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Abstract—The imaginary-time evolution of quantum states is
integral to various fields, ranging from natural sciences to classi-
cal optimization or machine learning. Since simulating quantum
imaginary-time evolution generally requires storing an exponen-
tially large wave function, quantum computers are emerging
as a promising platform for this task. However, variational
approaches, suitable for near-term quantum computers, struggle
with a prohibitive number of measurements and impractical
runtimes for relevant system sizes. Here, we suggest a stochas-
tic approach to variational quantum imaginary-time evolution,
which allows a significant reduction in runtimes. Our approach
allows trading off invested resources and accuracy, which makes
it also suitable for ground state preparation, where simulating the
exact dynamics is not required. We demonstrate the efficiency of
our algorithm in simulations and show a hardware experiment
performing the imaginary-time evolution of the transverse field
Ising model on 27 qubits.

Index Terms—Quantum computing, Quantum algorithms,
Quantum simulation, Optimization

I. INTRODUCTION

Quantum imaginary-time evolution is a powerful tool which
allows to prepare thermal states (or Gibbs states) and ground
states of a quantum mechanical system [1]. Thermal states are
particularly interesting in physics, for example, as they can
be used to calculate thermodynamic observables [2, 3], or in
machine learning, where they are used in quantum Boltzmann
machines [4]. The preparation of ground states is even more
general and finds applications in natural sciences, such as
physics and chemistry, but also beyond quantum mechanical
fields, such as classical optimization, finance, or machine
learning [5].

Performing the imaginary-time evolution of quantum states
generally requires storing an exponentially large wave func-
tion, and, therefore, quantum computers are emerging as a
promising platform to solve this task. In contrast to real-
time evolution, a unitary operation, imaginary-time evolu-
tion is non-unitary. Therefore, the standard Suzuki-Trotter
approximation of the time-evolution operator [6], common
in the real-time counterpart, cannot be applied directly to
simulate imaginary-time dynamics on a gate-based quantum
computer. Though there exist generalizations of Trotterization
to imaginary-time evolution [7], these often require com-
plex quantum circuits to be executed. These requirements
make Trotterization-based approaches unsuitable for near-term
quantum computers, which are characterized by short qubit
coherence times, limited connectivity, and noisy operations.

Instead of directly evolving the quantum state, variational
approaches to imaginary-time evolution map the time evolu-
tion onto parameters in an ansatz circuit. This ansatz circuit
can be tailored to match the available device’s capabilities
which makes variational methods especially prominent in
the era of near-term quantum computers. The mapping of
state to parameter evolution in variational quantum imaginary-
time evolution (VarQITE) can be achieved with a variational
principle [1, 8], such as the McLachlan variational principle,
which relies on the evaluation of the Quantum Geometric
Tensor (QGT) and the energy gradient at the current parameter
values.

If the ansatz circuit has d ∈ N variational parameters, the
calculation of the QGT requires sampling from O(d2) circuits,
respectively O(d) for the energy gradient [9, 10]. This scaling
is not an issue for variational states containing a small number
of parameters. Still, it can quickly become a bottleneck on
near-term devices for circuits with 100 or more parameters
[3]. As the current generation of quantum computers reaches
100 qubits and more, such as the IBM Quantum Eagle [11] or
Osprey [12] devices, it is crucial to develop scalable algorithms
that are suitable for the growing circuit sizes.

In this paper, we suggest a stochastic approach to variational
quantum imaginary-time evolution (SA-QITE), that is based
on stochastic approximation of Quantum Natural Gradients
(QNG) [9, 10]. Instead of computing the full QGT and gradient
in each timestep, we start from an accurate initial estimation
and correct the estimators in each iteration using unbiased
samples. Unlike the O(d2) scaling of the QGT, the samples
rely on a simultaneous perturbation, stochastic approximation
(SPSA) [13] method, which requires a constant number of
circuits independent of the parameter dimension d [10]. We
provide numerical evidence that SA-QITE requires fewer
measurements than VarQITE to achieve the same accuracy
and show that our algorithm represents a promising, near-term
compatible imaginary-time simulation approach by applying it
to a 27-qubit Ising model on an IBM Quantum processor.

Other approaches to avoid the evaluation of the QGT, that
have recently been proposed rely on solving an optimization
problem in each timestep, based on e.g. the fidelity [3, 14]
or a purified Suzuki-Trotter step [15]. While these methods
may exhibit a favorable scaling, it is challenging to measure
the fidelity up to the required accuracy on current devices [3],
or to efficiently measure the required state overlap [14]. Our
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stochastic approach does not suffer from these problems, as it
relies only on relative differences of the state fidelity, and can
readily be applied on near-term devices.

The remainder of this paper is structured as follows. Sec-
tion II starts by introducing VarQITE and then shows how to
construct unbiased samples of the QGT and energy gradients
and how to improve the estimator accuracy using momenta
and exact initialization. In Section III we compare the resource
requirements of SA-QITE and VarQITE in numerical simula-
tions for imaginary-time evolution of the transverse field Ising
model and, then, use a relaxed version of SA-QITE to solve
a Max Cut optimization problem. Next, we demonstrate our
algorithm on a near-term quantum computer in Section IV,
before concluding in Section V.

