
Full-Stack Quantum Software in Practice:
Ecosystem, Stakeholders and Challenges

Vlad Stirbu
University of Jyväskylä

Jyväskylä, Finland
vlad.a.stirbu@jyu.fi

Majid Haghparast
University of Jyväskylä

Jyväskylä, Finland
majid.m.haghparast@jyu.fi

Muhammad Waseem
University of Jyväskylä

Jyväskylä, Finland
muhammad.m.waseem@jyu.fi

Niraj Dayama
University of Jyväskylä

Jyväskylä, Finland
niraj.r.dayama@jyu.fi

Tommi Mikkonen
University of Jyväskylä

Jyväskylä, Finland
tommi.j.mikkonen@jyu.fi

Abstract—The emergence of quantum computing has intro-
duced a revolutionary paradigm capable of transforming numer-
ous scientific and industrial sectors. Nevertheless, realizing the
practical utilization of quantum software in real-world applica-
tions presents significant challenges. Factors such as variations in
hardware implementations, the intricacy of quantum algorithms,
the integration of quantum and traditional software, and the
absence of standardized software and communication interfaces
hinder the development of a skilled workforce in this domain.
This paper explores tangible approaches to establishing quantum
computing software development process and addresses the
concerns of various stakeholders. By addressing these challenges,
we aim to pave the way for the effective utilization of quantum
computing in diverse fields.

Index Terms—quantum computing, software development pro-
cess, operations, quantum software engineering

I. INTRODUCTION

Quantum computing holds great promise as a revolutionary
technology that has the potential to transform various fields.
By harnessing the principles of quantum mechanics, quan-
tum computers can perform complex calculations and solve
problems that are currently intractable for classical computers.
This promises breakthroughs in areas such as cryptography,
optimization, drug discovery, materials science, and machine
learning. Quantum computing’s ability to leverage quantum
mechanics properties like superposition, interference and en-
tanglement can unlock exponential speedups and enable more
accurate simulations of quantum systems.

The development of quantum software faces numerous chal-
lenges that need to be addressed for harnessing the power of
quantum computing effectively. Firstly, the limited availability
and instability of quantum hardware pose significant obstacles.
Quantum computers are prone to errors and noise, necessi-
tating the development of robust error correction techniques.
Additionally, quantum programming languages and tools are
still in their nascent stages, requiring advancements to facili-
tate efficient software development. Furthermore, the scarcity
of skilled quantum software developers and a lack of standard-
ization hinder the widespread adoption of quantum software.

As quantum systems scale, the complexity of designing and
optimizing quantum algorithms increases, demanding novel
approaches to algorithm design and optimization. Addressing
these challenges is crucial for realizing the full potential of
quantum computing and enabling the development of practical
quantum software applications.

This paper explores the challenges and approaches to estab-
lishing a quantum computing software development process.
It highlights the obstacles in realizing practical utilization
of quantum software, such as hardware variations, algorithm
complexity, integration with traditional software, and the lack
of standardized interfaces. Furthermore, the paper emphasizes
the need to address these challenges to enable effective uti-
lization of quantum computing.

II. BACKGROUND

A. Qubit implementation

The current candidates for building general-purpose quan-
tum computers, as listed in Table I, fall under the category of
Noisy Intermediate-Scale Quantum (NISQ) systems. Although
these quantum computers are not yet advanced enough to
achieve fault-tolerance or reach the scale required for quan-
tum supremacy, they provide an experimentation platform
to develop new generations of hardware, develop quantum
algorithms and validate quantum technology in real world
usecases. Whether a quantum computer is general-purpose or
specialized, the selection of quantum qubit implementation
technology can significantly enhance hardware efficiency for
specific problem classes. To make effective use of the hard-
ware, application developers must consider these differences
when designing and optimizing the software’s functionality
and operations.

B. Quantum algorithms

Quantum algorithms are computational techniques specif-
ically designed to harness the unique properties of quantum
systems [1]. They offer significant advantages over classical al-
gorithms in certain computational tasks. One key advantage is

ar
X

iv
:2

30
7.

16
34

5v
1 

 [
qu

an
t-

ph
] 

 3
0 

Ju
l 2

02
3



TABLE I
QUANTUM COMPUTING QUBIT IMPLEMENTATION TECHNOLOGIES

Qubit Technology Description Applicability
Superconducting Tiny superconducting materials are cooled to extremely low

temperatures to manifest their quantum properties.
General-purpose quantum computing, suitable for various
types of problems.

