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Abstract
Adiabatic quantum computers can solve difficult
optimization problems (e.g., the quadratic uncon-
strained binary optimization problem), and they
seem well suited to train machine learning models.
In this paper, we describe an adiabatic quantum
approach for training support vector machines.
We show that the time complexity of our quantum
approach is an order of magnitude better than the
classical approach. Next, we compare the test
accuracy of our quantum approach against a clas-
sical approach that uses the Scikit-learn library in
Python across five benchmark datasets (Iris, Wis-
consin Breast Cancer (WBC), Wine, Digits, and
Lambeq). We show that our quantum approach
obtains accuracies on par with the classical ap-
proach. Finally, we perform a scalability study
in which we compute the total training times of
the quantum approach and the classical approach
with increasing number of features and number of
data points in the training dataset. Our scalability
results show that the quantum approach obtains a
3.5–4.5× speedup over the classical approach on
datasets with many (millions of) features.

1. Introduction
In the 21st century, computer science has witnessed the rise
of machine learning technologies and an explosion of their
application areas (LeCun et al., 2015). Machine learning
applications now run on all devices—ranging from edge de-
vices such as smartphones to large supercomputing systems
(Date, 2019). When developing any end-to-end machine
learning application, training the machine learning model
takes a significant amount of time and is a major bottle-
neck (Munson, 2012). Training a machine learning model
generally refers to obtaining a set of optimal learning pa-
rameters that minimize a well-defined error function (i.e.,
an optimization problem) (Abu-Mostafa et al., 2012).

Although algorithms for solving optimization problems ex-
ist on classical computers, quantum computers are thought
to be better at solving them (Moll et al., 2018). Interest

in quantum computing has been growing rapidly in recent
years as Moore’s law reaches its inevitable conclusion—a
scenario in which classical computing can no longer sustain
exponential leaps in performance (Theis & Wong, 2017).
For certain problems, some quantum algorithms outperform
their classical contemporaries, including the Fourier trans-
formation (Coppersmith, 2002), integer factorization (Shor,
1994), and database search (Grover, 1996), and have at-
tained quantum supremacy (Arute et al., 2019). Developing
machine learning algorithms for quantum computing should
result in shorter training times (Perdomo-Ortiz et al., 2018),
but this approach must be tested thoroughly.

To this end, we quantify the gains obtained from using an
adiabatic quantum computer (AQC) to train support vector
machines (SVM). AQCs are adept at approximately solving
the quadratic unconstrained binary optimization (QUBO)
problem, which is known to be NP-hard (Kochenberger
et al., 2014). In this paper, we formulate SVM training as
a QUBO problem and use the D-Wave Advantage AQC to
solve it. The main contributions of this work are as follows:

1. We formulate an adiabatic quantum approach for train-
ing SVMs.

2. We show that the time complexity of our quantum ap-
proach is an order of magnitude faster than the current
classical approach.

3. We compare the test accuracies of our quantum ap-
proach to those of the classical approach across five
benchmark datasets: Iris, Wisconsin Breast Cancer
(WBC), Wine, Digits, and Lambeq. Our results show
that the quantum approach obtains accuracies on par
with the classical approach.

4. We show that the quantum approach is 3.5–4.5× faster
than the classical approach for training SVMs on large
(millions of features) synthetic datasets.

2. Related Work
The incorporation of quantum information and quantum
computing is expected to have a significant effect on ma-
chine learning (Pudenz & Lidar, 2013; Dunjko et al., 2016;
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Biamonte et al., 2017). A hallmark of quantum algorithms
is leveraging physical phenomena such as superposition and
entanglement in addition to an exponentially large Hilbert
space for computational advantages (Humble et al., 2022;
Delgado et al., 2022). Two main areas of research in quan-
tum machine learning are the development of quantum al-
gorithms that can speed up the training of classical models
and the development of quantum models that act as parame-
terized learning models (Dunjko & Briegel, 2018; Benedetti
et al., 2019).

Quantum machine learning has been explored primarily on
universal quantum computers. For example, the Harrow-
Hassim-Lloyd algorithm (Harrow et al., 2009) is used to
speed up matrix inversion. Jordan’s algorithm (Jordan,
2005) was adapted by Gilyen et al. (Gilyén et al., 2019)
to leverage the quantum Fourier transform to compute the
gradient of a classical function with a sublinear number of
steps. Date proposed the quantum discriminator, which is a
quantum discriminant model used for binary classification
(Date & Smith, 2024). Quiroga et al. propose the quan-
tum k-means classifier on the IBM quantum computers for
discriminating quantum states on hardware (Quiroga et al.,
2021).

Quantum gradient descent methods have also seen devel-
opment (Rebentrost et al., 2019). Furthermore, the general
training of machine learning classifiers has been studied,
and these investigations show that sublinear training is pos-
sible (Li et al., 2019). However, these algorithms require
either fault-tolerant quantum systems or quantum registers
that far exceed current quantum hardware. Li et al. pro-
pose the ST-VQC algorithm to integrate non-linearity in
quantum learning and improve the robustness of the learn-
ing model to noise. The number of qubits available on
near-term, gate-based hardware has limited the direct appli-
cation of quantum computing to standard machine learning
benchmarks. Quantum classifiers that can analyze standard
benchmark datasets (e.g., Wine, Sonar) have been studied
via numerical simulations (Schuld et al., 2018), but studies
that use hardware either require compression methods to
reduce the number of training features to a tractable size or
are limited to a small number of features (Havlı́ček et al.,
2019). The size of qubit registers continues to increase,
and the quality of gates continues to improve; as a result,
exploring the applications of parameterized circuit models
remains an active area of research (Benedetti et al., 2019).