II. STOCHASTIC VARIATIONAL IMAGINARY TIME
EVOLUTION

The normalized, imaginary-time evolution of an initial state
|Ψ0〉 under a Hamiltonian H at time t is defined as

|Ψ(t)〉 =
e−tH√

〈Ψ0|e−2tH |Ψ0〉
|Ψ0〉 .

In contrast to real-time evolution, which evolves under
exp(−itH), the imaginary-time evolution operator exp(−tH)
is not unitary.

Instead of evolving the quantum state directly, the idea of
VarQITE is to project the state update to updates of variational
parameters θ ∈ Rd in an ansatz state |φ(θ(t))〉 ≈ |Ψ(t)〉.
This projection is achieved with a variational principle, such
as McLachlan’s variational principle, which allows computing
the parameter derivative as the solution of the following linear
system of equations

g(θ)θ̇ = b(θ), (1)

where we introduced the real part of the QGT g = Re(G) ∈
Rd×d and the evolution gradient b ∈ Rd. The QGT is defined
as

Gij(θ) =

〈
∂φ

∂θi

∣∣∣∣
∂φ

∂θj

〉
−
〈
∂φ

∂θi

∣∣∣∣φ
〉〈

φ

∣∣∣∣
∂φ

∂θj

〉
, (2)

and the evolution gradient is

bi(θ) = −Re

(〈
∂φ

∂θi

∣∣∣∣H
∣∣∣∣φ
〉)

= −1

2

∂E

∂θi
, (3)

where E(θ) = 〈φ(θ)|H|φ(θ)〉 is the energy of the system.
The individual terms of g and b can be evaluated, for example,
with a linear combination of unitaries approach (LCU) or
parameter-shift rules [16]. These techniques require a constant
number of expectation values per tensor element (or vector
element) and therefore a total of O(d2) circuits for the QGT,
respectively O(d) for the evolution gradient.

Other variational formulations include the Dirac-Frenkel or
the time-dependent variational principle, which also rely on the
QGT and evolution gradient but may yield complex parameters
[8], which are not available in our quantum circuit model.

A. Sampling the QGT and evolution gradient

To circumvent the significant computational costs to evalu-
ate the QGT in high-dimensional parameter spaces we replace
g with a stochastic estimate from which we can draw unbiased
samples ĝ at a constant cost [10]. The samples are obtained
by first reformulating the QGT as Hessian of the Fubini-Study
metric and, then, estimating the Hessian using two nested
simultaneous perturbation finite difference approximations, as

ĝ = −1

2

δF

4ε2
∆1∆

T
2 + ∆2∆

T
1

2
(4)

where ∆1,2 ∼ U({1,−1}d) are uniformly distributed pertur-
bation directions, ε > 0 is the perturbation magnitude, and

δF =F (θ,θ + ε(∆1 + ∆2))− F (θ,θ + ε(∆1 −∆2))

− F (θ,θ + ε(∆2 −∆1)) + F (θ,θ − ε(∆1 + ∆2)),

with the fidelity F (θ,ω) = | 〈φ(θ)|φ(ω)〉 |2.
There exist a variety of techniques to compute the fidelity

F of two quantum states prepared with quantum circuits
|φ(θ)〉 and |φ(ω)〉, such as the Swap Test [17] and variations
thereof [18] or randomized measurements [19]. Both these
methods are, however, unsuitable for our near-term setting
as the swap test requires doubling the circuit width and
non-local operations, and the randomized measurements use
an exponential number of measurements. Instead, we here
use the compute-uncompute method [20], which prepares
U†(θ)U(ω) |0〉 and estimates the probability of measuring |0〉.
This doubles the circuit depth but does not add any additional
qubits or couplings and is, therefore easier to execute on the
near-term superconducting devices we consider.

Analogous to g we can estimate b as a first-order gradient
with a single perturbation direction ∆ ∼ U({1,−1}d),

b̂ = −1

2

E(θ + ε∆)− E(θ − ε∆)

2ε
∆. (5)

As we perturb all parameter dimensions at once, there is no
dependency on the number of parameters d and the calculation
of a single sample ĝ requires evaluating four circuits only and
two expectation values for b̂.

B. Improving estimator accuracy

Since the samples ĝ rely on only two perturbation directions
(or one direction for b̂) they can have a very low accuracy.
This is especially true for the QGT, since a single sample has
at most rank 2, whereas the exact matrix can have a rank equal
to the number of parameters d. Therefore a single sample is
typically replaced by an average over a batch of N individual
samples

ĝN =
1

N

N∑

i=1

ĝ(i) and b̂N =
1

N

N∑

i=1

b̂(i).

The approximation error for both G and b scales as O(N−1/2)
in the number of samples N , see also Appendix A for a
numerical experiment.

