

Edinburgh Research Explorer

Checking LTL Properties of Recursive Markov Chains

Citation for published version:
Yannakakis, M & Etessami, K 2005, Checking LTL Properties of Recursive Markov Chains. in QEST.
Institute of Electrical and Electronics Engineers (IEEE), pp. 155-165.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
QEST

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 27. Apr. 2024

https://www.research.ed.ac.uk/en/publications/2d64b7f7-2c32-44fc-bc28-e79112ac8811

Checking LTL Properties of Recursive Markov Chains

Mihalis Yannakakis
Department of Computer Science

Columbia University

Kousha Etessami
LFCS, School of Informatics

University of Edinburgh

Abstract
We present algorithms for the qualitative and quantita-

tive model checking of Linear Temporal Logic (LTL) prop-
erties for Recursive Markov Chains (RMCs). Recursive
Markov Chains are a natural abstract model of procedural
probabilistic programs and related systems involving recur-
sion and probability. For the qualitative problem (“Given
a RMC � and an LTL formula �, do the computations
of � satisfy � almost surely?”) we present an algorithm
that runs in polynomial space in � and exponential time
in �. For several classes of RMCs, including RMCs with
one exit (a special case that corresponds to well-studied
probabilistic systems, e.g., multi-type branching processes
and stochastic context-free grammars) the algorithm runs
in polynomial time in � and exponential time in �. On the
other hand, we also prove that the problem is EXPTIME-
hard, and hence it is EXPTIME-complete. For the quan-
titative problem (“does the probability that a computation
of � satisfies � exceed a given threshold �?”, or approxi-
mate the probability within a desired precision) we present
an algorithm that runs in polynomial space in � and expo-
nential space in �. For linearly-recursive RMCs, we can
compute the exact probability in time polynomial in � and
exponential in �. These results improve by one exponential,
in both the qualitative and quantitative case, the complexity
that one would obtain if one first translated the LTL formula
to a Büchi automaton and then applied the model checking
algorithm for Büchi automata from [11]. Our results com-
bine techniques developed in [10, 11] for analysis of RMCs,
and in [6] for LTL model checking of flat Markov Chains,
and extend them with new techniques.

1 Introduction
Recursive Markov Chains (RMCs), introduced in [10,

11], are a natural abstract model of procedural probabilistic
programs and related systems involving recursion and prob-
ability. RMCs succinctly define a natural class of denumer-
able Markov chains that generalize well-studied stochas-
tic processes such as multi-type Branching Processes. An
RMC consists of a collection of finite state component
Markov chains (MCs) that can call each other in a poten-

���

���

���

��

�

��
�

��

��
�

�

��
�

�

�

���

�� � �� �
�

�
� ��

�
�

�
� ��

�

�

���

���

���

��� ���

��

�

��� ���
���

�

���

���

��

���

���

Figure 1. A sample Recursive Markov Chain

tially recursive manner. Each component has a set of nodes,
a set of boxes (each mapped to a component), an interface
consisting of a set of entry and exit nodes (nodes in the
component where we may start and terminate), and a set of
probabilistic transitions connecting the nodes and boxes. A
transition to a box specifies the entry node and models the
invocation of the component MC associated with the box;
when (and if) the component MC terminates at an exit, ex-
ecution of the calling MC resumes from the corresponding
exit of the box. An example RMC with 2 components, ��

and ��, each with one entry and two exits, is depicted in
Figure 1. Note that, e.g., box �� of component �� maps to
a copy of component��.

RMCs are a probabilistic version of Recursive State Ma-
chines (RSMs). RSMs ([1, 2]) and closely related models
like Pushdown Systems (PDSs) (see, e.g., [3, 7]) have been
studied extensively in research on model checking and pro-
gram analysis, because of their applications to verification
of sequential programs with procedures. RMCs are inti-
mately related to probabilistic Pushdown Systems (pPDSs),
and decidability and complexity of model checking ques-
tions for pPDSs has also been studied recently ([8, 4]).

RMCs generalize other well-studied models involving
probability and recursion: Stochastic Context-Free Gram-
mars (SCFGs) have been extensively studied, mainly in
natural language processing (NLP) (see [16]). Multi-Type
Branching Processes (MT-BPs), are an important family of
stochastic processes with many applications in a variety of
areas (see, e.g., [14]). Both SCFG’s and MT-BP’s are essen-
tially equivalent to 1-exit RMC’s: the special case of RMC’s
in which all components have one exit.

v1lfass
Typewritten Text
Yannakakis, M., & Etessami, K. (2005). Checking LTL Properties of Recursive Markov Chains. In QEST. (pp. 155-165). IEEE Computer Society.