Instead of implementing a quantum algorithm as a series
of unitary gates applied to a qubit register, the D-Wave
processor encodes a problem into a system of interacting
quantum spins. Through a gradual change in the system’s
Hamiltonian, the process of quantum annealing is used to
find the ground state (and correspondingly the solution)
of the encoded problem. Casting machine learning tasks

as AQC problems through the use of QUBOs is different
from constructing a quantum circuit (Pudenz & Lidar, 2013).
But, because of the similarities between QUBOs and Ising
spin models (Lucas, 2014), several QUBO-based analogues
of restricted Boltamann machines, deep belief networks,
and Hopfield networks have been proposed in the literature
(Amin et al., 2018; Date et al., 2019b). Chen et al. use the
D-Wave system to solve an NP-hard problem that pertains to
energy-efficient routing in wireless sensor networks. QUBO-
based implementations of conventional machine learning
models (e.g., linear regression, k-means clustering, SVMs)
have also been developed for the D-Wave platform (Amin
et al., 2018; Date et al., 2019b; Arthur & Date, 2021; Date
& Potok, 2021; Date et al., 2021). The strength of quantum
annealing lies in the ability to solve difficult optimization
problems, and this ability means the D-Wave platform could
speed up training for classical machine learning models
(Neven et al., 2012; Adachi & Henderson, 2015; Willsch
et al., 2019).

Recent efforts have explored quantum approaches for SVMs
as well. Otgonbaatar successfully demonstrated training
SVMs on large remote sensing data by using the D-Wave
quantum annealer (Otgonbaatar et al., 2022). To train large
datasets, his team employed corsets, which are smaller rep-
resentative subsets of the data. Barbosa analyzed the fac-
tors that contribute to the difficulty of solving a Maximum
Clique problem on the D-Wave quantum computer (Bar-
bosa et al., 2021). Lee investigated more effective ways
to formulate QUBO problems for linear systems on the D-
Wave AQCs (Lee et al., 2022), and Simoes’s research shows
that quantum SVMs and neural networks trained on univer-
sal quantum computers can achieve higher accuracy than
classical approaches (Simões et al., 2023).

3. SVMs
We use the following notation throughout this paper:

• R, N, B: Set of real, natural, and binary numbers,
respectively.

• X: Training dataset, X ∈ RN×d; N, d ∈ N.

• Y : Labels for binary classification; yi is +1 (−1) if
data point xi ∈ X belongs to the first (second) class.

• w, b: Weights and bias of the SVM; w ∈ Rd, b ∈ R.

We now state the SVM training problem shown in Figure 1,
where we have two classes of data shown by red pluses and
blue circles. We would like to find a separating hyperplane,
H : wTx+ b = 0, that maximizes the distance between the
nearest points that belong to the two classes. Hyperplanes
H1 : wTx+ b = +1 and H2 : wTx+ b = −1 are parallel
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Figure 1: SVMs.

to the separating hyperplane H and demarcate the boundary
of the corridor in which H lies. H1 and H2 can be thought
of as the hyperplanes in which the first (H1) and second
(H2) classes begin. The orthogonal distance between H1

and H2 is given by 2
||w||2 , which we would like to maximize.

This is equivalent to minimizing ||w||2.

We must also ensure that all the points are classified cor-
rectly. All the red pluses in Figure 1 belong to the first class
(i.e., yi = +1). All the blue circles in Figure 1 belong to
the second class (i.e., yi = −1). We must ensure that we
have wTxi + b ≥ 1 for all the points in the first class and
wTxi + b ≤ −1 for all the points in the second class. By
incorporating these constraints for all points in the training
dataset, the SVM training problem can be stated as follows:

min
w,b

||w||2 (1)

subject to: yi(w
Txi + b) ≥ 1 ∀i = 1, 2, . . . , N

The objective function is convex because its Hessian is posi-
tive semi-definite. Furthermore, the constraints are linear,
and hence, convex. Problem 1 is therefore a quadratic pro-
gramming problem. To solve Problem 1, we first compute
the Lagrangian dual as follows:

max
w,b,λ

L(w, b, λ) = ||w||2 −
N∑
i=1

λi

[
yi(w

Txi + b)− 1
]
,

(2)

where, λ is the vector that contains all the Lagrangian multi-
pliers (i.e., λ = [λ1 λ2 · · · λN ]T , and λi ≥ 0 ∀i). The non-
zero Lagrangian multipliers in the final solution correspond
to the support vectors and determine the hyperplanes H1

and H2 in Figure 1. The Lagrangian dual problem (Eq. 2) is
solved in O(N3) time on classical computers by applying

the Karush-Kuhn-Tucker (KKT) conditions (Karush, 1939;
Kuhn & Tucker, 2014). As part of the KKT conditions, we
set the gradient of L(w, b, λ) with respect to w to 0. We
also set the partial derivative of L(w, b, λ) with respect to b
to zero. Doing so yields the following:

∇wL(w, b, λ) = w −
N∑
i=1

λiyixi = 0

∴ w =

N∑
i=1

λiyixi (3)

∂L(w, b, λ)
∂b

= −
N∑
i=1

λiyi = 0

∴
N∑
i=1

λiyi = 0 (4)

Substituting Eqs. 3 and 4 into Eq. 2, we have

L(λ) =
N∑
i=1

λi −
1

2

N∑
i=1

N∑
j=1

λiλjxixjyiyj (5)

Note that Eq. 5 is a function of λ only. We want to maxi-
mize Eq. 5 for the Lagrangian multipliers and ensure that
λi, λj ≥ 0 ∀i, j while satisfying Eq. 4.

4. Formulation for AQCs
AQCs are adept at solving QUBO problems, which are NP-
hard and defined as follows:

min
z∈BM

zTAz + zT b, (6)

where z ∈ BM is the binary decision vector (M ∈ N),
A ∈ RM×M is the QUBO matrix, and b ∈ RM is the
QUBO vector.

To convert the SVM training problem into a QUBO problem,
we write Eq. 5 as a minimization problem:

min
λ

L(λ) = 1

2

N∑
i=1

N∑
j=1

λiλjxixjyiyj −
N∑
i=1

λi (7)

λi, λj ≥ 0 ∀i, j

This can be written in matrix form as follows:

min
λ

L(λ) = 1

2
λT (XXT ⊙ Y Y T )λ− λT 1N λ ≥ 0N ,

(8)

where 1N and 0N represent N -dimensional vectors of ones
and zeros, respectively, and ⊙ is the element-wise multipli-
cation operation.
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We now introduce a K-dimensional precision vector, P =
[p1, p2, . . . , pK ]T , where each entry pk is a power of 2. This
is required to impose the non-negativity constraint on λ. The
precision vector must also be sorted. For example, a preci-
sion vector could be P =

[
1
4 ,

1
2 , 1, 2,

]T
. We also introduce

K binary variables λ̂ik for each Lagrangian multiplier such
that

λi =

K∑
k=1

pkλ̂ik ∀i = 1, 2, . . . , N, (9)

where pk denotes the kth entry in the precision vector P .
Next, we vertically stack all binary variables:

λ̂ = [λ̂11 . . . λ̂1K λ̂21 . . . λ̂2K . . . λ̂N1 . . . λ̂NK ]T

(10)

We now define a precision matrix as follows:

P = IN ⊗ PT (11)

Notice that

λ = Pλ̂ (12)

Finally, we substitute the value of λ from Eq. 12 into Eq. 8:

min
λ̂∈BNK

L(λ̂) = 1

2
λ̂TPT (XXT ⊙ Y Y T )Pλ̂− λ̂TPT 1N

(13)

Equation 13 is identical to Eq. 6 with z = λ̂, A =
1
2P

T (XXT ⊙ Y Y T )P , b = −PT 1N , and M = KN .
Hence, we converted the SVM training problem from Eq. 2
into a QUBO problem in Eq. 13, which can then be solved
on AQCs.

4.1. Computational Complexity

We begin our theoretical analysis by defining the space com-
plexity for the number of qubits needed to solve the QUBO.
The SVM training problem stated in Eq. 8 contains O(N)
variables (λ) and O(Nd) data (X and Y ). The QUBO for-
mulation of the SVM training problem stated in Eq. 13
consists of the same amount of data. However, as part of the
QUBO formulation, we introduced K binary variables for
each Lagrangian multiplier in the original problem (Eq. 8).
So, the total number of variables in Eq. 13 is O(KN). So,
the qubit footprint (or space complexity) of this formulation
would be O(N2K2) after embedding onto the hardware.

The time complexity of classical SVM algorithms is O(N3)
(Bottou & Lin, 2007). We analyze the time complexity for
our approach in three parts. First, the time complexity of

converting Problem 1 into a QUBO problem can be inferred
from Eqs. 7 and 9 as O(N2K2). Because we have O(NK)
variables in the QUBO formulation, embedding can be done
in O(N2K2) time by using the embedding algorithm pro-
posed by Date et al. (Date et al., 2019a). Although the
theoretical time complexity of quantum annealing used to
obtain an exact solution is exponential (O(e

√
d)) (Mukher-

jee & Chakrabarti, 2015), a more realistic estimate of the
running time can be made by using measures such as ST99
and ST99(OPT) (Wang & Jonckheere, 2019), which give the
expected number of iterations to reach a certain level of op-
timality with 99% certainty. Quantum annealing performs
well on problems in which the energy barriers between local
optima are tall and narrow because such an energy land-
scape is more conducive to quantum tunneling. To estimate
ST99 and ST99(OPT) for our approach, details on specific
instances of the SVM problem are required. Estimating
ST99 and ST99(OPT) for generic QUBO formulation of the
SVM problem is beyond the scope of the present work.

That said, we would like to shed some light on the quantum
annealing running times observed in practice. An AQC can
accommodate only finite-sized problems—for example, D-
Wave 2000Q can accommodate problems with 64 or fewer
binary variables that require all-to-all connectivity (Date
et al., 2019a). For problems within this range, a constant
annealing time and a constant number of repetitions seem
to work well in practice. So, the total time to convert and
solve a linear regression problem on an AQC would be
O(N2K2).

Note that the qubit footprint O(N2K2) and time complexity
O(N2K2) assume that K is a variable. If the precision for
all parameters (λ̂) is fixed (e.g., limited to 32-bit or 64-bit
precision), then K becomes a constant factor. The result-
ing qubit footprint would be O(N2), and time complexity
would also be be O(N2). This time complexity is an order
of magnitude better than the classical algorithm (O(N3)).

5. Empirical Analysis
5.1. Methodology and Performance Metrics

Our investigation compares the accuracy of the classical
SVM implemented in Scikit-learn with the quantum SVM
that utilizes the D-Wave Advantage AQC. In addition to the
quantum approach, we also consider simulated annealers
to compare accuracy. Scikit-learn solves SVMs by using
the sequential minimal optimization algorithm, whereas
the quantum approach solves SVMs by transforming the
problem into a QUBO problem. In our study, we convert
Problem 1 to a Lagrangian dual (Problem 8) and then into a
QUBO (Problem 13) for the quantum and simulated anneal-
ers. Our research evaluates the performance of the quantum
approach, the classical approach, and the simulated anneal-
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ing approach across two key metrics: (i) accuracy of the
trained model and (ii) total compute time. We calculate the
accuracy by dividing the number of correct classifications
by the total number of samples. For the classical approach,
we measure the compute time as the time taken for training.
In contrast, the compute time for the quantum approach en-
compasses the time required for converting the problem into
a QUBO problem, embedding the QUBO problem onto the
quantum hardware, and performing quantum annealing to
solve the problem. Notably, we observed that the simulated
annealers failed to find a viable solution, especially when
there were many features, so we decided not to examine the
computing time scalability for simulated annealers.

5.2. Hardware Configuration

We conducted the implementations of the classical approach,
simulated annealing, and preprocessing stage on two differ-
ent hardware configurations without altering the underlying
methodology. The first system, equipped with an AMD
Ryzen 4600H 6-core CPU running at 3 GHz and 16 GB of
DDR4 RAM running at 2,666 MHz, was used to evaluate
the accuracy results described in Section 5.4. The second
system, equipped with an Intel Xeon E5-2690v4 14-core
CPU running at 2.6 GHz and 64 GB of DDR4 RAM running
at 2,400 MHz, was used to evaluate the compute times pre-
sented in Section 5.6. We used the two different machines
for the accuracy and compute time comparisons because
the AMD machine could not support the larger synthetic
datasets used in the compute time experiments.

We used the D-Wave Advantage quantum annealer to evalu-
ate the quantum approach; the annealer offers 5,627 func-
tioning qubits. After preprocessing the problem on a classi-
cal computer, we employed the EmbeddingComposite
class from the D-Wave library to embed the problem onto
the quantum hardware. We conducted 10 annealing runs for
each problem instance to ensure accuracy and selected the
solution with the lowest energy sample.