The estimate at the current step can be combined with
all previous ones to further increase stability. Refs. [10, 13]



suggest combining the samples from each time step into a
global average

ḡ(k) =
k

k + 1
ḡ(k−1) +

1

k + 1
ĝ
(k)
N . (6)

For time evolution, however, a global average cannot correctly
capture the time dependence of the QGT. Instead, we propose
to use momentum terms for both the QGT and the evolution
gradient, such that the estimators in timestep k are given by

ḡ(k) = τ1ḡ
(k−1) + (1− τ1)ĝ

(k)
N

b̄(k) = τ2b̄
(k−1) + (1− τ2)b̂

(k)
N ,

for momenta τ1, τ2 ∈ (0, 1).
As averaging by moment introduces a bias, especially at

early times of the imaginary-time evolution, it is crucial to
initialize the algorithm with accurate initial values of g and
b. These could be computed using resources that scale with
O(d2) a single time but can, in some cases, also be efficiently
simulable classically. For example, if the ansatz consists of
Pauli rotations and CX gates and the initial parameters are
integer multiples of π/2, every operation in the gradient
calculations is a Clifford gate, as is discussed in detail in
Appendix B. Two common scenarios where this is the case
are classical optimization problems, which prepare an equal
superposition state, |+〉⊗n, and use a QAOA or hardware-
efficient ansatz [5, 21], or molecular ground state searches,
where the ansatz is constructed from a Hartree-Fock initial
state followed by operator evolutions, such as UCCSD, or
partial swaps [22–24].

C. Solving for the parameter update

Determining the parameter derivative θ̇ by directly solving
the linear system in Eq. (1) is numerically only stable for the
exact QGT and evolution gradient [25]. Here, however, we are
dealing with a noisy linear system,

ḡ(k)θ̇ = b̄(k), (7)

due to a finite number of measurements in each circuit eval-
uation, a finite number of gradient samples N , and hardware
noise. These noise sources lead to an ill-conditioned linear
system which requires careful regularization.

A simple regularization of the linear system is the addition
of a weighted identity matrix to the system matrix, that is

(ḡ(k) + δI)θ̇ = b̄(k), (8)

for a shift δ > 0 and the identity matrix I ∈ Rd×d. This is
equivalent to adding δ to each eigenvalue of the QGT estimate,
decreasing the condition number, and improving the stability
of the linear system.

Adding a diagonal shift, however, influences the parameter
dynamics as the derivative magnitude is additionally restricted
by its `2 norm. In the case of optimization, for example,
Ref. [10] shows that QNG for large diagonal shifts approaches
standard gradient descent.

To minimize the regularization effect on the evolution, we
can solve for the update step only in a stable subspace, where

the eigenvalues are above some threshold. Since the QGT
estimate is real and symmetric, we can write

ḡ(k)θ̇ = BΛBT θ̇ = b̄(k)

for an orthonormal matrix B and diagonal matrix Λ =
diag(λ1, λ2, ..., λd), with the eigenvalues {λi}di=1 of ḡ(k).
Defining θ̇B = BT θ̇ and bB = BT b̄(k), we obtain the
diagonal linear system

Λθ̇B = bB ,

which we solve by only considering well-conditioned compo-
nents in the solution

θ̇Bi =

{
bBi /λi, if λi ≥ δ
0, otherwise

. (9)

Finally we transform back to the original basis via θ̇ = Bθ̇B .
This update rule ensures the parameter derivative does not
diverge in ill-conditioned subspaces. In Appendix C we show
that this approach produces a more stable convergence of SA-
QITE.

D. Relation to Quantum Natural Gradients
Quantum Natural Gradient Descent (QNG) is a variant of

gradient descent to find the minimum of an objective function
`(θ), where the size of the parameter update step is limited by
the amount of change induced to the model, measured by the
Fubini-Study metric [9, 26]. The next step of the optimization,
θ(k+1), is determined as

θ(k+1) = argmin
θ∈Rd

(θ − θ(k))T∇`(θ(k)) +
D2(θ(k),θ)

2η
,

with the learning rate η > 0 and the Fubini-Study metric
D2(θ,ω) = arccos2(| 〈φ(θ)|φ(ω)〉 |).

By solving the minimization and approximating the Fubini-
Study metric with a second-order Taylor expansion, we obtain
the following update rule

θ(k+1) = θ(k) − ηg−1(θ(k))∇`(θ(k)),
which shows the analogy of QNG and VarQITE: If the QNG’s
loss function is `(θ) = E(θ)/2 and we integrate the parameter
in VarQITE using a forward Euler method with timestep η, the
update rules of QNG and VarQITE coincide.

Therefore, the momentum-based estimations of the QGT
and gradient are also suitable for optimization. In contrast to
imaginary-time evolution, minimizing a loss function does not
require tracking the parameter trajectory as closely as possible.
This allows to relax the number of samples N per iteration,
which provides a less accurate estimation of g and b, but
may decrease the total number of measurements required to
converge to the minimum.