Trapped Ion Ions are trapped within electromagnetic fields. General-purpose quantum computing, with potential for high
coherence and low error rates.

Topological A new approach to quantum computing that leverages the
properties of topological states of matter to create qubits.
Unlike other qubit technologies, which typically rely on
individual particles like ions or electrons, topological qubits
are based on collective properties of an ensemble of particles.

General-purpose quantum computing, aimed at achieving
fault-tolerant operations.

Photonic Quantum information is stored in photons that can be manip-
ulated and transmitted over long distances.

General-purpose quantum computing, suitable for communi-
cation and cryptography applications.

Annealing Special purpose quantum computers designed to solve opti-
mization problems.

Specialized quantum computing, specifically targeted at opti-
mization and sampling problems.

Fig. 1. Quantum computing model

the ability to solve complex problems exponentially faster. For
example, Shor’s algorithm enables efficient factoring of large
numbers, posing a potential threat to current encryption meth-
ods. Also, Grover’s algorithm provides substantial speedup
in searching large databases. Moreover, quantum algorithms
can address optimization problems more effectively, leading
to improved solutions in areas like portfolio optimization,
logistics, and drug discovery.

C. Software

A typical quantum program performs a specialized task as
part of a larger classical program, see Fig. 1. The quantum
program is submitted as a batch task to a classical computer
that controls the operation of the quantum computer. The
classical computer schedules the task execution and provides
the result to the classical program when the job completes.

Application developer use tools like Qiskit1 and Cirq2 for
writing, manipulating and optimizing quantum circuits. These
Python libraries allow researchers and application developers
to interact with nowadays’ NISQ computers, allowing them
to run quantum programs on a variety of simulators and
hardware designs, abstracting away the complexities of low-
level operations and allowing researchers and developers to
focus on algorithm design and optimization.

Tools like TensorFlow Quantum3 and PennyLane4 play a
crucial role in facilitating the development of machine learning
quantum software. These frameworks provide the high-level

1https://qiskit.org
2https://quantumai.google/cirq
3https://www.tensorflow.org/quantum
4https://pennylane.ai

abstractions and interfaces that bridge the gap between quan-
tum computing and classical machine learning. They allow
researchers and developers to integrate quantum algorithms
seamlessly into machine learning development process by
providing access to quantum simulators and hardware, as well
as offering a range of quantum-friendly classical optimiza-
tion techniques. TensorFlow Quantum leverages the power of
Google’s TensorFlow ecosystem, enabling the combination of
classical and quantum neural networks for hybrid quantum-
classical machine learning models. PennyLane offers a unified
framework for developing quantum machine learning algo-
rithms, supporting various quantum devices and seamlessly
integrating them with classical machine learning libraries.
These tools provide a foundation for researchers to explore
and experiment with quantum machine learning, accelerating
the progress and adoption of quantum computing in the field
of machine learning.

Jupyter Notebooks and quantum simulators play a vital
role in supporting developers of quantum programs. Jupyter
provides an interactive and collaborative environment where
developers can write, execute, and visualize their quantum
code in an accessible manner. They allow for the combination
of code, explanatory text, and visualizations, making it easier
to experiment, iterate, and document the development process.
Quantum simulators, on the other hand, enable developers to
simulate the behavior of quantum systems without the need
for physical quantum hardware. These simulators provide a
valuable testing ground for verifying and debugging quantum
algorithms, allowing developers to gain insights into their
performance and behavior before running them on actual
quantum devices. Developers can iterate quickly, gain a deeper
understanding of quantum concepts, and refine their quantum
programs efficiently.

Traditional cloud computing providers, such as AWS
Bracket5, Azure Quantum6, Google Quantum AI7 or IBM
Quantum8, offer comprehensive quantum development ser-
vices. These services are designed to optimize the development

5https://aws.amazon.com/braket/
6https://learn.microsoft.com/en-us/azure/quantum/
7https://quantumai.google
8https://quantum-computing.ibm.com



process, with integrated tools like Jupyter notebooks and task
schedulers. Developers can create quantum applications and
algorithms across multiple hardware platforms simultaneously.
This approach ensures flexibility, allowing fine-tune algorithms
for specific systems while maintaining the ability to develop
applications that are compatible with various quantum hard-
ware platforms.