5.3. Datasets

We compare the classical, quantum, and simulated anneal-
ing approaches across the following datasets: synthetic
datasets, Iris, WBC, Wine, Digits, and Lambeq. When
datasets were split for training and testing, the training data
was uniformly split per class. For generating the synthetic
datasets, we employ two methods. The first method utilizes
the make blob function from the Scikit-learn library. This
function generates synthetic data with two linearly separable
centers and d-dimensional sides. In the second method, we
implement a function that generates data points and their
corresponding class labels based on the following speci-
fied parameters: number of data points, number of features,
SVM weights, and SVM bias. We generate each data point

Figure 2: Comparison of hyperplanes created by the support
vectors with Scikit-learn (+), simulated annealing(- -), and
D-Wave (—) on positive synthetic data (blue and green
circles).

Figure 3: Comparison of hyperplanes created by the support
vectors with Scikit-learn (+), simulated annealing(- -) and
D-Wave (—) on negative synthetic data (blue and green
circles).

by sampling the feature values uniformly at random in the
range [−1, 1]. We then classify these points based on a lin-
ear decision boundary. This process iteratively generates the
data until we have the desired number of data points. This
approach allows us to generate synthetic datasets that, when
trained with an SVM, result in predictable hyperplanes. The
Iris dataset contains 150 data points with four features, and
the WBC dataset consists of 369 data points with 30 fea-
tures. The Wine dataset contains 178 data points with 13
features for three classes, and the Digits dataset holds 1,797
data points with 64 features and 10 classes, but we only
used two classes of 168 data points.
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Table 1: Training and Testing Accuracy of Datasets

Data Trained Tested Scikit-learn Scikit-learn D-Wave D-Wave Simulated Annealing Simulated Annealing
Points Points Training Accuracy Testing Accuracy Training Accuracy Testing Accuracy Training Accuracy Testing Accuracy

Synthetic positive 20 100 100 100 100 100 100 99.6 ± 0.8
Synthetic negative 20 100 100 100 100 100 100 100
Synthetic random 20 100 100 100 100 100 100 100
Setosa - Virginica 20 80 100 100 100 100 100 99.6 ± 1.2
Setosa - Versicolor 20 80 100 99.6 ± 0.6 100 99.5 ± 1.6 100 99.7 ± 0.5
Versicolor - Virginica 20 80 90.5 ± 6 85.6 ± 3.3 70.5 ± 33.1 67.9 ± 28.8 93.5 ± 6.7 88.1 ± 6.7
WBC 52 517 97.7 ± 1.2 95 ± 1.4 93.3 ± 21 93.1 ± 1.3 91.7 ± 2.6 92.6 ± 1.4
Wine 0—1 52 55 100 100 100 100 99 ± 1.4 99.5 ± 1.7
Wine 0—2 52 78 100 98.2 ± 1.8 96 ± 2.1 96 ± 1.3 95 ± 2.1 94.7 ± 2.3
Wine 1—2 52 67 99.2 ± 1 96 ± 1.7 98.5 ± 1.5 96.6 ± 2.4 96 ± 4 94.2 ± 4.5
Digits 0—1 20 158 100 99.2 ± 1.3 99 ± 2.1 97.5 ± 2.2 – –
Lambeq 52 30 100 100 93.5 ± 2.9 88.7 ± 4.8 – –

Figure 4: Comparison of hyperplanes created by the support
vectors with Scikit-learn (+), simulated annealing(- -), and
D-Wave (—) on random synthetic data (blue and green
circles split by classification).

5.4. Accuracy

We compare the classification accuracy of three distinct
SVM approaches: the classical SVM, simulated annealing
SVM, and quantum SVM. We employ multiple datasets and
conduct 10 rounds of training and testing for each dataset.
In many of these datasets, we use only 52 points chosen
uniformly at random for training the classifiers because
52 is the largest size of the training dataset that could be
accommodated on the annealer. The accuracy results are
presented in Table 1.

5.4.1. SYNTHETIC DATA

We parameterize the synthetic datasets into three types: pos-
itive, negative, and random. Positive datasets are designed
to be linearly separable when separated by a positive hy-
perplane (see Figure 2). Conversely, negative datasets are
designed to be separed by a negative hyperplane (see Figure
3). To achieve this, we classify randomly sampled points
based on a linear decision boundary. Additionally, random
datasets with linearly separable data points are generated

using the Scikit-learn make blob function (see Figure 4).
Before training the SVM models, we ensure that all data
points are normalized. Each training dataset consistently
contains 20 points with two features. For testing accuracies,
we use 100 points. We provide a detailed comparison of
scaling data points and features later in this work.

All three approaches—classical SVM, simulated annealing
SVM, and quantum SVM—accurately identify the support
vectors for the synthetic datasets. Figures 2, 3, and 4 illus-
trate the datasets and corresponding hyperplanes constructed
by the support vectors. Both classical SVM and quantum
SVM exhibit 100% accuracy during training and testing
across all three datasets. The simulated annealing approach
also achieved 100% accuracy on the negative and random
datasets. For the positive datasets, the simulated annealing
approach achieved an average accuracy of 99.6%. These
results highlight the effectiveness of all three methods in
accurately identifying support vectors.

5.4.2. IRIS

The Iris dataset consists of 150 samples, three classes, and
four features. The three classes describe the Setosa, Versi-
color, and Virginica flowers, and the four features represent
the length and width of the petal and sepal of the flower.
The objective is to perform binary classification for each
pair of classes: (Setosa, Versicolor), (Setosa, Virginica), and
(Versicolor, Virginica). We normalize the data for training.
For each pair, we utilize 20 data points across both classes
for training and evaluate the model’s accuracy by using the
remaining 80 points. The accuracy results are shown in
Table 1.

