
Resource Estimation of Quantum Multiplication
Algorithms

Ethan R. Hansen
Department of Physics

University of Washington
Seattle, USA

ethanrh@uw.edu

Sanskriti Joshi
Department of Electrical and Computer Engineering

University of Washington
Seattle, USA

sjoshi3@uw.edu

Hannah Rarick
Department of Physics

University of Washington
Seattle, USA

rarichan@uw.edu

Abstract—As quantum computers progress towards a larger
scale, it is imperative that the “top” of the computing-technology
stack is improved. This project investigates the quantum re-
sources required to compute primitive arithmetic algorithms,
particularly multiplication. By using various quantum resource
estimators, like Microsoft’s Azure Quantum Resource Estimator,
one can determine the resources required for numerous quantum
algorithms [8]. In this paper, we will provide a comprehensive
resource analysis of numerous quantum multiplication algorithms
such as Karatsuba, schoolbook, and windowed arithmetic for
different qubit platforms (trapped ion, superconducting, and
Majorana) using the new Azure Quantum Resource Estimator.

Index Terms—Resource estimation, arithmetic primitives,
Karatsuba multiplication, windowed multiplication

I. INTRODUCTION

As the hardware and software for quantum computers are
designed, focus should be placed on optimizing all levels
of the computing technology stack to ensure a maximally
efficient quantum computing system. The promise of quantum
computers is its ability to solve large P and find approximate
solutions for NP problems in a much more time-efficient
manner than its classical counterpart [1]. Integer factorization
is an example of this. A major component of RSA decryption
is factoring a number that is a product of two large primes.
This is computationally intensive, but, using Shor’s algorithm,
there is a possibility of the factorization taking a fraction of
the time on a quantum computer [2]. However, solving a large
problem would be resource intensive, requiring many orders
of magnitude of the number of qubits than what currently
exists in a system. Additionally, qubits tend to be noisy, and
at that scale would require a form of error correction [1]. To
implement these different levels of algorithms, an analysis
of the resources required is crucial for understanding the
requirements for hardware based on software implementation
[3].

To date, researchers are investigating transforming classical
algorithms for arithmetic, such as multiplication, into quantum
algorithms to be used on quantum processors [4], [5]. In
particular, quantum multiplication algorithms will be needed
for RSA applications and Shor’s algorithm. Although there
are publications related to the various quantum algorithms
for multiplication, none of them provide an analysis of the
resource estimation using Microsoft Azure Quantum Resource

Estimator which accounts for quantum error correction and
provides insights into algorithm runtime and the physical
qubits required [6] [7]. Resource estimation provides different
metrics to understand the approximate resources required
to run a quantum algorithm on a specific hardware setup,
including the number of qubits, quantum gates, time, etc. [8].
Understanding how many resources would be required to run
an algorithm helps define a scale for how large and resilient
to noise a quantum computer has to be to effectively run the
algorithm [9].

In the subsequent sections, we will introduce the multipli-
cation algorithms used in this project (Sec.II), discuss our
approach to resource estimation of these algorithms using
Azure Quantum Resource Estimator (Sec.III), and present an
analysis and conclusion of our findings (Sec.IV-V).

II. MULTIPLICATION ALGORITHMS

This project will focus on determining the resource esti-
mation for multiplication primitives. Two different algorithms
were used in addition to schoolbook multiplication: Karatsuba
multiplication and windowed multiplication [6], [7]. While
these algorithms are classical, it is non-trivial to apply them
on a quantum computer. To convert such an algorithm, the
operations cannot be irreversible as it can cause decoherence,
whereas large quantum algorithms require coherence [6].

Schoolbook multiplication is the method taught in grade
school for long multiplication. This multiplication requires
O(n2) operations.

A. Karatsuba multiplication

Karatsuba multiplication requires a sub-quadratic number
of operations by recursively multiplying, while using those
results to calculate the final answer. For example, to perform
the multiplication of integers a and b, each integer gets broken
up such that a = c + 2hd and b = e + 2hf . Using the
results of recursively multiplying ce, df, (c+ d)(e+ f) yields
the desired result [6]. In addition, for the quantum case, the
coherence is gained by having the intermediate values added
directly to sections of the output register [6]. Notably, this
method of removing decoherence requires the same O(n)
space usage and O(nlg3) operation count as the original
classical algorithm.