III. NUMERICAL RESULTS

In this section we investigate how SA-QITE performs for
two tasks: the imaginary-time evolution of the transverse-field
Ising model, and the ground-state approximation of a diagonal
Hamiltonian, typical e.g. in Max Cut problems. All algorithms
are implemented and simulated using Qiskit [27].



|0〉 RY RZ • RY RZ

|0〉 RY RZ • RY RZ

|0〉 RY RZ • RY RZ

|0〉 RY RZ • RY RZ

...
...

...
...

...
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×L
Fig. 1: The structure of variational ansatz |φ(θ)〉 used in the
SA-QITE experiments.

A. Quantum Imaginary Time Evolution

The transverse-field Ising model of n spin-1/2 particles on
a chain is given by

H = J

n−1∑

i=1

ZiZi+1 + h

n∑

i=1

Xi, (10)

where we set the interaction to J = 1/2, the transverse field
strength to h = −1, Xi and Zi are Pauli-X and -Z operators,
acting on spin i. As the initial state of the system, we consider
|Ψ0〉 = |0〉⊗n.

The variational ansatz |φ(θ)〉 is chosen to reflect the nearest-
neighbor connectivity of the Hamiltonian. It consists of L
alternating rotation layers, with parameterized Pauli-Y and
Pauli-Z rotations, and entangling layers with pairwise CX
connections. This circuit, whose structure is shown in Fig. 1,
has a CX depth of 2 per entangling layer and a total number
of parameters d = 2n(L+ 1).

We compare the total number of measurements required
by SA-QITE and VarQITE to achieve an average integrated
infidelity of I = 0.05 over a time of T = 1.5. Here, we
define the infidelity with respect to the exact time-evolved
state, |ψ(t)〉, that is

I(T ) =
1

T

∫ T

0

(
1− | 〈φ(θ(t))|ψ(t)〉 |2

)
dt. (11)

In Fig. 2 we show the results for a varying number of qubits
from n = 4 to 10, where we adjust the depth as L = dlnne.
The precise settings for each algorithm to achieve the target
accuracy are listed in Appendix D.

We observe that, on average, SA-QITE requires about
one order of magnitude less measurements than VarQITE
to achieve the target accuracy, while both algorithms exhibit
the same asymptotic scaling. Other variational time evolution
algorithms based on optimizing a fidelity-based loss function,
such as DualQITE [3], are also known to reduce the resources
compared to VarQITE. However, since fidelity is difficult to
measure to high accuracy on current devices, we here only
focus on the stochastic approach.
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Fig. 2: Total number of measurements, Ntotal, required to
achieve the target accuracy for SA-QITE and VarQITE, along
with the fraction of both resource counts. SA-QITE requires
≈ 10% of the number of measurements compared to VarQITE.

B. Ground state approximation

If the exact imaginary-time trajectory is not required, but
we are only interested in approximating ground states of a
Hamiltonian, we can relax the number of samples N taken
in each step. As an example, we minimize the energy of a
Hamiltonian derived from a Max Cut problem with integer
weights on a circular graph with n = 15 nodes, shown in
Fig. 3. The Hamiltonian is given by

HC = w1

n∑

i=1

ZiZi+1 mod n + w2

n∑

i=1

ZiZ(i+3) mod n,

with w1 = −w2 = 20.
A widely-used approach to approximating the ground states

of Hamiltonians obtained from a combinatorial optimization
problem is using the Quantum Approximate Optimization
Algorithm (QAOA) [21]. There, the energy is minimized in a
variational optimization with a specific ansatz that is motivated
by simulated annealing from a mixer Hamiltonian, HM , whose
ground state is easily prepared, to the target Hamiltonian, HC .
The ansatz is defined as

|φ(γ,β)〉 =

(
1∏

p=r

e−iβpHM e−iγpHC

)
|+〉⊗n ,

with the mixer HM = −∑n
i=1Xi, parameters γ,β ∈ Rr,

and we choose r = 2. Since HC contains only two-qubit
Pauli-Z interactions, each term in the exponent exp(−iγpHC)
can be realized with a two-qubit Pauli rotation, RZZ(2γp),



Fig. 3: Solid lines mark interactions with w1 = 20, dashed
lines with w2 = −20. A optimal configuration is shown by
filled and hollow circles, which indicate opposite qubit states.
In total, there are 6 optimal configurations, which can be
derived from the indicated solution by rotating the coloring (2
additional configurations) and inverting the colors (3 additional
configurations).

on the interacting qubits. Similarly, exp(−iβpHM ) can be
implemented with a layer of single-qubit RX(βp) rotation
gates.

The ground state of HM is |+〉⊗n, which is obtained by
starting the optimization from zero parameters, β = γ = 0.
In this case, the ansatz becomes a Clifford circuit and we can
efficiently evaluate the QGT and energy gradients classically
to initialize the SA-QITE algorithm.