D. Operations

The software development lifecycle (SDLC) of quantum
programs involves a series of stages tailored to the unique
challenges of quantum computing [2]. It typically begins with
requirements gathering and problem formulation, where devel-
opers identify the specific problem that the quantum program
aims to solve. During algorithm design, the developers design
quantum algorithms that leverage the unique capabilities of
quantum systems. The designed algorithm implementation
translates the algorithm into quantum code using quantum
programming languages and frameworks like Qiskit or Cirq.
After implementation, the program undergoes rigorous test-
ing and debugging, using quantum simulators to validate its
functionality and behavior. The tested program is executed on
actual quantum hardware, with careful consideration given to
the limitations and noise inherent in quantum systems. Finally,
ongoing maintenance and optimization are crucial, as quantum
hardware, software frameworks, and algorithms evolve rapidly.

Simulators and virtualization offer significant advantages to
quantum computing from an operations perspective. Simula-
tors provide a virtual environment for testing and debugging
quantum programs without the need for physical quantum
hardware. Ops teams can validate code, identify errors, and
optimize performance in a controlled and reproducible manner.
Simulators also allow ops teams to simulate larger-scale quan-
tum systems than currently available in physical hardware,
providing insights into the behavior and scalability of quantum
programs. Additionally, virtualization techniques enable the
efficient allocation and management of quantum resources,
allowing multiple users to access and share quantum comput-
ing resources securely. Ops teams can provision virtualized
quantum environments, manage access controls, and monitor
resource utilization effectively.

III. FULL STACK QUANTUM COMPUTING

In this section we explore the full stack quantum computing
from two perspectives: development process - looking at how
they are developed, and composition - looking at how quantum
applications are structurally organised and the factors that
need to be considered when operationalizing the execution of
applications utilizing quantum computing components.

A. Development process

The SDLC of applications incorporating quantum technol-
ogy involves streams of activities encompassing both classical
and quantum components, see Fig. 2. At the top level, the clas-
sical software development process begins by identifying user
needs and deriving system requirements. These requirements

are transformed into a design and implemented, followed by
verification against the requirements and validation against
user needs. Once the software system enters the operational
phase, any detected anomalies are used to inform potential new
system requirements, if necessary. Concurrently, a dedicated
track for quantum components is followed within the SDLC,
specific to the implementation of quantum technology. The
requirements for these components are converted into a design,
which is subsequently implemented, verified, and integrated
into the larger software system. The development occurs on
simulators running on classical computers, which can simulate
the noise characteristic of actual quantum hardware. During
the operational phase, the quantum software components are
executed on real hardware. Scheduling ensures efficient utiliza-
tion of scarce quantum hardware, while monitoring capabilities
enable the detection of anomalies throughout the process.

This workflow enables the development of products that
include quantum technology using both plan-based and it-
erative development practices. However, when it comes to
the DevOps aspects of quantum computing [3], it becomes
crucial to focus on practices and activities that facilitate
effective monitoring of the quantum components operating in
the production environment.

B. Composition

From an architecture perspective, we can identify the fol-
lowing three layers: user, infrastructure and hardware (depicted
in Fig. 3). The user software refers to the end user programs
and the components developed by third parties, such as general
purpose (e.g. Qiskit Terra9) or specialised (e.g. OpenFermion10

or TensorFlow Quantum11) libraries of quantum algorithms
and circuits (e.g. Cirq and Qiskit). The infrastructure layer
contains the software needed to develop (e.g. simulators), test
under realistic scenarios (e.g. simulate the noise of NISQ
hardware) and run quantum programs at scale (e.g. task
schedulers). The hardware layer contains the software specific
for each hardware architecture, such as the software that drives
the control circuits.

