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Abstract—In this study, we consider a Gaussian Boson Sampler
for solving a Flight Gate Assignment problem. We employ a
Variational Quantum Eigensolver approach using the Conditional
Value-at-risk cost function. We provide proof of principle by
carrying out numerical simulations on randomly generated
instances.

Index Terms—Gaussian Boson Sampling, Variational Quantum
Eigensolver, Combinatorial Optimization

I. INTRODUCTION

The Variational Quantum Eigensolver (VQE), a variational
approach for finding the ground state energy of Hamiltonians,
makes use of the quantum device to prepare an ansatz state
in the form of a parametric quantum circuit. This ansatz can
be represented by θ ∈ Rp 7→ |φ(θ)⟩. Then, the goal is
to minimize the Hamiltonian expectation value in a hybrid
quantum-classical loop. VQE has recently been proposed to
address combinatorial optimization problems [1].

In this paper, we explore a VQE-based approach, already
presented in [2], to address the Flight-Gate Assignment (FGA)
problem. As in [3], we use a Gaussian Boson Sampler (GBS)
instead of a digital quantum computer. In contrast, our ap-
proach employs a more general GBS ansatz, along with a cost
function that is computed analytically in the case of VQE.

II. GAUSSIAN BOSON SAMPLING

A GBS is a non-universal photonic quantum platform and
one of the prominent candidates for demonstrating quantum
advantage in the near future [4], [5].

The GBS ansatz consists of pure N -modes Gaussian states
without displacement sampled using threshold detectors (TD)
[6]. The quantum state is prepared from the vacuum by
applying squeezing gates with parameters (r1, . . . , rN ) ∈ RN
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followed by a universal passive interferometer, whose action
on creation/annihilation operators is described by a N × N
unitary U . The output state is characterized by its Husimi
covariance matrix Σ. Then, the photons are sent to the TDs
which record a ’click’ when one or more photons are detected,
’no click’ otherwise. These outcome measures are described
by the measurement operators

Π̂
(0)
j = |0j⟩⟨0j | and Π̂

(1)
j = I− |0j⟩⟨0j | ,

where I is the identity operator and |0j⟩ the vacuum on the
optical mode j. The probability to detect a pattern is propor-
tional to the Torontonian of the submatrix of O = I − Σ−1

corresponding to the pattern.

III. THE FLIGHT-GATE ASSIGNMENT PROBLEM

The FGA problem aims at optimizing the assignment of
flight activities F to airport gates G. In this work, we consider
a scenario where the total transfer time of passengers has to
be minimized, subject to two linear constraints 1) each flight
can be assigned to at most one gate 2) two flight activities
cannot be assigned to the same gate simultaneously.

This problem can be formulated as a Quadratic Uncon-
strained Binary Optimization (QUBO) problem [7]

Q(x) = T (x) + λone
∑
i

(∑
α

xiα − 1

)2

+ λnot
∑

(i,j)∈P

∑
α

xiαxjα .

Here x = (xiα)i∈F,α∈G ∈ {0, 1}|F |×|G| is a set of binary
variables representing an assignment (xiα = 1 if and only if
flight i ∈ F is assigned to gate α ∈ G), T (x) is a quadratic
functional accounting for the total passenger travel time and
the last two terms encode the two constraints, with P ⊂ F×F
listing the incompatible pairs of flights and λone, λnot > 0 are
constants chosen large enough.

We can embed this problem into GBS with N = |F | × |G|
optical modes as follows: the QUBO is turned into a Hamil-
tonian Q̂ by replacing each binary decision variable xiα with
the projection Π̂

(1)
iα . The ground state of Q̂ then encodes the

optimal solution corresponding to the QUBO minimizer.
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Fig. 1: Fraction of successful runs for threshold t = 0.1. Fig. 2: Fraction of successful runs for threshold t = 0.01.

IV. VQE USING THE CONDITIONAL VALUE-AT-RISK

The Conditional Value-at-Risk (CVaR) has been proposed
to improve the VQE approach to combinatorial optimization
problems by restricting the search space to the x’s with the
lowest energy [8]. Here, the cost function to minimize reads

C(θ) = CVaRα(X(Q̂,θ)), α ∈ (0, 1] , (1)

where X(Q̂,θ) is the distribution of the observable Q̂ in the
quantum state |φ(θ)⟩ and CVaRα(X) = E[X | X ≤ F−1

X (α)]
the CVaR with tail α-left of a random variable X , and FX is
the cumulative density function of X .

In the experiments, the cost function can be estimated by
performing K measurements of |φ(θ)⟩ and averaging over
the ⌈αK⌉ lowest energy values. When α = 1, we recover the
VQE cost function.

V. METHOD

We assess the performance of the GBS ansatz for solving
the QUBO-FGA problem using the CVaR-VQE approach.
The GBS is parameterized by the symmetric matrix θ =
Udiag(r1, . . . , rN )UT . For fastening the training procedure,
we train only the real parts of the 3N parameters correspond-
ing to the smallest entries of the QUBO Hamiltonian.

The classical minimization is performed with constrained
optimization by linear approximation (COBYLA), with at
most 50N function evaluations. We consider the randomly
generated non-trivial and classically-hard problem instances
in [2]. For each problem sizes N ∈ {6, 8, 10, 12, 14, 16}, we
consider 50 different instances and run 5 training with random
initialization. When α = 1, the cost function in (1) admits
an analytical expression with respect to θ. Therefore, we can
use the highly efficient ADAM optimizer routines available in
TensorFlow to minimize it.

We say an instance is successful if one of the five runs
results in a fidelity of the quantum state |φ(θ∗)⟩ after training
with the ground state of Q̂ higher than a threshold t ∈
{0.1, 0.01}.

VI. NUMERICAL RESULTS AND COMMENTS

The fraction of successful runs for fidelity threshold of 0.1
and 0.01 are presented respectively in Fig. 1 and Fig. 2.

We observe that employing CVaR outperforms VQE signif-
icantly, achieving almost perfect success rates for α = 0.01 or
0.1. The only exception is when (α, t) = (0.01, 0.1), which
is attributed to the CVaR cost function’s inability to reward
fidelity higher than α [8]. For α = 0.25 and N = {12, 16},
the fraction of successful runs decreases. In these cases, the
failing instances typically involve 3 or 4 flight activities. The
algorithm appears here to be trapped in local minima.

VII. CONCLUSION AND OUTLOOK

In this study, we have tackled the FGA problem by employ-
ing GBS in combination with a CVaR-VQE approach, which
significantly enhances performance compared to VQE. Despite
focusing on small-sized instances, this work serves as an initial
proof of principle for this new approach.

However, we believe that there is substantial room for
improvement in the algorithm, for instance through careful
choice of parameters to optimize. Another direction would use
the binary encoding of the FGA problem, as proposed in [2],
which directly represents the first constraint.

Lastly, it would be beneficial to compare the use of the
GBS ansatz with other ansatz types, specifically the one
proposed in [2]. This comparison could offer valuable insights
and further enhance our understanding of the problem-solving
capabilities of different ansatz strategies.
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