979-8-3503-4323-6/23/$31.00 ©2023 IEEE
DOI 10.1109/QCE57702.2023.10211

ar
X

iv
:2

40
2.

01
89

1v
1

 [
qu

an
t-

ph
]

 2
 F

eb
 2

02
4

B. Windowed multiplication

Windowed arithmetic is implemented to reduce the number
of operations counts using look-up tables to merge together
operations. These look-up tables are classically precomputed.
Additionally, measurement based uncomputations of the look-
up tables can be done to gain coherence [7]. This method has
asymptotic Toffoli gate count of O(n2

lgn).

III. METHODS

We will be working with Microsoft’s quantum resource
estimation tool to investigate and compare the resources
required for different integer multiplication algorithms. The
main estimation tool that we will utilize is the Azure Quantum
Resource Estimator.

The Azure Quantum Resource Estimator (cloud resource
estimator) is run on Microsoft’s machines and is accessed on
the cloud via the Azure Portal. The cloud resource estimator
takes in three inputs: the quantum circuit, the desired physical
qubit parameters (error rates, gate times, and measurement
times), and the quantum error correction scheme to utilize
[3]. At the logical level, the estimator compiles the provided
circuit down to a universal, fault-tolerant gate set required
for implementation on a quantum computer [3]. Given the
provided qubit error rates and the quantum error correction
scheme, the estimator calculates how many physical qubits it
will take to form a single logical qubit [3]. The estimator
formats the circuit to account for the 2D connectivity re-
quirements of current quantum processor technologies. Given
that two-qubit gates and qubit entanglement are achieved
through local qubit interactions, a 2D array of qubits makes
it difficult to perform operations on one side of the processor
with a qubit on the other side of the processor without any
intermediate operations. To account for this 2D constraint, the
cloud resource estimator assumes a fast block layout scheme
where clusters of two algorithm qubits are surrounded by a
ring of ancilla qubits such that a path from any two qubits
on the quantum processor can be formed via these ancilla
qubits, thus allowing for any arbitrary Pauli operation to be
performed [9]. This process provides a more realistic estimate
for the number of logical qubits, both algorithm and ancilla
qubits, required to physically implement any algorithm on a
2D quantum processor. The fast block layout maps a logical
circuit with Qalg logical qubits to Q total logical qubits
according to the Eq. 1 shown below [3]:

Q = 2Qalg + ⌈
√

8Qalg⌉+ 1 (1)

Estimates for the required logical and physical resources
(qubits, T-states, runtime) are then calculated based upon the
formatted circuit, the number physical qubits to form a logical
qubit, and the gate and measurement times [3].

Six presets for qubit paramters are provided based on
three different qubit platforms, gate-based superconducting
and trapped-ion systems and Majorana systems which have yet
to be implemented. There are two presets for each platform,
one realistic estimate and one optimistic estimate for the future
gate times and error rates of a fault-tolerant quantum processor

based upon that qubit platform [3]. Currently, two quantum
error correction models are supported, the surface code model,
which is used by default and works with all qubit platforms,
and the floquet code model, which is designed for and only
works with Majorana systems.

In Sec. IV-A, we will use the default qubit platform (gate-
based quantum processor with 50 ns gate times, 100 ns
measurement times, and 10−3 single- and two-qubit gate
errors) and the default surface code error correction scheme
to investigate the physical-space complexity and the time
complexity [3].

In Sec. IV-B, we will investigate estimated physical qubits
and algorithm runtime for performing plus-equal multiplica-
tion of random 2048-bit integers across the platform presets
provided by the resource estimator. For error correction, we
will use the floquet code for the Majorana platform as it
is more efficient than the surface code [3]. We will use
the surface code for all other platform presets on the cloud
resource estimator.

To date, literature on resource estimation for multiplication
algorithms uses the QCTraceSimulator implemented in Mi-
crosoft’s Quantum Development Kit (QDK) for Q# [6], [7]. In
this project, we will refactor these algorithms utilizing the new
Microsoft resource estimation tool (Azure Quantum Resource
Estimator). Then, taking advantage of metrics allotted by
the cloud resource estimator (algorithm runtime and required
physical qubits), we will investigate whether any of the multi-
plication algorithms can provide a significant advantage over
the schoolbook algorithm.

