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Abstract—The emergence of quantum computing proposes a
revolutionary paradigm that can radically transform numerous
scientific and industrial application domains. The ability of
quantum computers to scale computations exponentially imply
better performance and efficiency for certain algorithmic tasks
than current computers provide. However, to gain benefit from
such improvement, quantum computers must be integrated with
existing software systems, a process that is not straightforward. In
this paper, we investigate challenges that emerge from building
larger hybrid classical-quantum computers, and discuss some
approaches that could be employed to overcome these challenges.

Index Terms—Quantum software, software architecture,
classic-quantum systems

I. INTRODUCTION

Quantum computers have demonstrated the potential to
revolutionize various fields, including cryptography, drug dis-
covery, materials science, and machine learning, by lever-
aging the principles of quantum mechanics. However, the
current generation of quantum computers, known as noisy
intermediate-scale quantum (NISQ) computers, suffer from
noise and errors, making them challenging to operate. Ad-
ditionally, the development of quantum algorithms requires
specialized knowledge not readily available to the majority
of software professionals. These factors pose a significant
entry barrier for leveraging the unique capabilities of quantum
systems.

For the existing base of business applications, classical
computing has already proven its capabilities across a diverse
range of solutions. However, some of the computations they
must perform can be accelerated with quantum computing,
much like GPUs are used today. Therefore, quantum systems
should not function in isolation, but they must coexist and
interoperate with classical systems. To this end, software
architects play a crucial role in achieving seamless integration,
while simultaneously designing systems that effectively meet
the unique requirements of businesses.

To address the challenges associated with this integration,
this paper focuses on designing hybrid systems that integrate
quantum and classical computing, aiming to overcome archi-
tectural, design, and operational hurdles. In doing so, we look
at the software development lifestyle, the technology stack of
hybrid classic-quantum systems, and deployment techniques
used today.

II. BACKGROUND

The software development lifecycle (SDLC) of hybrid
classic-quantum applications consist of a multi-faceted ap-
proach, as depicted in Fig. 1. At the top level, the classical
software development process starts by identifying user needs
and deriving them into system requirements. These require-
ments are transformed into a design and implemented. The
result is verified against the requirements and validated against
user needs. Once the software system enters the operational
phase, any detected anomalies are used to identify potential
new system requirements, if necessary. A dedicated track for
quantum components is followed within the SDLC [1], specific
to the implementation of quantum technology. The require-
ments for these components are converted into a design, which
is subsequently implemented on classic computers, verified
on simulators or real quantum hardware, and integrated into
the larger software system. During the operational phase, the
quantum software components are executed on real hardware.
Scheduling ensures efficient utilization of scarce quantum
hardware, while monitoring capabilities enable the detection
of anomalies throughout the process.

A typical hybrid classic-quantum software system is under-
stood as a classical program that has one or more software
components that are implemented using quantum technology,
as depicted in Fig. 2. A quantum component utilises quantum
algorithms [2], that are transformed into quantum circuits
using a toolkit like Cirq1 or Qiskit2. The quantum circuit
describes quantum computations in a machine-independent
language using quantum assembly (QASM) [3]. This circuit is
translated by a computer that controls the quantum computer in
a machine specific circuit and a sequence of pulses that control
the operation of individual hardware qubits [4]. Due to the
scarcity or quantum hardware and the process of preparing the
individual runs, the quantum task execution process is lengthy,
having the characteristics of batch processing in classical
computing. In fact, techniques used in batch processing, such
as Slurm [5], can be used to implement this step, which adds
indirection to the underlying software architecture.

1https://quantumai.google/cirq
2https://qiskit.org
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Fig. 1. Software development lifecycle of a hybrid classical-quantum system
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Fig. 2. Quantum computing model: components and interfaces

III. ARCHITECTURAL CONCERNS

A. Design – Algorithms, data structures and APIs

Quantum algorithms are designed specifically to take ad-
vantage of quantum mechanics properties such as quantum
superposition and entanglement. They provide advantages over
classical equivalents for specific areas, such as factoring or
linear search. Software architects should evaluate the feasi-
bility to achieve quantum advantage during the component
requirements phase of the SDLC. They must ensure that the
needed computational resources are available and that data can
be mapped from the classic to quantum domains. For example,
TensorFlow Quantum3 is a library for rapid prototyping of
hybrid quantum-classical ML models that focuses on quantum
data and hybrid quantum-classical machine learning models.

The batch nature of the quantum task execution has a
profound impact on the software architecture of a hybrid
classic-quantum system. The jobs submitted for execution are
queued and scheduled using fair-share policies. As the task
execution results are not available immediately, the software
system should favour asynchronous communication. Further,
the system designers must consider the security and privacy
aspects of executing tasks on quantum hardware infrastructure
shared by several organizations.

B. Operations – Implementation leak and resource allocation

Quantum application written using popular libraries like
Cisq and Qiskit have a monolith nature. They combine into a
single imperative program the application logic components,
the general purpose quantum circuit design, the quantum

3https://www.tensorflow.org/quantum

hardware selection (e.g. backend configuration), and the trans-
formation of the machine specific circuit that is actually
executed. To make the software architecture modular, the
general purpose part needs to be separated from the quantum
backend. Essential backend information, such as the quantum
volume (the qubit connectedness), needs to be accessed at
runtime so that the actual hardware selection can be done
dynamically based on dynamic factors, like hardware avail-
ability (if there are multiple providers) and cost estimates.
For example, Kubernetes serves as an extensible orchestration
platform that enables efficient scheduling of classic computing
jobs. The capabilities of quantum computers can be exposed
in this computing environment, while the scheduler can be
enhanced to efficiently handle quantum jobs.

IV. CONCLUSIONS AND FUTURE STEPS

The fundamental differences in programming models and
the varying levels of maturity in tools and practices between
the classical and quantum domains makes their seamless
integration difficult. To gain insights and firsthand experience,
we intend to collaborate with the users of HELMI4 quantum
computer, in an effort to overcome the integration barriers
between classical and quantum computing.
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