First, all three approaches classify the Setosa and Virginica
flowers well. The classical and quantum approaches achieve
100% accuracy in the training and testing data classifica-
tion. The simulated annealer achieves 100% accuracy in
the training data and 99.6% accuracy in the testing data.
Second, all three approaches demonstrate near perfect clas-
sification performance for Setosa and Versicolor flowers.
The classical approach attains an average of 100% training



Adiabatic Quantum Support Vector Machines

Table 2: Training and Testing Accuracy of Varying Annealing Time

Data Annealing Trained Tested Scikit-learn Scikit-learn D-Wave D-Wave Simulated Annealing Simulated Annealing
Time(µs) Points Points Training Accuracy Testing Accuracy Training Accuracy Testing Accuracy Training Accuracy Testing Accuracy

Versicolor - Virginica 20 52 48 93.8 ± 3.1 94.2 ± 3.2 87.5 ± 5.4 86.2 ± 6.4 87.5 ± 4.6 85.4 ± 4.7
Versicolor - Virginica 100 52 48 95.0 ± 2.3 93.1 ± 4.3 88.1 ± 4.1 85.8 ± 5.8 87.1 ± 3.4 86.7 ± 5.0
Versicolor - Virginica 1000 52 48 93.7 ± 2.4 95.0 ± 2.2 86.7 ± 2.8 89.8 ± 4.0 88.1 ± 3.2 89.0 ± 3.9
WBC 20 52 517 95.6 ± 2.0 95.7 ± 0.9 90.8 ± 3.9 92.7 ± 1.2 91.0 ± 3.4 93.2 ± 0.7
WBC 100 52 517 97.3 ± 2.6 95.4 ± 1.3 90.6 ± 3.2 92.9 ± 1.1 91.3 ± 2.8 93.2 ± 1.0
WBC 1000 52 517 96.7 ± 1.3 95.4 ± 1.1 91.3 ± 3.9 92.2 ± 1.1 91.7 ± 3.1 92.4 ± 1.7
Wine 1—2 20 52 67 97.9 ± 1.9 97.2 ± 2.0 97.3 ± 2.7 97.0 ± 1.4 95.0 ± 4.3 96.3 ± 3.3
Wine 1—2 100 52 67 98.7 ± 1.8 96.3 ± 1.8 97.5 ± 2.6 96.0 ± 2.9 96.7 ± 3.6 96.7 ± 2.2
Wine 1—2 1000 52 67 98.8 ± 1.3 97.2 ± 2.2 96.7 ± 2.0 95.7 ± 2.9 97.1 ± 1.6 95.7 ± 4.3

accuracy and 99.6% testing accuracy. The quantum annealer
achieves 100% training accuracy and 99.5% testing accu-
racy. The simulated annealer attains 100% training accuracy
and 99.7% testing accuracy. Notably, there is no statistically
significant difference in accuracy across the three training
methods. Third, all three methods exhibit lower classifica-
tion performance for the Versicolor and Virginica flower
species, which are known to be linearly inseparable. The
classical approach achieves 90.5% training accuracy and
85.6% testing accuracy. The quantum annealer achieves
70.5% training accuracy and 67.9% testing accuracy. The
simulated annealer achieves 93.5% training accuracy and
88.1% testing accuracy.

5.4.3. WBC

The WBC dataset consists of 569 samples, two classes, and
30 features. The data represents digitalized characteristics
of breast cell nuclei. The data is normalized for training.
For evaluation, 52 points are used for training, and 517
points are used for testing accuracy. The classical approach
demonstrates the highest accuracy and achieves an aver-
age of 97.7% for training data and 95.0% for testing data.
The quantum approach follows with a training accuracy of
93.3% and a testing accuracy of 93.1%. Last, the simulated
annealing approach achieves a training accuracy of 91.7%
and a testing accuracy of 92.6%.

5.4.4. WINE

The Wine dataset has 178 samples, three classes, and 13
features. The features describe characteristics of the wine,
including alcohol, ash, and magnesium content. We com-
pare the three classes in combination: (class 0 and class 1),
(class 0 and class 2), and (class 1 and class 2). In Table 1,
the classes are represented as Wine Class # - Class #. The
data is normalized for training, and 52 points are used. The
remaining points are used for testing accuracy for the three
combinations of datasets.

First, when comparing class 0 and class 1, 52 points are
trained and 55 points are tested. The training and testing
accuracy averaged 100% for the classical SVM and quan-
tum SVM and 99% and 99.5% for the simulated annealer.

Second, when comparing class 0 and class 2, 52 points are
trained and 78 points are tested. The training and testing
accuracy averaged 100% and 98.2% for the classical SVM.
The quantum SVM averaged 96% in accuracy for both train-
ing and training, and the simulated annealing SVM aver-
aged 95.0% and 94.7% in accuracy. Third, when comparing
class 1 and class 2, 52 points are trained and 67 points are
tested. The training and testing accuracy averaged 99.2%
and 96.0% for the classical SVM, 98.5% and 96.6% for
the quantum SVM, and 96.0% and 94.2% for the simulated
annealer.

5.4.5. DIGITS (0–1)

The Digits dataset depicts numerals between 0 and 9 in
black-and-white 8×8 images. Each pixel value is between 0
and 16, where 16 is the darkest. Each image has its 64 pixels
represented in one row. So, in training, each point has 64
features. The value of each pixel is normalized. We train 20
points each of class 0 and class 1 for 10 iterations to observe
the accuracy. To test accuracy, 158 points are used. In
Table 1, the classes are represented as Digits Class 0–1. The
classical approach resulted in a 100% training accuracy and
a 99.2% testing accuracy. The quantum approach resulted in
a 99% training accuracy and a 97.5% testing accuracy. The
simulated annealer failed to find a solution for the QUBO
problems.

5.4.6. LAMBEQ

Lambeq is a dataset consisting of concise three to four word
sentences classified into the domains of cooking and tech-
nology, with each word labeled according to its respective
part of speech (e.g., verb, noun). We train fifty-two of the
seventy sentences ten times and test thirty points each time.
The dataset underwent parsing and embedding by using
Bert’s natural language embedder. This was followed by
training through an SVM model. The classical approach
resulted in a 100% training and testing accuracy. The quan-
tum approach resulted in a 93.5% training accuracy and a
88.7% testing accuracy. The simulated annealer failed to
find a solution for the QUBO problems.
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Table 3: Scalability with Number of Features

Features Scikit-learn D-Wave Embedding D-Wave Preprocessing D-Wave Access D-Wave Compute D-Wave Network
Time (ms) Time (ms) Time (ms) Time (ms) Time (ms) Overhead (ms)

(Preprocess +
Embedding + Access)