We compare SA-QITE against SPSA, as gradient-based,
measurement-efficient optimizer, and QN-SPSA, which this
work is based on. SPSA [13] minimizes the energy E using
unbiased gradient estimates, as in Eq. (5), and for a learning
rate η > 0 the update step is given by

θ(k+1) = θ(k) − ηE(θ + ε∆)− E(θ − ε∆)

2ε
∆,

where, as before, ε > 0 is a small perturbation and ∆ ∼
U({1,−1}d) is the perturbation direction. As a first-order
gradient method, SPSA does not take into account the model
sensitivity. QN-SPSA [10] corresponds to SA-QITE without
the improvements introduced in this paper, that is, QN-SPSA
uses a global averaging of the QGT samples, as in Eq. (6),
and the identity as initial value, g(0) = I.

To ensure the optimizers converge towards the same min-
imum and avoid the saddle point at the zero initial point,
we start the minimization from a small perturbation, γ(0) =
(10−3, 10−3) and β(0) = (10−2, 10−2). Each circuit evalu-
ation uses 8 · 103 measurements and we use a perturbation
of ε = 10−2 for the gradient approximations. For SPSA, we
select the largest possible learning rate such that the algorithm
converges consistently, which is the case for η = 5·10−7. Since
SA-QITE approximates QNG, the update step is normalized
with respect to the induced change in the model and we can
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Fig. 4: (a) The energies E of the cost Hamiltonian as a function
of total number of measurements N for SPSA and the natural
gradient adaptations. (b) The probability poptimal to sample one
of the optimal states as a function of N .

choose a substantially larger learning rate, which translates to
a “timestep” of ∆t = 10−3.

As we are interested only in converging to the ground
state, we relax the number of QGT and energy gradient
samples to N0 = 10 in the first step, and reduce to
Nk = max{1, b(0.9)kN0c} in the k-th iteration. The QGT
momentum is set to τ1 = 0.99, but we use no gradient
momentum (τ2 = 0) to avoid bias once the optimization
converged. Since we expect more noise in the QGT estimate
as in the time-evolution case, we now solve the linear system
with the diagonal shift of Eq. (8) with δ = 100, which is
roughly 0.5% of the magnitude of the largest eigenvalue of
the initial QGT.

In Fig. 4(a) we show the energy of the HC as a function
of the total number of measurements N . In the narrow loss
landscape, SPSA, as gradient-based optimizer, is only able
to converge slowly, even though it uses less resources per
iteration. The natural gradient approximations QN-SPSA and



SA-QITE, on the other hand, take into account the model
sensitivity, which allows for a faster convergence. In particular
we can see that, due to the accurate initial values of the QGT
and energy gradient, SA-QITE initially performs better than
QN-SPSA. Towards the minimum the QGT estimates of both
these algorithms converge to the same values, which, in this
example, leads to similar final energies.

Though the energy of the Hamiltonian is an indicator of
solution quality, in a classical optimization problem we are
often rather interested in the probability of sampling an opti-
mal bitstring. In Fig. 4(b) we therefore show the probability
poptimal to sample one of the optimal states, as described in
Fig. 3. The initial good performance of SA-QITE allows
to amplify the solution probability most efficiently of the
compared algorithms. To reach a 1% overlap, starting from
the initial overlap of ∼ 2−15, for example, it requires only
64% of the measurements of SPSA or QN-SPSA.

IV. HARDWARE EXPERIMENTS

To test the near-term compatibility of SA-QITE, we scale
the Ising Hamiltonian up to n = 27 spins and execute the
imaginary-time evolution on ibm_auckland, which is one
of the IBM Quantum Falcon processors [28]. Instead of spins
on a chain, we consider nearest-neighbor interactions matching
the topology of the device, shown in Fig. 5. This allows us
to choose an ansatz that is both hardware-efficient, as it has
low depth when compiled to basic instructions of the quantum
processor and problem-inspired, as it reflects the interactions
of the Hamiltonian.

The ansatz we use for this problem is similar to the one used
in the numerical experiments, with the difference that we use
a single entangling layer, L = 1, and the pairwise connections
exist between all qubit connections in the coupling map. This
can be achieved with a CX depth of three. Depending on the
device, executing a large number of CX depth in parallel,
or executing certain connection pairs at the time, can cause
frequency collisions. In these cases, increasing the CX depth
beyond the requirement minimum can still be favorable.

The parameters for the Ising Hamiltonian are set to J =
0.1, h = −1 and we integrate up to T = 2 with a timestep of
∆t = 10−2. As before, the initial state is |0〉⊗n, which can
be prepared with the variational ansatz by setting all initial
parameter values to 0. We perform SA-QITE with 1024 shots,
N = 10 samples per step, and momenta τ1 = 0.99 and τ2 = 0
and use no error mitigation. We use a Taylor expansion of
the imaginary-time evolution operator as a classical reference
calculation, as detailed in Appendix E.