Probabilistic models of programs and systems are of in-
terest for several reasons. First, a program may use random-
ization, in which case the transition probabilities reflect the
random choices of the algorithm. Second, we may want
to model and analyse a program or system under statistical
conditions on its behaviour (e.g., based on profiling statis-
tics or on statistical assumptions), and to determine the in-
duced probability of properties of interest.

In this paper, we study the model checking problems for
RMCs when the specification is given by a formula � in
Linear Temporal Logic (LTL). As is well known, LTL is
a standard logic for specifying properties of the executions
of a system. Specifically, we are given an RMC � and an
LTL formula �. Every vertex of the RMC is labeled by
the subset of the propositions of � which hold at the ver-
tex. Let ����� denote the probability that an execution of
� satisfies �. The qualitative model checking problem is:
determine whether almost all executions of� satisfy �, i.e.,
whether ����� � �. (Note that almost no executions of �
satisfy �, i.e. ����� � �, iff ������ � �.)

In the quantitative model checking problems we wish
to compare ����� to a given rational threshold �, i.e., is
�������?, where � � �������, or alternatively, we
may wish to approximate ����� to within a given number
of bits of precision. In general, as shown in [10], �����
may be irrational. Hence we can not compute it exactly.

We show that the qualitative model checking problems
can be solved in PSPACE in � and EXPTIME in �. More
specifically, the exponent depends only on the number of
temporal operators in �, which in practice is a small con-
stant. For three classes of RMC’s we obtain polynomial
time in � (and exponential in �): (1) The class of 1-exit
RMCs (which correspond to SCFG’s and MT-BP’s); (2)
The class of RMCs (denoted Bd-RMCs) with a bounded to-
tal number of entries and exits. In terms of probabilistic pro-
gram abstractions, this class of RMC’s corresponds to pro-
grams with a bounded number of distinct procedures, each
of which has a bounded number of input/output parameter
values. The internals of the components of the RMCs (i.e.,
the procedures) can be arbitrarily large and complex; (3)
The class of “linearly-recursive” RMCs (lr-RMCs), where
no component contains a path of transitions from a return-
port of a box to an entry of a box.

For quantitative model checking, we show that, given a
rational � � ��� ��, deciding whether����� � �, (or� �, or
any other comparison operator) can be decided in PSPACE
in ��� and EXPSPACE in ���. For � a lr-RMC we can
compute the exact (rational) probability ����� in polyno-
mial time in � and exponential time in �. For� a Bd-RMC
and when � is fixed, it follows already from the results of
[11] (by translating � to a Büchi automaton) that there is an
algorithm that runs in polynomial time in ���.

For lower bounds, we prove that qualitative LTL model

checking, even for a fixed, single entry/exit RMC, is already
EXPTIME-hard, and thus EXPTIME-complete.

As observed in [10, 11], our PSPACE complexities in
��� for quantitative model checking of 1-exit RMCs, and
for qualitative model checking of multi-exit RMCs, can not
be improved without a breakthrough on the complexity of a
long standing open problem in the complexity of exact nu-
merical computation. Namely, we showed in [10] that the
Square Root Sum Problem, reduces to quantitative reacha-
bility analysis for 1-exit RMCs and qualitative reachability
analysis for multi-exit RMCs.
Related Work. Model checking of flat Markov chains has
received extensive attention both in theory and practice (e.g.
[6, 15, 19, 22]). It is known that both qualitative and quan-
titative model checking of a finite Markov chain � with re-
spect to an LTL specification � are PSPACE-complete, and
furthermore the probability����� can be computed exactly
in time polynomial in � and exponential in � ([6]).

RMCs and the closely related model of probabilistic
Pushdown Systems (pPDS) have been studied recently
[10, 11, 12, 8, 4, 9]. Most relevant to the subject of the
current paper are the results on model checking of prop-
erties specified by Büchi automata [4, 11]. In [11] we
showed that qualitative model checking of an RMC � with
respect to a Büchi automaton 	 can be done in PSPACE in
��� and EXPTIME in �	�, and is also EXPTIME-complete
in �	�, and that quantitative model checking can also be
done in PSPACE in ���, and in EXPSPACE in �	�. As is
well known ([23]), any LTL formula � can be translated
to equivalent Büchi automaton 	, and thus our prior algo-
rithms also yield algorithms for checking LTL properties
of RMCs. However, translation of LTL formulas to Büchi
automata necessarily incurs a worst-case exponential blow
up. Thus, if we use our earlier results directly, we would
obtain a doubly exponential time algorithm for qualitative
LTL model checking, and a doubly exponential space al-
gorithm for quantitative LTL model checking. We show in
this paper that these extra exponential costs in complexity
are not necessary.