2 1.175 ± 0.072 1,379.469 ± 203.994 239.732 ± 28.529 18.39 ± 0.057 1,637.592 ± 211.0 422,713.522 ± 111,923.977
4 1.158 ± 0.024 1,405.793 ± 377.299 231.087 ± 1.612 18.33 ± 0.095 1,655.21 ± 377.127 330,455.173 ± 90,493.002
8 1.185 ± 0.047 1,164.539 ± 378.807 231.308 ± 1.815 18.29 ± 0.099 1,414.137 ± 378.851 450,387.29 ± 206,827.975
16 1.192 ± 0.014 1,232.807 ± 568.895 232.896 ± 1.886 18.37 ± 0.048 1,484.073 ± 568.916 322,623.635 ± 106,189.784
32 1.18 ± 0.09 1,120.983 ± 97.316 231.457 ± 1.17 18.39 ± 0.057 1,370.829 ± 97.337 370,004.535 ± 126,229.111
64 1.253 ± 0.098 1,381.844 ± 839.621 243.054 ± 30.388 18.38 ± 0.042 1,643.278 ± 836.636 552,217.955 ± 286,747.464
128 1.249 ± 0.043 1,073.689 ± 54.481 234.919 ± 11.097 18.33 ± 0.067 1,326.939 ± 59.699 418,365.701 ± 239,712.534
256 1.206 ± 0.082 1,386.806 ± 161.495 234.472 ± 29.823 18.37 ± 0.048 1,639.648 ± 164.609 310,426.496 ± 138,119.185
512 1.261 ± 0.031 1,502.025 ± 388.979 230.431 ± 2.023 18.35 ± 0.071 1,750.806 ± 388.302 317,514.671 ± 156,945.844
1,024 1.493 ± 0.075 1,423.757 ± 355.441 236.499 ± 16.529 18.29 ± 0.11 1,678.546 ± 353.131 390,337.469 ± 123,918.024
2,048 2.011 ± 0.145 1,646.613 ± 727.704 258.914 ± 42.713 18.34 ± 0.07 1,923.867 ± 720.138 288,349.625 ± 135,981.113
4,096 4.598 ± 0.704 1,482.837 ± 686.698 257.999 ± 40.914 18.34 ± 0.097 1,759.176 ± 681.247 399,891.987 ± 196,877.404
8,192 5.228 ± 0.888 1,280.656 ± 72.575 260.521 ± 40.755 18.39 ± 0.074 1,559.567 ± 105.107 316,780.627 ± 139,171.499
16,384 9.234 ± 0.907 1,321.959 ± 90.673 249.479 ± 35.551 18.37 ± 0.048 1,589.807 ± 112.371 393,245.32 ± 97,614.288
32,768 16.969 ± 1.247 1,577.783 ± 1013.991 242.255 ± 23.858 18.36 ± 0.107 1,838.398 ± 1007.663 347,998.856 ± 129,216.235
65,536 34.06 ± 2.547 1,692.453 ± 1249.103 234.506 ± 3.644 18.37 ± 0.048 1,945.328 ± 1248.834 387,732.537 ± 135,155.523
131,072 76.238 ± 4.305 1,302.487 ± 84.587 254.051 ± 44.079 18.34 ± 0.07 1,574.878 ± 93.238 303,776.797 ± 82,509.468
262,144 182.478 ± 10.178 1,654.28 ± 1011.998 243.556 ± 31.683 18.37 ± 0.062 1,916.393 ± 1013.422 356,133.736 ± 129,222.717
524,288 430.502 ± 26.294 1,530.793 ± 910.643 253.15 ± 42.777 18.37 ± 0.058 1,791.273 ± 908.992 334,643.888 ± 109,913.759
1,048,576 822.135 ± 23.357 1,389.431 ± 115.631 281.621 ± 39.667 18.36 ± 0.07 1,689.412 ± 132.526 404,630.828 ± 274,147.286
2,097,152 1,543.618 ± 139.181 1,318.885 ± 88.77 294.537 ± 42.083 18.35 ± 0.071 1,631.772 ± 107.334 328,081.545 ± 142,239.908
4,194,304 3,166.03 ± 316.12 1,300.346 ± 128.42 294.486 ± 32.706 18.36 ± 0.084 1,613.192 ± 124.671 420,615.812 ± 195,816.586
8,388,608 6,920.407 ± 329.305 1,516.167 ± 332.535 343.214 ± 19.5 18.36 ± 0.052 1,877.741 ± 326.011 428,409.075 ± 256,341.033

Table 4: Scalability with Number of Points

Trained Points Scikit-learn D-Wave Embedding D-Wave Preprocessing D-Wave Access D-Wave Compute D-Wave Network
Time (ms) Time (ms) Time (ms) Time (ms) Time (ms) Overhead (ms)

(Preprocess +
Embedding + Access)