The results of the imaginary-time evolution are presented
in Fig. 6. We see that, without error mitigation, the ener-
gies calculated by SA-QITE follow the exact energies up to
t ≈ 0.5, but then reach a plateau at a constant offset of the
reference calculation. However, if we evaluate the energies
with the parameters obtained from the noisy hardware with
an ideal statevector simulation instead, the energies are close
to the exact solution. This suggests that SA-QITE was able to

0 1 4 7 10 12 15 18 21 23

3 5 8 11 14 16 19 22 25 26

2 13 24

6 17

9 20

Fig. 5: The coupling map of the 27-qubit quantum processor.
The colors of the connections indicate the order in which the
CX layers are implemented to achieve a CX depth of three.
The arrows are pointing from control to target qubit.

0.0 0.5 1.0 1.5 2.0
t

25

20

15

10

5

0

E

reference
no EM
ideal
with EM

Fig. 6: The energies for the imaginary-time evolution of
the Ising model on 27 spins. While the non-error-mitigated
values have an offset from the reference calculation, the exact
evaluation of the parameter trajectory has a high accuracy,
which is also reached by the error-mitigated points.

find the right parameter trajectory despite the present hardware
noise, even though the evaluated energies have some errors.

To test the quality of the noisy parameters, we use error
mitigation to evaluate specific energies to a higher accuracy on
another 27-qubit chip; ibm_peekskill [28]. We mitigate
readout errors with the matrix-free measurement mitigation
(M3) [29] and employ a zero-noise extrapolation (ZNE) [30]
to further account for errors during the circuit execution. Since
ZNE is prone to coherent noise, we average each energy
measurement over a set of twirled circuits, which reduces the
noise into stochastic noise and thus improves the extrapolation
performance [31]. The workflow is summarized in Fig. 7 and
the techniques and specific settings are detailed in Appendix E.

In Fig. 6, we see that error mitigation can improve the
energy measurements significantly and approaches the ideal,
statevector-based evaluation.
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Fig. 7: Error mitigation strategy for the energy measurements.
Each CX gate is twirled using single-qubit Pauli operations
before being folded ζ = 2m + 1 times for m ∈ {0, 1, 2}.
The energies of the folded circuits are readout mitigated
using a reduced calibration matrix Ã. Finally, the energies are
extrapolated to obtain the energy estimate E(ζ = 0).

V. CONCLUSION

In this paper, we leverage a constant-cost sampling access
to the QGT and energy gradient to implement a stochastic
approximation of VarQITE, thereby reducing the prohibitive
resource requirements. The proposed SA-QITE algorithm for
imaginary-time evolution is a generalization of the existing
QN-SPSA [10] optimization algorithm, and uses a momentum-
based combination of samples, combined an initialization
with accurate initial values of the QGT and energy gradient.
These changes are also applicable if SA-QITE is used for
optimization instead of time evolution, in which case the
number of samples per step could be relaxed.

In our numerical experiments we see that, compared to
VarQITE, our SA-QITE algorithm reduces the number of
measurements required to achieve a target accuracy by about
one order of magnitude. For larger, overparameterized circuit
models, where the QGT is costly to evaluate but does not
have a complex structure and can be efficiently sampled, we
expect the advantage of SA-QITE to further increase. We have
employed SA-QITE with a reduced number of samples for the
optimization of a Max Cut Hamiltonian, where we showed
that it is able to further improve on QN-SPSA, and is able
to find optimal solutions at a lower number of measurements
compared to other optimizers.

To demonstrate the near-term suitability of our algorithm,
we use it to perform an imaginary-time evolution on a 27-qubit
Ising model. There we find that even without error mitigation,
the algorithm can determine the correct parameter dynamics.
By investing additional resources for readout error mitigation
and ZNE for individual points, we can retrieve energies close
to the exact solution.

An open question for the family of stochastic variational
algorithms of SA-QITE and QN-SPSA is how the number
of samples could be chosen adaptively. This would allow
for increasing the accuracy at times when the parameter
dynamics are difficult to capture and using fewer resources if

the samples have only a small impact on the current estimate.
Another interesting question is how the method introduced
here performs for adaptive circuit models, such as in ADAPT-
VQE, where the number of parameters is small compared to
other hardware-efficient models.

In conclusion, sampling from the QGT and energy gradients
allows to reduce the number of measurements compared to
VarQITE significantly, and is a suitable approach to implement
imaginary-time evolution on near-term quantum computers.
Scalable algorithms for current devices are one integral build-
ing block for solving practically relevant problems and pave
the way to tackle remaining open questions, such as the
construction of suitable variational circuit models.
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APPENDIX A
SAMPLING ERROR FOR THE QGT AND EVOLUTION

GRADIENT

In this section, we investigate the convergence of the QGT
and evolution gradient samples, ĝN and b̂N , as a function of
the number of samples N . We measure the convergence as
error in the `2 norm, i.e.,

‖ĝN − g‖2 =

√√√√
d∑

i,j=1

((ĝN )ij − gij)2,

and analogously for b̂N .
We calculate the errors for up to N = 105 samples for the

8-qubit Ising Hamiltonian and variational ansatz used in the
numerical experiments in Section III, at the initial point θ =
0. The errors are presented in Fig. 8, for both a statevector-
based evaluation of the circuits and for a shot-based evaluation
with sampling statistics. Both lines show the expected Monte
Carlo convergence of O(N−1/2), however the finite readout
accuracy in the shot-based case limits the achievable error.
Therefore, increasing the number of samples beyond the shot-
noise limit does not further improve the estimator accuracy.