IV. GOALS, CHALLENGES AND FUTURE RESEARCH
DIRECTIONS

Our exploration of full-stack quantum computing focuses on
identifying the challenges and difficulties in quantum software
development. By leveraging the principles and practices of
continuous software engineering, such as DevOps, which
enable small, multidisciplinary teams to iterate quickly and de-
liver high-quality traditional software, we aim to pinpoint the
specific components and interfaces that facilitate the transfer
and application of these practices in the context of quantum
software applications. Through this exercise, we seek to en-
hance our understanding of the pain points and opportunities
for improvement in quantum software development, ultimately
striving to foster the seamless integration of best practices

9https://github.com/Qiskit/qiskit-terra
10https://github.com/quantumlib/OpenFermion
11https://www.tensorflow.org/quantum



System
Requirements Design Implementation Verification ValidationNeeds ClassicalOperation

Component
Requirements Design Implementation Verification Quantum

Schedule MonitorExecute Quantum
execution

Fig. 2. Software development lifecycle of a hybrid system that includes both classical and quantum technology

Application

User

Infrastructure
Computing provider

Quantum Algorithm

Quantum SDK

Quantum
computer

architecture #2

Quantum
Hardware

Quantum
simulator Scheduler

Quantum
computer

architecture #1

Fig. 3. Ecosystem layers and relationships between stakeholders

from traditional software engineering into the emerging field
of quantum computing [4].

The main challenges emerge from two areas: technical –
integrating classical and quantum components, and process
– aligning the technical solution with user needs and re-
quirements. These observations highlight the need to address
technical and process-related hurdles in order to successfully
utilize quantum technology while effectively meeting user
expectations. From a development perspective, the quantum
software debugging is fundamentally different than for classi-
cal software. The black box nature of the quantum computer,
with its limited observability, limits the debugging capabilities.
Although new quantum debugging techniques are developed
[5], they are far from the ability to stop the execution and
inspect its state at any point in time that is typically found
in classical computing. Overcoming these limitations require
new development approaches that require modular software
development and reliable intermediate verification.

Multiple stakeholders contribute various software and hard-
ware components at both the classical and quantum levels.
While most stakeholders focus on specific areas like quantum
algorithm or hardware development, influential entities such
as Google and IBM have a significant presence and influence
across the entire technology stack. They are driven by diverse
economic and technological interests, which can either align

or conflict with one another. Similar to the design principles
behind the internet [6], the full-stack of quantum software
must be designed to accommodate these inherent conflicts
by establishing well-defined trust boundaries and open in-
terfaces. This approach that works along the tussles among
the stakeholders is crucial for fostering the development of
a robust commercial environment that encourages continuous
investments from both public and private entities [7].

V. CONCLUSION

Despite the novelty and the fundamentally new approach of
quantum computing, the software development shares many
characteristics with classical software engineering. Making
reliable quantum software requires careful design that incor-
porates the best practices from classical computing, while
focusing the development effort on specific high value com-
ponents that improve the development experience and lower
the operational costs.

ACKNOWLEDGEMENT

This work has been supported by the Academy of Fin-
land (project DEQSE 349945) and Business Finland (project
TORQS 8582/31/2022).

REFERENCES

[1] A. Montanaro, “Quantum algorithms: an overview,” npj Quantum Infor-
mation, vol. 2, p. 15023, Jan 2016.

[2] B. Weder, J. Barzen, F. Leymann, and D. Vietz, Quantum Software De-
velopment Lifecycle, pp. 61–83. Cham: Springer International Publishing,
2022.

[3] I.-D. Gheorghe-Pop, N. Tcholtchev, T. Ritter, and M. Hauswirth, “Quan-
tum devops: Towards reliable and applicable nisq quantum computing,”
in 2020 IEEE Globecom Workshops (GC Wkshps, pp. 1–6, 2020.

[4] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison, “Hidden
technical debt in machine learning systems,” in Proceedings of the 28th
International Conference on Neural Information Processing Systems -
Volume 2, NIPS’15, (Cambridge, MA, USA), p. 2503–2511, MIT Press,
2015.

[5] P. Li, J. Liu, Y. Li, and H. Zhou, “Exploiting quantum assertions for
error mitigation and quantum program debugging,” in 2022 IEEE 40th
International Conference on Computer Design (ICCD), pp. 124–131,
2022.

[6] D. D. Clark, J. Wroclawski, K. R. Sollins, and R. Braden, “Tussle in
cyberspace: Defining tomorrow’s internet,” in Proceedings of the 2002
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, SIGCOMM ’02, (New York, NY, USA),
p. 347–356, Association for Computing Machinery, 2002.

[7] “Quantum technology monitor,” tech. rep., McKinsey & Company, 2023.


	Introduction
	Background
	Qubit implementation
	Quantum algorithms
	Software
	Operations

	Full Stack Quantum Computing
	Development process
	Composition

	Goals, challenges and future research directions
	Conclusion
	References