4 397.597 ± 12.209 1,430.915 ± 297.767 52.004 ± 7.233 17.0 ± 0.156 1,499.919 ± 297.346 120.693 ± 15.664
6 628.511 ± 7.604 1,422.757 ± 382.261 71.3 ± 1.359 16.92 ± 0.187 1,510.977 ± 382.923 440.845 ± 81.854
8 865.129 ± 14.27 1,303.998 ± 516.343 83.676 ± 9.532 16.95 ± 0.217 1,404.623 ± 515.02 1,112.126 ± 360.746
10 1,131.034 ± 12.523 1,633.786 ± 985.969 122.318 ± 14.208 17.01 ± 0.311 1,773.115 ± 992.71 2,049.21 ± 661.929
12 1,414.692 ± 42.061 1,334.734 ± 177.382 141.291 ± 11.683 17.03 ± 0.134 1,493.055 ± 179.878 3,905.956 ± 1,651.884
14 1,709.829 ± 30.631 1,378.001 ± 380.399 168.314 ± 2.797 17.29 ± 0.179 1,563.604 ± 382.467 8,745.695 ± 3,737.998
16 2,057.462 ± 21.925 1,154.179 ± 311.386 49.982 ± 2.321 17.18 ± 0.244 1,221.341 ± 310.555 10,334.816 ± 3,908.58
18 2,298.212 ± 102.983 1,217.663 ± 419.797 66.299 ± 11.212 17.1 ± 0.189 1,301.062 ± 419.291 19,508.428 ± 7,737.284
20 2,623.09 ± 145.095 1,257.566 ± 530.37 72.883 ± 11.114 17.32 ± 0.266 1,347.769 ± 527.727 23,161.555 ± 11,342.062
22 3,117.991 ± 116.612 1,370.357 ± 674.162 84.43 ± 13.221 17.47 ± 0.291 1,472.257 ± 686.392 38,135.434 ± 20,395.38
24 3,402.623 ± 140.536 1,225.826 ± 309.729 91.573 ± 4.39 17.62 ± 0.215 1,335.019 ± 308.578 39,167.391 ± 25,129.559
26 3,854.724 ± 161.398 1,078.185 ± 58.742 102.241 ± 3.995 17.66 ± 0.143 1,198.086 ± 59.46 49,917.087 ± 24,788.842
28 4,158.047 ± 237.876 1,409.069 ± 1,002.37 116.227 ± 2.926 17.54 ± 0.272 1,542.835 ± 1,003.154 74,291.927 ± 38,792.915
30 4,325.487 ± 132.322 1,442.387 ± 1,252.714 145.596 ± 30.139 17.85 ± 0.085 1,605.834 ± 1,247.755 84,428.49 ± 44,035.425
32 4,736.955 ± 146.286 1,074.25 ± 54.508 150.959 ± 23.223 17.87 ± 0.048 1,243.08 ± 63.392 109,971.795 ± 33,452.821
34 4,895.237 ± 209.984 1,099.025 ± 75.892 173.559 ± 28.753 17.97 ± 0.095 1,290.554 ± 65.265 100,535.682 ± 52,262.449
36 5,259.747 ± 252.264 2,015.937 ± 2,794.639 183.582 ± 23.139 17.93 ± 0.125 2,217.45 ± 2,791.223 112,656.481 ± 54,607.342
38 5,390.033 ± 195.683 1,079.114 ± 59.131 217.531 ± 35.153 17.98 ± 0.169 1,314.624 ± 62.542 181,915.305 ± 142,277.523
40 5,656.504 ± 101.086 1,868.626 ± 2,396.907 214.248 ± 7.722 18.1 ± 0.067 2,100.973 ± 2,396.668 215,169.1 ± 130,688.927
42 5,962.922 ± 125.236 1,156.912 ± 102.021 237.135 ± 11.716 18.1 ± 0.105 1,412.147 ± 101.156 175,136.911 ± 66,927.252
44 6,253.6 ± 91.927 1,142.343 ± 87.118 246.837 ± 7.396 18.16 ± 0.084 1,407.339 ± 91.611 279,223.122 ± 119,973.036
46 6,463.876 ± 145.813 1,179.851 ± 110.547 291.388 ± 29.706 18.18 ± 0.092 1,489.419 ± 106.889 248,253.607 ± 83,297.36
48 6,771.785 ± 130.662 2,191.238 ± 3,049.933 292.981 ± 12.052 18.31 ± 0.074 2,502.53 ± 3,046.364 297,207.318 ± 178,830.42
50 7,080.465 ± 96.879 1,222.904 ± 114.113 328.075 ± 36.607 18.3 ± 0.125 1,569.279 ± 104.291 292,123.268 ± 141,273.153
52 7,194.556 ± 195.74 1,219.074 ± 88.527 369.37 ± 39.163 18.34 ± 0.07 1,606.784 ± 90.774 407,913.426 ± 209,009.574
54 7,623.851 ± 530.636 4,031.514 ± 8,823.785 383.31 ± 34.857 18.38 ± 0.079 4,433.204 ± 8,824.813 399,734.428 ± 191,104.466

5.5. Annealing Time

The accuracy of the quantum SVM comes second to that
of the classical SVM in certain data sets. So, we saw the
need to compare the impact of the annealing time parameter,
which may influence the quantum annealer’s accuracy. We
tested to see if the variance in annealing time has a signif-
icant effect on the accuracies of the trained models. Each

dataset is trained and tested 10 times for each condition.
The data used for the experiment included the Iris dataset
with the classes Versicolor and Virginica, Wisconsin Breast
Cancer, and Wine dataset with the classes 1 and 2. The an-
nealing time used for the experiment included 20µs, 100µs,
and 1000µs. Each training set contained 52 training points.
The results, which include the mean and standard deviation
of the accuracy, are presented in Table 2.
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(a) Few features (d)

(b) Many features (d)

Figure 5: Scalability comparison of the Scikit-learn SVM (blue bar and bold line) and quantum SVM (light, medium, and
dark green bars and dotted line). The x-axis indicates the number of features (d), and the y-axis logarithmically represents
time in seconds. The x-axis ranges from 2 to 8, 388, 608 across the two figures. In Figure 5a, d varies between 2 and
4, 096, and in Figure 5b, d varies between 8, 192 and 8, 388, 608. In Figure 5b, at 8 million features, the quantum approach
demonstrated a speedup of 3.69× over the classical approach.

Even as the annealing time increased, the Scikit-learn model
consistently performed better and consisted less variance in
accuracy than the quantum and simulated annealing mod-
els. There wasn’t a statistically significant difference in
the accuracy by increasing the annealing time as the mean
accuracies of each test were within one standard deviation
of each other. However, the Iris data set with the classes Vir-
ginica and Versicolor saw less variance and higher training
and testing accuracy when trained for 1, 000µs as compared
to 20µs.

5.6. Time

We conduct a scalability analysis of the training time of the
classical and quantum approach using synthetic datasets.
We generate the random datasets using the Scikit-learn
make blob function. Before training the SVM models,
we normalize the data points. The D-Wave access time rep-
resents the programming and sampling time. The sampling
time includes annealing, read out, delay time. The simu-
lated annealing approach failed to find a solution when there
are many features, so we decided it was inappropriate to
examine the scalability of the simulated annealing approach.
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Figure 6: Scalability comparison of the Scikit-learn SVM (blue bar and bold line) and quantum SVM (light, medium, and
dark green bars and dotted line). The x-axis indicates the number of points (N ), and the y-axis logarithmically represents
time in seconds. The x-axis ranges from 4 to 54. In Figure 6, at 52 points, the quantum approach demonstrates a speedup of
4.48× over the classical approach. At 54 points, the quantum approach demonstrates a speedup of 1.72× over the classical
approach.

The complexity of the classical approach is O(N3), and the
complexity of the quantum approach is O(N2).

5.6.1. NUMBER OF FEATURES

We conduct a scalability study to investigate the impact
of feature size on the compute time of our classical and
quantum SVM approaches. We also describe the runtime
performance as the number of features increase from 2 to
8,388,608. The number of data points used for training
remains constant at 52 across all the datasets because that
is the most data points we could stably embed on the D-
Wave Advantage quantum computer. The number of qubits
available limits the number of data points. We are also
testing each configuration 10 times.