APPENDIX B
CLIFFORD SIMULATION OF GRADIENT CIRCUITS

If the ansatz circuit at the initial parameter values,
|φ(θ(0))〉, is a Clifford circuit, we can efficiently evaluate the
its expectation values and gradients on a classical computer
[32]. This would allow the efficient evaluation of the initial
QGT and evolution gradient, which we use in SA-QITE.

A large class of hardware-efficient circuits, including the
ones used in this work, or problem-inspired circuits, such as
the excitation-preserving or Trotterization circuits, are based
on controlled Pauli gates and single-qubit Pauli rotations. The
controlled Paulis CX, CY, and CZ themselves belong to the
Clifford group and the rotation gates become Clifford gates
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Fig. 8: The sampling error of ĝN and b̂N measured in `2
distance to the exact values. The statevector-based evalua-
tions (M → ∞) use a perturbation of ε = 10−2 and the
measurement-based evaluations (M = 1024) use ε = 10−1.

for certain rotation angles. For multiples of π/2, they can be
expressed in terms of the Clifford gates I, S, X and H:

RX

(π
2

)
= S†HS†

RY

(π
2

)
= XH

RZ

(π
2

)
= HRX

(π
2

)
H.

Since RX,Y,Z(kπ/2) = RkX,Y,Z(π/2), for k ∈ Z this shows
the general case of any multiple of π/2.

To calculate the gradient

∣∣∣∣
∂

∂θi
φ(θ)

〉
=

∂

∂θi

1∏

k=d

Uk(θk) |0〉

= Ud(θd) · · ·
∂Ui
∂θi
· · ·U1(θ1) |0〉

we replace the unitary Ui(θi) with its derivative ∂iUi(θi).
Since, for the Pauli rotations, the derivative remains Clifford,
the elements of the QGT and evolution gradient, defined in
Eqs. (2) and (3), can be calculated efficiently.

Other options to evaluate the gradients include using a
parameter-shift rule with a shift of π/2 from the initial point,
or the linear-combination of unitaries method [16], which only
adds Clifford gates to the circuit.

APPENDIX C
REGULARIZATION COMPARISON

In this section, we compare the different methods to solve
the noisy linear system

ḡ(k)θ̇ = b̄(k).

We perform SA-QITE for the Ising Hamiltonian of Section III
for 8 qubits, using either the diagonal shift (Eq. 8) or the
stable-subspace (Eq. (9)) method to solve the linear system in
each timestep. For a numerically stable solution of the linear
system with the diagonal shift, we rewrite the equation as
convex, quadratic program, that is

θ̇ = argmin
x

xT (ḡ(k) + δI)x
2

− xT b,

and solve it with the classical optimization routine COBYLA
[33].

Figure 9 shows the fidelity F at each timestep t and the
integrated infidelity I for the two methods for different regu-
larization constants δ. The stable-subspace technique provides
the best results overall at δ = 10−1. In addition, it seems to
be the more stable because the integrated infidelity does not
suffer from the same sudden increase at a larger regularization
constant. We, therefore, use the stable subspace technique for
solving the linear systems in this work.
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Fig. 9: Fidelity F compared to the exact time-evolved state at
each time t, and integrated infidelity I for different linear
system solvers and regularizations. In the stable subspace
method (green), the regularization determines the eigenvalue
cutoff threshold and in the diagonal shift technique (blue) the
regularization equals the coefficient of the identity added to
the QGT.

APPENDIX D
BENCHMARK SETTINGS

This section includes more details for the resource estima-
tion in Section III. In Fig. 10 we show the achieved accuracies,



measured in the integrated infidelity I, for SA-QITE and
VarQITE for the different numbers of qubits. The algorithm
settings were each chosen, such that the accuracy is a close
as possible to the threshold of I ≤ 0.05, and are displayed in
Table I.

4 5 6 7 8 9 10
n

0.00

0.02

0.04

0.06

= 0.05
SA-QITE
VarQITE

Fig. 10: The mean and standard deviation of the integrated
infidelity I for SA-QITE and VarQITE.

n M δ
4 128 0.05
6 400 0.05
8 1024 0.01
10 2048 0.05

(a) VarQITE settings

n M N τ1 τ2 δ
4 128 10 0.99 0.7 0.05
6 256 20 0.99 0.9 0.05
8 512 75 0.99 0.7 0.05
10 800 250 0.99 0.7 0.05

(b) SA-QITE settings

TABLE I: Algorithm settings for the resource estimations,
including the number of qubits n, the number of measurements
per basis M , the number of samples for the QGT and energy
gradient N , the momenta τ1 and τ2, and the cutoff δ in the
stable subspace solver.