Our results build on both the techniques developed in
[10, 11] for analysis of RMCs, as well as the techniques de-
veloped for LTL model checking of flat Markov Chains in
[6]. There are a number of difficulties that have to be sur-
mounted however. The algorithm of [6] for model checking
LTL properties of flat Markov chains employs an iterative
approach, whereby the chain is refined in each iteration and
the formula is simplified by elimination of temporal opera-
tors, until at the end the formula becomes propositional and
can be verified directly. There are serious technical obsta-
cles however for effectively extending this approach to the
recursive setting, and this is not what we do. Instead, we
follow a different approach which is more global in nature.
We use an idea from another method of [6], used there for

2

another purpose, and we extend it with other techniques to
handle recursion and LTL.

The paper is organized as follows. Sec. 2 gives def-
initions and background from [10, 11]; Sec.’s 3 and 4
give our upper bounds for qualitative and quantitative LTL
model checking, respectively; Sec. 5 gives our EXPTIME-
hardness result for qualitative LTL model checking.

2 Definitions and Background

A Recursive Markov Chain (RMC), �, is a tuple
� � ����

 � ���, where each component chain �� �
���� 	�� ��� ��� ��� Æ�� consists of:
� A set �� of nodes.
� A subset of entry nodes�� 	 ��, and a subset of exit

nodes �� 	 ��.
� A set 	� of boxes. Let 	 �
����	� be the (disjoint)

union of all boxes of �.
� A mapping �� 	 	� �� ���

 � �� assigns a component

to every box. Let � �
������ be � 	 	 �� ���

 � ��
where � ���

� ��, for � � � � �.
� To each box � � 	�, we associate a set of call ports,

Call� � ���� ��� � �� � �� ����, and a set of return
ports, Return� � ���� ��� � �� � �� ����.

� A transition relation Æ�, where transitions are of the
form ��� ���	� �� where:
1. the source � is either a non-exit node � � � � ��,
or a return port � � ��� ��� � Return�, where � � 	�.
2. The destination � is either a non-entry node
� � �� ��, or a call port � � ��� ��� � Call�,
where � � 	�.
3. ���	 � �
� is the probability of transition from �

to �. (We assume ���	 is rational for computational
purposes.)
4. Consistency of probabilities:�

�	���������� �	
���Æ��

���	� � �� for each � that is
not a call port or exit node (the latter do not have
outgoing transitions).

We use the term vertex of �� to refer collectively to its set
of nodes, call ports, and return ports, and we denote this set
by ��, and we let � �

��
����� be the set of all vertices

of the RMC �. That is, the transition relation Æ� is a set of
probability-weighted directed edges on the vertices � � of
��. Let Æ �
�Æ� be the set of all transitions of �.

RMCs where every component has at most one exit
are called 1-exit RMCs. RMCs where the total num-
ber of entries and exits is bounded by a constant �, (i.e.,
��

��� ����
 ���� � �) are called bounded total entry-
exit RMCs (Bd-RMCs, for short). The class of linear RMCs
(lr-RMCs, for short) are those with no paths (in any com-
ponent) from a return-port to a call-port.

An RMC � defines a global denumerable Markov chain
�� � ����� as follows. The global states � 	 	� � �

are pairs of the form ��� ��, where � � 	� is a (possibly
empty) sequence of boxes and � � � is a vertex of�. More
precisely, the states � and transitions � are defined induc-
tively as follows:

1. ��� �� � � , for � � �. (� denotes the empty string.)

2. if ��� �� � � and ��� ���	� �� � Æ, then ��� �� � �

and ���� ��� ���	� ��� ��� � �

3. if ��� ��� ���� � � and ��� ��� � Call�, then
���� ��� � � , and ���� ��� ����� �� ���� ���� � �.

4. if ���� ��� � � and ��� ��� � Return�, then
��� ��� ���� � � and ����� ���� �� ��� ��� ����� � �.

Item 1 corresponds to the possible initial states, 2 corre-
sponds to a transition within a component, 3 is when a new
component is entered via a box, 4 is when a component is
exited and control returns to the calling component.

We will consider �� with various initial states of the
form ��� ��, or we can consider a distribution on these initial
states. Some states of �� are terminating, i.e., have no
outgoing transitions. Namely, states ��� ���, where �� is
an exit. We want �� to be a proper Markov chain, so we
consider terminating states as absorbing, with a self-loop of
probability 1. A trace (or trajectory) � � � � of �� is an
infinite sequence of states � � ������

. such that for all
� � �, there is a transition ���� ������ � ����� � �.