IV. RESULTS

All results in this paper will be from cloud estimator as
the local estimator results are already given in the literature
[6]. We have verified that the logical results from the cloud
resource estimator match up with the results from the local
resource estimator after applying Eqn. 1 to the local estimators
data to account for the 2D layout processing of the cloud
estimator.

A. Physical-Space, Time, and T-State Complexity

We analyze the physical-space complexity of the Karatsuba,
schoolbook, and windowed algorithms in the top plot of
Fig. 1, where the vertical axis is the physical qubits (in
millions) divided by the bit-size of the inputs, n. We observe
that schoolbook multiplication utilizes the least amount of
physical qubits for all factor sizes plotted. The windowed and
schoolbook algorithms exhibit a stair-step behavior in physical
qubits with regions of constant qubits/bit-size separated by
discrete jumps at select bit-sizes. While the discrete jumps are
correlated between the schoolbook and windowed algorithms
at lower bit-sizes, the jumps for the schoolbook algorithm
begin to increasingly occur at lower bit-sizes than windowed as
bit-size increases, suggesting that schoolbook could eventually
surpass windowed in required physical qubits.

We analyze the time complexity of the three algorithms
in the middle plot of Fig. 1, where the vertical axis is

the algorithm runtime (in seconds) divided by the square of
n. We note that, for the case of the windowed algorithm,
the algorithm runtime does not include the time required to
classically compute the look-up table, however this process
can be done prior to running the algorithm and saved to
be used for all future multiplications. For bit-sizes greater
than 32, the windowed algorithm performs faster than the
other two algorithms. The Karatsuba algorithm begins to gain
an advantage over schoolbook at 2047-bit inputs, and will
eventually surpass windowed for large inputs, much larger than
the current sizes utilized in RSA procedures.

The T-state complexity, shown in the middle plot of Fig 1,
follows a similar trend as the time complexity. This correlated
behaviour is to be expected given the much larger time-cost of
producing high fidelity T-gates/T-states compared to Clifford
gates. The T-state complexity scales as O

(
n2

)
, while the time

complexity has some non-trivial scaling for lower bit-sizes, but
appears to converge to O

(
n2

)
scaling for the larger bit-sizes

shown. This is consistent with the logical scaling shown in the
literature [7].

B. Estimated Resources Across Qubit Platforms

We now analyze how the resources for each algorithm
compared across different platforms. We investigate the three
qubit platforms provided by the Azure Quantum Resource Es-
timator: superconducting, trapped ion, and Majorana systems.
For each system, we consider a realistic platform with realistic
gate/measurement times and errors and a hopeful platform
with optimistic realistic gate/measurement times and errors
(see [8] for more on custom resource estimation parameters).
We show the algorithm runtime and required physical qubits
for each algorithm, using a factor size of 2048 across the six
different platforms, in Fig. 2.

As expected from Fig. 1, we see that the windowed al-
gorithm utilizes slightly more physical qubits than school-
book; however, the algorithm runtime is shorter for windowed
for this input size. The difference between windowed and
schoolbook is minimal on the optimistic Majorana system, 5
million qubits for windowed compared to 4 million qubits for
schoolbook on the optimistic Majorana system. This differ-
ence is even more negligible for the realistic superconduct-
ing platform, 26 million qubits for windowed compared to
24.2 million qubits for schoolbook. The Karatsuba algorithm
doesn’t stack up well against the other algorithms for 2048-
bit numbers, but, as discussed in Sec. IV-A, Karatsuba has the
potential to utilize less T-states overall for larger bit-sizes.

We observe that all algorithms perform more efficiently on
the Majorana system, supporting the results from [3].