APPENDIX E
27-QUBIT EXPERIMENT

A. Classical reference solution

For 27 qubits, computing the classical reference solution
with a simple matrix exponential already requires too much
memory to execute on an ordinary computer. Instead, to
compute a classical reference solution, we Taylor-expand the
imaginary-time evolution operator and normalize the state after
each timestep. The update rule for the state |ψ(t)〉 ∈ C2n , is,
then, given by

|ψ̃(t+ ∆t)〉 = (I−∆tH) |ψ(t)〉

|ψ(t+ ∆t)〉 =
|ψ̃(t+ ∆t)〉
‖ |ψ̃(t+ ∆t)〉 ‖2

,

where I is the 2n × 2n dimensional identity matrix. We run
the evolution for decreasing timesteps ∆t and consider the
reference solution as converged, if a smaller timestep does no
longer changes the solution. In the 27-qubit experiment, this
was reached for ∆t = 10−3.

B. Readout error mitigation

Errors during the readout of qubit states are particularly
dominating for shallow quantum circuits, like the circuit with
a CX depth of three used in the hardware experiments in this
work. To mitigate these errors in a scalable approach, we use
the M3 error mitigation [29]. In contrast to standard readout
error mitigation approaches, such as a complete or tensored
measurement mitigation, M3 corrects the measurements only
in the subspace of measured bitstrings.

Assume the measured probability distribution over n qubits
and N measurements is p, where the k-th element describes
the probability to measure the binary representation of k. Then
M3 computes the mitigated quasi-probability distribution q as

q = Ãp, (12)

with the truncated transfer matrix Ã. Note that q represents
a quasi-probability distribution and can have negative vector
elements, but still sums up to 1. To construct Ã, we start from
the the 2n × 2n-dimensional tensored transfer matrix A =
Cn ⊗ · · · ⊗ C1, which is built from n individual single-qubit
calibration matrices of the form

Cj =

(
p
(j)
0→0 p

(j)
0→1

p
(j)
1→0 p

(j)
1→1

)
, (13)

where p(j)a→b denotes the probability that qubit j is initialized
in state |a〉 and is measured to be in |b〉. The truncated matrix
Ã is obtained from A by taking into account only indices, that
are present in the noisy measurements p, that is

Ã = (Aij)i,j∈{k: pk>0} . (14)

Since the experiments in this paper used N = 1000 shots
for 27 qubits, Ã has at most dimension 1000 × 1000, which
is small enough to efficiently solve the linear system for the
quasi-probabilities q. For a larger number of shots, Ã can be
further truncated to include only transfers of bitstrings within
a certain Hamming distance.

C. Zero-noise extrapolation

Zero-noise extrapolation (ZNE) is a generic error mitigation
technique, which artificially amplifies noise sources to then
extrapolate to the zero-noise limit. In this work, we apply
ZNE to mitigate the errors introduced by two-qubit gates, in
our case CX gates, as these are the main error sources during
the quantum circuit execution. We artifically amplify the CX
noise by adding an additional even number of CX operations,
which logically implement an identity but increase the error
rate. Other amplifications are possible, such as the device-
specific microwave pulse stretching, though here we focus
on the identity-insertion as it is device agnostic and does not
require additional pulse calibrations.

For a set of repetition levels m ∈ N, we replace each single
CX in the original circuit by

CX→ CX2m+1,
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Fig. 11: Zero-noise extrapolation for the energies at different times t. The figures show 5 independent repetitions of the
extrapolation. Each interpolation point E(ζ) for ζ ∈ {1, 3, 5} is obtained by averaging over 25 Pauli Twirling instances and
with M3 readout error mitigation. The black dashed line shows the ideal, statevector-based energy.

and denote the resulting measured energy as E(ζ), where
ζ = 2m + 1 is the number of applied CX gates. As we
expect the noise to increase exponentially in this gate repetition
[34], we then fit the measured energies for different ζ with an
exponential model

E(ζ; a, b, c) = a+ becζ ,

and extrapolate the ZNE estimate at ζ = 0.
To reduce coherent errors in the CX applications, which can

lead to unphysical extrapolations [31], we combine ZNE with
Pauli Twirling. Since on our the device, ibm_peekskill,
the single-qubit gate errors are much lower than the two-qubit
gate errors, Pauli Twirling can be implemented by sandwiching
each logical CX gate in between single-qubit Pauli operations,
that preserve the logical operation.

In Fig. 11 we show the interpolation energies {E(ζ) : ζ ∈
{1, 3, 5}} and the extrapolated value at ζ = 0 for states
at different times t. Each energy measurement includes M3
readout error mitigation and is averaged over Ntwirl = 25 Pauli
Twirling instances, where each individual expectation value is
measured with N = 1000 shots per basis.
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