Given a vertex � � �� and an exit �� � ��, both in the
same component ��, let �������� denote the probability that
a trajectory starting at the state ��� �� eventually reaches the
state ��� ���; we will often simply say that a trajectory of the
RMC that starts at � exits the component at ��. As shown
in [10], the probabilities �������� are the Least Fixed Point
(LFP) of a system of multivariate polynomial equations
� � � ���, where � is the vector of variables ������� corre-
sponding to the vertex-exit pairs, �� � ��, for � � � � �.
The system contains one equation ������� � ����������,
for each variable �������, where ���������� is a multivariate
polynomial with positive rational coefficients. There are 3
cases, based on the “type” of vertex �:

1. Type I: � � ��. In this case: �������� � �.

2. Type II: either � � ������ or � � ��� ���� is a return
port. Then ������� �

�
�	���������	��Æ�

���	 � ��	����

3. Type III: � � ��� ��� is a call port. In this case:

������������ �
�

������� ���
��������� � �������������

The vector �� of the exit probabilities �������� is a solu-
tion to this system. Furthermore, it is the least nonnegative
solution. That is, if � � � ��� and � � �, where � de-
notes the all � vector and comparison of vectors is done
component-wise, then � � ��.

The exit probabilities may in general be irrational and
not even solvable by radicals [10], so they cannot be com-
puted exactly. However, we can effectively compare them

3

with given rational values. For notational convenience, let
us enumerate the pairs ��� ��� from 1 to�, and identify the
variable ������� of the �th pair with �� . Suppose that we
want to check whether the probability �������� of the �th pair
is at most a given rational number �. Consider the follow-
ing sentence in the Existential Theory of Reals (which we
denote by ExTh���):

� � ���� � � � � ��

��

���

��� � ������ � � � � �����

��

���

� � ������ � ��

� is true precisely when the LFP of � � � ���, i.e., ��,
satisfies �������� � �. We can check this using a decision
procedure for ExTh���. It is known that ExTh��� can be
decided in PSPACE and in exponential time, where the time
exponent depends (linearly) only on the number of vari-
ables; thus for a fixed number of variables the algorithm
runs in polynomial time [5, 20]. For Bd-RMCs, as shown in
[10] it is possible to efficiently construct a system of equa-
tions in a bounded number of variables, whose LFP yields
the entry-exit probabilities ���������, and check it in polyno-
mial time. Furthermore, for 1-exit RMCs (SCFGs), we can
efficiently solve qualitative termination/reachability prob-
lems, i.e. determine whether �������� is 0, 1, or in-between;
this algorithm does not use the ExTh��� but rather an
eigenvalue characterization and graph theoretic methods.
lr-RMCs were not studied explicitly in [10]. However,

there we showed that a “decomposed” multi-variate New-
ton’s method which operates bottom-up on the “SCCs” of
the system � � � ���, converges monotonically from �� to
the solution �� (see section 4 of [10]), and we observed
that if these SCCs constitute linear systems, as in the case
of finite Markov chains, then this decomposed Newton’s
method converges in 1 iteration to the (rational) solutions.
It can be shown easily that for an lr-RMC the SCCs of
the system � � � ��� that are encountered bottom-up are
all linear systems. Thus our decomposed Newton’s method
again converges in one iteration on each of these systems,
and we obtain the (rational) reachability probabilities �� in
polynomial time. The qualitative problem can be solved
more efficiently with graph theoretic methods. We summa-
rize these results in the following theorem:

Theorem 1 ([10]) 1. Given RMC � and rational �, there
is a PSPACE algorithm to decide whether �������� � �, with

running time �������� � ������ where� is the number of
variables in the system � � � ��� for �. Moreover ��������
can be approximated to within � bits of precision within
PSPACE and with running time at most � times the above.
2. For a Bd-RMC these problems can be solved in polyno-
mial time.
3. For a 1-exit RMC, we can determine in polynomial
time which of the following holds:(1) �������� � �, (2)
�������� � �, or (3) � � �������� � �.

4. For lr-RMCs, we can compute in polynomial time the
rational probability vector ��.

On the lower bound side, evidence of the difficulty of
reachability problems for RMCs was given in [10] in the
form of the Square-root Sum Problem, which is the follow-
ing decision problem: given �!��

 � !�� � �

� and � � �,
decide whether

��
���

�
!� � �. It is solvable in PSPACE,

but it has been a major open problem since the 1970’s (see,
e.g., [13, 21]) whether it is solvable even in NP. The square-
root sum problem is P-time reducible to deciding whether
�������� � �, in a 1-exit RMC, and to deciding whether
�������� � � for a 2-exit RMC [10].

