pp.
179–188.

[20] E. n. Mendiluze, S. Ali, P. Arcaini, and T. Yue, “Muskit: A mutation
analysis tool for quantum software testing,” in 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2021, pp. 1266–1270.

[21] N. Oldfield, T. Yue, and S. Ali, “Investigating quantum cause-effect
graphs,” in Proceedings of the 3rd International Workshop on Quantum
Software Engineering, ser. Q-SE ’22, 2023, p. 8–15.

[22] A. Miranskyy and L. Zhang, “On testing quantum programs,” in Pro-
ceedings of the 41st International Conference on Software Engineering:
New Ideas and Emerging Results, ser. ICSE-NIER ’19. IEEE Press,
2019, pp. 57–60.

https://doi.org/10.1007/978-3-031-05324-5_2
https://arxiv.org/abs/2006.05846
https://arxiv.org/abs/2006.05846
http://ceur-ws.org/Vol-3008/paper4.pdf
https://qiskit.org/documentation/finance/tutorials/09_credit_risk_analysis.html
https://qiskit.org/documentation/finance/tutorials/09_credit_risk_analysis.html
http://dx.doi.org/10.1038/s41534-019-0130-6
https://doi.org/10.1145/3412451.3428497
https://doi.org/10.1007/978-3-031-05324-5_4
https://q-ctrl.com/blog/boosting-quantum-computer-hardware-performance-with-tensorflow
https://q-ctrl.com/blog/boosting-quantum-computer-hardware-performance-with-tensorflow