The results, including the mean and standard deviation ob-
tained from 10 iterations, are presented in Table 3. The
scalability is shown in Figure 5, where the x-axis indicates
the number of features (d), and the y-axis logarithmically
represents time in seconds. We depict the total Scikit-learn
time with light blue bars. The medium green bars repre-
sent the D-Wave preprocessing time. The light green bars
represent the D-Wave access time, and the dark green bars
show the D-Wave embedding time. As shown, the access
time stays constant at 18 ms. With smaller number of fea-
tures (d ≤ 1,048,576), the classical approach’s runtime is
faster than the D-Wave approach. As the number of fea-
tures increases (d ≥ 2,098,152), the quantum approach’s
compute time is faster than the classical approach. With
fewer features, the time taken for embedding greatly influ-

ences the overall compute time on the D-Wave system. In
contrast, the difference in access and preprocessing time
has less influence. Similarly, with many features, the em-
bedding time remains the dominant factor in the D-Wave’s
compute time, with the access and preprocessing times have
minimal impact. However, the preprocessing time does in-
crease, whereas the embedding and access time do not. The
performance of both approaches is comparable when there
are 2 million features. When training with up to 8 million
features, the quantum approach exhibits a speedup of 3.69×
over the classical approach. Although not considered for the
total computation time, the network overhead time increases
as the number of points increases. The increased points
result in an increased number of qubits used, which means
longer data transfer times to the D-Wave server. The testing
and training accuracies are both 100%.

5.6.2. NUMBER OF DATA POINTS

We also conduct a scalability study to investigate how the
number of data points affects the compute time of our classi-
cal and quantum SVM approaches. We examine the runtime
performance as the dataset expands from 4 to 54 data points.
The number of features used for training remains constant
at 8 million across all the datasets because the runtime per-
formance of both approaches is comparable at 12 points and
8 million features. The number of qubits available limits the
number of points.

The results, including the mean and standard deviation ob-
tained from 10 iterations, are presented in Table 4. We
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present the scalability results in Figure 6, where the x-axis
indicates the number of data points (N ), and the y-axis log-
arithmically represents time in seconds. We depict the total
Scikit-learn time with blue bars. The green bars represent
the D-Wave preprocessing time. The light green bars repre-
sent the D-Wave access time, and the dark green bars show
the D-Wave embedding time. The dominant factor in the
total time taken for the Quantum SVM is the embedding
time. The preprocessing and access time increase as the
number of points increases, while the embedding time re-
mains relatively constant, except when training 54 points.
Considering the available number of qubits, this outcome
is expected as the data size increases. However, even at 54
points, the quantum SVM is 1.72× faster than its classical
counterpart. At 52 points, where the quantum computer
could find an embedding with minimal time fluctuation, the
quantum computer outperforms the classical computer by a
factor of 4.48.

5.7. Discussion

To the best of our knowledge, this is one of the first studies
that shows a demonstrable quantum speedup for training
machine learning models on the NISQ-era quantum comput-
ers. Our study, coupled with the linear regression study by
Date and Potok in 2021 (Date & Potok, 2021), provides a
compelling evidence that a quantum speedup can be realized
on datasets that have either a large number of data points or
a large number of features. On smaller datasets, the over-
heads of running jobs on the quantum computer overshadow
any speedup obtained by the quantum approach.

The testing accuracies presented in Table 1 show that the
quantum approach performs better than the classical ap-
proach in case of Wine 1–2. On some datasets such as
synthetic and Iris, it equals the performance of the classi-
cal approach. On other datasets however (Iris Versicolor-
Virginica, WBC, Wine 0–2, Digits, and Lambeq), it is out-
performed by the classical approach. On these datasets, the
lower accuracy of the quantum approach is partly attributed
to the fact that the datasets were linearly inseparable, for
e.g., Versicolor-Virginica. For other datasets, the accuracy
of the weights learned in the quantum approach was di-
rectly affected by the numerical precision (i.e., number of
bits) allocated to each Lagrangian multiplier in the QUBO
problem. This precision was in turn constrained by the
hardware architecture, i.e., the number of qubits and their
connectivity available on the quantum hardware. Within
the constraints imposed by the quantum architecture, the
quantum approach was able to produce accuracies that were
in the same ballpark as the classical approach for most of
the datasets.

Our results in this paper demonstrate that the quantum ap-
proach trains SVMs faster than the Scikit-learn classical

approach on larger-sized datasets. While the Scikit-learn’s
algorithm for training SVMs may not be the most efficient
classical algorithm, it certainly is one of the most widely
used algorithms in the literature and runs in O(N3) time.
The classical algorithms have been optimized for decades,
whereas the quantum algorithms are still in their nascent
stages. In this light, our motivation in this paper was to
demonstrate that our quantum approach can perform faster
than a widely used classical approach. Our results are in-
tended to serve as a baseline for more optimized quantum
approaches in the future. We certainly hope that the fu-
ture quantum approaches would outperform not only the
most widely used classical approaches, but also the best
performing classical approaches.

6. Conclusion
A critical limitation of current state-of-the-art machine learn-
ing is the extensive computational resources required for
training. The duration of this process varies significantly—
ranging from a few hours to several months—and is contin-
gent upon the size of the training dataset. To address this
problem, we introduce a quantum approach for solving the
SVM problem. This paper describes our empirical analysis
of transforming SVMs to QUBO problems, which D-Wave
Advantage computers can solve. Through theoretical analy-
sis, we establish that our quantum approach outperforms the
current classical approach for runtime. Next, we compare
the performance of an SVM implementation on a D-Wave
Advantage quantum annealer with a classical implementa-
tion on AMD Ryzen 5 4600H and Intel Xeon E5-2690v4
CPUs. Our training results demonstrate that the quantum ap-
proach’s accuracy is comparable with the classical approach.
When training with a dataset with 8 million features, the
quantum annealer outperforms the classical computer by
achieving up to 4.48× faster computation. Our research
contribution shows that quantum computing can effectively
reduce training times and lead to accelerated scientific dis-
coveries and improved performance for machine learning
models.

In the future, we would like to explore novel approaches to
train larger datasets effectively. We want to expand our quan-
tum approach to encompass variants of SVMs that leverage
kernel methods. Finally, we are interested in exploring tech-
niques to mitigate the effects of noise and errors in quantum
annealing.
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