The system � � � ��� of an RMC may have in gen-
eral multiple (nonnegative) fixpoints. An augmented sys-
tem can be constructed which has a unique fixpoint, as fol-
lows. For each vertex � � ��, define the probability of
never exiting: ����� � � ��������

���	����. Call a vertex
� deficient if ����� � �, i.e. there is a nonzero probability
that if the RMC starts at � it will never terminate (reach an
exit of the component). We can determine if a vertex � is
deficient by replacing the last constraint in the formula �
above with the constraints ����� � � � �������

���	����
and ����� � � and testing the resulting formula. Doing
this for all the vertices, determines the set �� of deficient
vertices, �� � �� � ������� � ��. It is shown in [11]
that the system � � � ����� � � has a unique fixpoint that
satisfies

�
�� �

�
�	���� � � for every deficient vertex � � ��

and
�

�� �
�
�	���� � � for every other vertex.

With a RMC � we can associate a finite-state flat
Markov chain, called the summary chain � �

�. Assume,
w.l.o.g., that the RMC has one initial state �� � ��� ���	�
�,
with ���	�
 the only entry of a component �� that does not
contain any exits. Any RMC can readily be converted to
an “equivalent” one in this form, while preserving relevant
probabilities. The summary chain � �

� � ���� Æ� �

�
� is de-

fined as follows. The set of states of � �
� is the set of defi-

cient vertices: �� � �� � � � ����� � ��. For �� � � ��,
there is a transition ��� ����	� �� in Æ� �

�
if and only if one of

the following conditions holds:

1. �� � � �� and ��� ���	� �� � Æ�, and ����	 �
���� ����	�
����� .

2. � � ��� ��� � Call�, � � ��� ��� � Return�,

��������� � �, and ����	 �
����	��
����	�

����� . We call these
summary transitions.

3. � � ��� ��� � Call� and � � ��, and ����	 � ���	�
����� .

We call these nesting transitions.

In all three cases, ����	 is well-defined (the denominator
is nonzero) and positive. Recall that we assumed that the
initial vertex ���	�
 is the entry of a component��, and ��

has no exits. Thus for all � � ��, ����� � �, and thus
�� 	 ��, and if ��� ���	� �� � Æ�, then ��� ���	� �� � Æ� �

�
.

4

Once the deficient vertices are determined, the transi-
tions of the summary Markov chain can be constructed in
polynomial time; the transition probabilities however may
not be rational, thus they are not computed explicitly.

A mapping " can be defined that maps every trace � of the
original (infinite) Markov chain �� starting at ��� �������,
either to a unique trajectory "��� of the MC � �

� starting
at ������, or to the special symbol #. Briefly, "��� is ob-
tained from � by shortcutting recursive calls that eventually
return, and replacing them with summary edges from the
call port to the return port of the box; if any of the ver-
tices after this shortcutting is not in the summary chain (i.e.
is not in ��) then we set "��� � #. In more detail, let
� � ����

 ��

 be a trajectory of ��, starting at state
�� � ��� ���	�
�. Its summary image "��� is defined se-
quentially based on prefixes of �, as follows. To start, map
�� to ���	�
. Suppose �� � ��� ��, and, inductively, sup-
pose that the prefix ��

 �� has been mapped to ��	�

 �.
First, suppose � is not a call port, and that ���� � ��� ��;
if � � �� then ��

 ������ maps to ��	�

 ��, otherwise
define "��� � # and quit. Next, suppose � � ��� ��� is
a call port and ���� � ���� ���. If the trace eventually
returns from this call (i.e., there exists � � �
 �, such
that �� � ���� ��� and ���� � ��� ��� ����, and such that
each of the states ����

 �� , have �� as a prefix of the
call stack), then ��

 �� is mapped to ���	�

 ���� ���
(provided ��� ��� � ��, otherwise "��� � #). If the
trace never returns from this call, then ��

 ������ maps
to ���	�

 � ��, again provided �� � ��, else "��� � #.
This concludes the definition of ".

Important properties of the mapping " are that (i) with
probability 1, a trajectory of�� starting at �� � ��� ���	�
�
is mapped to a trajectory "��� of the summary chain � �

�

(i.e. it is not mapped to #), and (ii) the mapping preserves
probabilities: for any measurable set $ of trajectories of
� �

�, its inverse image "���$� of trajectories of�� is also
measurable and has equal probability. The mapping " can
be extended similarly to trajectories � of �� that start at
other states �� � ��� %�, with % � �� and which do not
reach any exit �� of %’s component, i.e. a state ��� ���.

The summary chain plays a central role in the analysis
of properties of RMCs given by Büchi automata [11]. Note
that for lr-RMCs, where probabilities are rational,� �

� can
be computed explicitly, and in that case our model checking
algorithms from [11] run in polynomial time in the size of
an lr-RMC. The summary chain will be important also for
our analysis of LTL properties.