V. CONCLUSION AND OUTLOOK

Resource estimation is crucial for understanding the re-
sources required for various quantum algorithms. Although
quantum algorithms discussed in this paper required far more
resources than currently possible, it is still imperative to under-
stand how the resource requirements will scale for algorithms
as quantum computers grow to larger scales. Azure Quantum

Fig. 1: Estimated resources required for performing plus-equal
multiplication (a+ = b∗c) using the cloud resources estimator
(default gate ns e3 platform using the surface code quantum
error correction). (Top) Estimated physical qubits (millions)
divided by the bit-size of each input (a, b, and c are random n-
bit numbers). (Middle) Estimated algorithm runtime (seconds)
divided by n2. (Bottom) Estimated T-states (millions) divided
by n2.

Resource Estimator provides an alternative route to resource
estimation of arithmetic primitives. Using the Azure Quantum
Resource Estimator, we were able to show the physical-space,
time, and T-state complexity for the Karatsuba, windowed,
and schoolbook multiplication algorithms. We find that the
time complexity and the T-state complexity has the same
scaling, suggesting that the algorithm run time is dominated
by performing these T-gates. Furthermore, when all three
algorithms are compared on the different platforms (trapped
ions, superconducting, and Majorana), the windowed algo-
rithm performs the best for all three platforms with Majorana

Fig. 2: Estimated physical qubits and algorithm runtime across different platforms for plus-equal multiplication with 2048-bit
inputs. For the Majorana system, the floquet code is utilized for error correction, while the other platforms use the standard
surface code.

being the most efficient.
These algorithms were initially designed to make classical

multiplication more efficient. Therefore, they have yet to take
in account how it would be physically implemented on qubits.
The algorithms have the potential for further improvement for
different qubit platforms by considering physical implementa-
tion, which would be the next step in comparing the arithmetic
primitive algorithms.

Further information regarding the procedures required to
reproduce the results for various quantum algorithms is located
via a public Github repository (https://github.com/hdrarichan/
UW EE522 SP2023).

ACKNOWLEDGEMENTS

We would like to acknowledge Dr. Wim van Dam and
Mariia Mykhailova for guidance on this project. Addition-
ally, we would like to acknowledge Prof. Sara Mouradian,
Prof. Boris Blinov, and the Accelerating Quantum Enabled
Technologies program at the University of Washington for
coordinating this research.

REFERENCES

[1] Preskill, John. “Quantum computing in the NISQ era and beyond,”
Quantum, vol. 2, p. 79, aug 2018

[2] Selinger, Peter. ”Quantum circuits of T-depth one.” Physical Review A
87.4 (2013): 042302.

[3] Beverland, M. E., Murali, P., Troyer, M., Svore, K. M., Hoeffler, T.,
Kliuchnikov, V., ... Vaschillo, A. (2022). Assessing requirements to scale
to practical quantum advantage. arXiv preprint arXiv:2211.07629.

[4] Haener, T., Soeken, M., Roetteler, M., Svore, K. M. ”Quantum circuits
for floating-point arithmetic” Reversible Computation: 10th International
Conference, RC 2018, Leicester, UK, September 12-14, 2018, Proceed-
ings 10. Springer International Publishing, 2018.

[5] Seidel, Raphael, et al. ”Efficient Floating Point Arithmetic for Quantum
Computers.” IEEE Access 10 (2022): 72400-72415.

[6] Gidney, Craig. ”Asymptotically efficient quantum Karatsuba multiplica-
tion.” arXiv preprint arXiv:1904.07356 (2019).

[7] Gidney, Craig. ”Windowed quantum arithmetic.” arXiv preprint
arXiv:1905.07682 (2019)

[8] Lopez, Sonia. “Customize resource estimates to machine charac-
teristics.” Microsoft, 15 March 2023, https://learn.microsoft.com/en-
us/azure/quantum/overview-resources-estimator#output-data

[9] Litinski, Daniel. ”A game of surface codes: Large-scale quantum com-
puting with lattice surgery.” Quantum, 3, 128, 2019

https://github.com/hdrarichan/UW_EE522_SP2023
https://github.com/hdrarichan/UW_EE522_SP2023
http://arxiv.org/abs/2211.07629
http://arxiv.org/abs/1904.07356
http://arxiv.org/abs/1905.07682

	Introduction
	Multiplication Algorithms
	Karatsuba multiplication
	Windowed multiplication

	Methods
	Results
	Physical-Space, Time, and T-State Complexity
	Estimated Resources Across Qubit Platforms

	Conclusion and Outlook
	References