Linear Temporal Logic.
Formulas in LTL [18] are built from a finite set �&'�
of propositions using the usual Boolean connectives (eg.
�����), the unary temporal connective Next (denoted �)
and the binary temporal connective Until (�); thus, if (�)
are LTL formulas then �(and (�) are also LTL formu-

las. Every vertex of the given RMC � is labelled with a
subset of �&'�: the set of propositions that hold at that ver-
tex. That is, there is a given valuation function � *+ 	 � ��
�����. The function can be extended naturally to the in-
finite Markov chain �� that corresponds to �, by letting
� *+���� ��� � � *+���. If � � ��� ��� ��

 is a trajectory
of�� and � is an LTL formula, then we define Satisfaction
of the formula by � at step �, denoted �� � �� � inductively
on the structure of � as follows.
� �� � �� � for � � �&'� iff � � � *+����.
� �� � �� �(iff not �� � �� (.
� �� � �� (�) iff �� � �� (or �� � ��).

� �� � ���(iff �� ��
 �� �� (.
� �� � �� (�) iff there is a � � � such that �� � ��), and
�� � �� (for all � with � � � � �.

We say that the trajectory � satisfies � iff �� � �� �. Other
useful temporal connectives can be defined from � . The
formula ,&���) means ”eventually) holds” and is abbre-
viated�). The formula ����)� means ”always) holds”
and is abbreviated�).

If � is an LTL formula and� is an RMC with a valuation
function to the propositions of �, then the set of executions
of � (i.e., trajectories of ��) that satisfy � is a measur-
able set. We use ����� to denote the probability of this
set. The qualitative model checking problem is the follow-
ing: Given a LTL formula � and an RMC � (including a
valuation function), is ����� � �, i.e. do the executions
of � satisfy almost surely the property �? This is the ques-
tion of interest if � is a required property of the model �.
Note that the complementary question, i.e., is ����� � �,
corresponding to forbidden properties �, is equivalent, and
can be answered by simply negating the property and de-
termining whether ������ � �. The quantitative model
checking problem is the following: Given an LTL formula
�, an RMC � (including a valuation function), and a ratio-
nal �, determine whether ����� � �, � �, or ����� � �.

3 Qualitative Model Checking

We are given RMC� and an LTL formula�. We assume
wlog that the RMC starts at the entry node ������ of compo-
nent�� of �, which has no exit. First, we construct from�
the graph of the summary Markov chain� �

�; we only need
the nodes and edges of � �

� and not the precise transition
probabilities. We identify the formula � with its parse tree
, . The leaves of the tree are labelled with atomic propo-
sitions and its nonleaf nodes are labelled with temporal or
Boolean connectives. Let � be the number of propositions
and internal nodes of , ; number the propositions and inter-
nal nodes from 1 to � bottom-up: first the propositions and
then the internal nodes. For each �, let �� be the subformula
of � corresponding to the tree ,� rooted at node �.

5

Let �� be the (infinite) Markov chain represented by
the RMC �. Let - � ������

 be an infinite trajectory
of �� starting at some state �� � ��� ��. We define the
type of the trajectory to be a Boolean vector � of length �,
where for each �, �� � � iff- satisfies the formula��. From
the definition of the satisfaction of LTL formulas it follows
that the pair ��� �� satisfies the following properties

1. If �� is a proposition �, then �� � � if � holds at �, else
�� � �.

2. If � is an internal node of the parse tree labelled with
a Boolean connective � (resp. �, �) and has child �
(resp. children �� +), then �� � ��� (resp. �� � �� � ��,
�� � �� � ��).

3. If � is labelled with a temporal connective � and has
children �� +, i.e., �� � �����, then (a) if �� � � then
also �� � �, and (b) if �� � �� � � then also �� � �.

We call any pair ��� �� consisting of a vertex � of the
RMC � and a Boolean �-vector � consistent if it satisfies
these three properties. Similarly we say that the pair ���� ��
consisting of a state �� � ��� �� of �� and a vector � is
consistent if the pair ��� �� is consistent. Observe that if
��� �� is consistent then the temporal coordinates of � (those
corresponding to nodes of � labelled with temporal con-
nective) determine uniquely the rest of the coordinates of �
because of properties (1), (2).

Consider a trajectory - � ������

 and suppose that
we know the type � of its suffix ����

. Then we can de-
termine uniquely the type � of - from � and the state ��
(more precisely, the vertex � of ��) as follows: The co-
ordinates �� corresponding to propositions are determined
from � by property (1). For the internal nodes of the parse
tree, proceed bottom-up in the tree. Let � be an internal
node and suppose that we have determined the coordinates
corresponding to the children of �. If � is labelled by a
Boolean connective then �� is determined by property (2) of
consistency. If � is labelled by a temporal connective then
�� is determined by property (3) unless � is labelled (i) �
(Next) or (ii) it is labelled � (Until) with children �� + and
�� � �� �� � �. In case (i), if � has child �, i.e. �� � ���
then �� � �� ; in case (ii) we must have �� � ��. Thus, these
two properties (i), (ii) and the consistency conditions (1-3)
above determine uniquely � from � and �. We will say that
� is the type backwards implied for vertex � from type �.

The backward implication extends to finite paths: If . �
����

 �� is a finite path of�� and � is a type consistent
with the final state ��, then there is a unique type � that is
backwards implied from � and . for the initial state �� of
the path and its vertex.

We construct a graph / as follows. The nodes of / are
all pairs ��� �� where � is a node of the summary chain� �

�

and � is a Boolean �-vector such that the pair ��� �� is con-
sistent. We include an edge ��� �� � ��� �� between two

nodes of / if � �
� has an edge � � � and (a) either the

edge is not a summary edge and � is the type that is back-
wards implied from � for node �, or (b) �� � is a summary
edge, i.e. � � ��� ���, � � ��� ��� for some box �, and there
is a path . in the RMC corresponding to the summary edge
(i.e., goes from � to � with empty context) such that � is the
type that is backwards implied from . and �.

We can check whether there exists a path . in the RMC
from � to � satisfying the above requirement, as follows:
Construct a Recursive State Machine (RSM) �, called the
augmented RSM, which has a component �� for each com-
ponent �� of the RMC �. There is a vertex ��� �� for each
vertex � of� and each type � that is consistent with �; if � is
an entry or exit of a component� �, then ��� �� is an entry or
exit of the corresponding component ��. If � is a box of ��

mapped to�� , then there is a corresponding box � in �� that
is mapped to �� ; for every entry �� of�� and consistent tu-
ple �, the box � has a corresponding call port ���� ���� �� (the
vertex is labelled with the same propositions as ��), and we
define similarly the return ports of �. Note that the ver-
tices of the form ��� ��, where � � ��� ��� or � � ��� ���
was a call port or return port of box � of �, are now or-
dinary nodes of �. We include an edge ��� �� � ��� ��
for each pair of vertices ��� ��� ��� �� such that � is the type
backwards implied from � for �, and � contains an edge
� � �, or � � ��� ��� and � � ��� ��� for some box �
of �, or � � ��� ��� and � � ��� ���. (Note: The reason
that we introduced new call ports and return ports is that
the trajectories of the Markov chain �� contain explicit
steps corresponding to the recursive calls and returns from
the calls. This is a small technical detail.) It is easy to see
now that there is a path . in the RMC � from � � ��� ���
to � � ��� ��� (with empty context) that corresponds to the
summary edge � � � and such that � is the type that is
backwards implied from . and � iff the RSM � contains a
path from ��� �� to ��� �� (with empty context).

Consider again a trajectory- � ������

 of��. For
each �, let �� be the type of the path ������

. By our pre-
vious remarks, the pair ��� � ��� is consistent. Also, note that
�� is the type backwards implied by ���� and ��. Let - be
the sequence ���� �

��� ���� �
��� ���� �

��

; we call this the
augmented trajectory corresponding to - . It corresponds
to a trajectory of the RSM �.

Recall that there is a mapping " from trajectories - of
the original Markov chain �� to a trajectory of the sum-
mary chain � �

�, or to the symbol #, with the property that
���"

���#�� � �. Suppose that "�-� �� #. Then "�-�
consists of the vertex parts ��������

 of a subsequence
��������

 of - obtained by shortcutting subpaths of -
by summary edges. The mapping " can be extended to
the augmented trajectory - : "� -� � ���� �

��� ����� �
���

is obtained from the corresponding subsequence of - by
keeping only the vertex parts and the types. By our con-

6

struction of the graph/, "� -� is a path of /.
If ���� ���� ���� ���� ���� ���

 is a sequence of vertex-

type pairs, then the projection of the sequence on the first
component is the sequence ��� ��� ��

 of vertices.

Lemma 2 1. Every finite or infinite path of / projected on
the first component yields a path of � �

�. 2. Conversely,
every path of� �

� is the projection of at least one path in/.

Recall, a vertex � of � is included in summary chain � �
�

iff ����� � �. Call a pair ��� �� probable if there is positive
probability that a trajectory of � starting at � does not exit
the component of � and has type �. We denote by � ���� ��
the probability that a trajectory from � has type � condi-
tioned on the event that it does not exit �’s component.

Lemma 3 1. If / contains an edge ��� �� � ��� �� and
��� �� is probable then ��� �� is also probable. 2. In partic-
ular, in every strongly connected component 0 of /, either
all nodes are probable or none is.

Let 1 be the subgraph of / consisting of probable
nodes. By the above lemma, in order to compute1 , it suf-
fices to identify which strongly connected components of/
are the bottom scc’s of1 . Then1 consists of all the nodes
that are ancestors of these bottom scc’s. Once we compute
the graph1 , we can answer the qualitative model checking
problem: The trajectories of the given RMC � satisfy the
given formula � almost surely if and only if1 does not in-
clude any node of the form �������� ��, where ������ is the
initial node of � (the entry node of the top component) and
� is a type with �� � �. Note that � corresponds to the root
of the parse tree of �, i.e., �� � �, so �������� �� probable
with �� � � would mean that there is positive probability
that a trajectory starting at ������ does not satisfy �. (Re-
call that the top component has no exit, so all the trajectories
from ������ do not exit its component.)

A trajectory - of the RMC (i.e. of the infinite chain
��) maps with probability 1 to a trajectory - � � "�-�
of the summary chain� �

�, and the augmented trajectory -

maps to an augmented trajectory - � � "� -� that is a path
in /. Call a trajectory - of �� typical if - � � "�-� is
defined and all pairs of - � � "� -� are probable, i.e. if
- � is a path of the subgraph 1 . It follows easily from the
Markov property that the set of typical trajectories of the
RMC starting at the initial state has probability 1. More
generally:

Lemma 4 For every vertex � of the RMC � with ����� �
�, the probability that a trajectory starting at � does not exit
its component and is typical with type � is ������ ���� ��.

We wish to find the improbable nodes of / and remove
them to obtain 1 . As we noted, it suffices to identify the
bottom scc’s of 1 . From the definition of /, if / contains

a path from ��� �� to ��� �� then� �
� contains a path from �

to �. Therefore, for every scc 0 of /, the first components
of all the nodes of 0 belong to the same scc 2 of� �

�. We
will say that the scc 0 corresponds to2.

Lemma 5 If 0 is a bottom scc of1 , then it corresponds to
a bottom scc2 of � �

�.

We will now give a necessary condition for a node of /
to be probable. Consider a summary edge ��� ��� ��� �� of
/. We say that the edge is probable if the nodes are proba-
ble. We label the edge with a subset of ���

 �� as follows.
A label + � ���

 �� is included in the subset iff the aug-
mented RMC � has a path from ��� ��� ��� to ��� ��� ��� that
goes through some node ��� �%� &�� with &� � �. This can
be determined in polynomial time in the size of � using the
algorithm for Recursive State Machines of [1].

Lemma 6 If ��� �� is probable, then it satisfies the follow-
ing condition. For every node � of (the parse tree of) � la-
belled � , with corresponding subexpression �� � �����,
if �� � � then node ��� �� can reach in 1 (and in /) some
probable node ��� �� with �� � � or some probable sum-
mary edge whose label set includes +.

It is convenient for the purposes of the analysis to refine
the summary graph � �

� into a multigraph � ��
� as follows.

For each summary edge � � ��� ��� � � � ��� ��� con-
sider all paths of the RMC that give rise to the edge, i.e.
paths of the form ��� �� � ��� ��� �

 ��� ��� � ��� ��.
For every type � for the final state, each path implies back-
wards a type � for �. Let us call two paths equivalent if
they induce the same mapping from types � at � to types
� at �. This gives us a partition of the paths into equiva-
lence classes. Replace the summary edge � � � with a
set of parallel edges, one for each equivalence class. Do
the same for all summary edges of � �

� and let � ��
� be the

resulting multigraph. We can view � ��
� also as a (refined)

Markov chain where the probability of the summary edges
is divided among the parallel edges that replaced it accord-
ing to the total probability of all paths in each equivalence
class. (We do not actually perform this transformation; it is
only for the purposes of the analysis.) The multigraph� ��

�

has the property that for every edge � � � (whether an or-
dinary, a summary, or a nesting edge) and every type � for
� there is a unique type � that is implied for � by � and the
edge. Note that, by construction, the graph / contains an
edge ��� �� � ��� ��; we will say that the edge � � � of
� ��

� is a projection of the edge ��� �� � ��� �� of /. (More
than one parallel summary edges of� ��

� from � to � may be
the projection of the same edge of /.) We can extend the
notion of projection to paths of /. Obviously� �

� and� ��
�

have the same scc’s (replacing an edge by a set of parallel
edges does not change the scc’s).

7

Lemma 7 Let0 be a scc of/ and let2 be the correspond-
ing scc of � ��

�. The following are equivalent.
1. For every node ��� �� of 0, every edge � � � of 2 is a
projection of some edge ��� ��� ��� �� of 0 into ��� ��.
2. Every finite path in2 is a projection of some path in 0.
3. No other scc of / corresponding to 2 is ancestor of 0.

The proof is omitted here; it is nontrivial but it is very simi-
lar to the proof of Lemma 5.10 of [6]. The characterization
of bottom scc’s of1 is given by the following Theorem.

Theorem 8 A scc 0 of / is a bottom scc of 1 if and only
if the following three conditions are satisfied.
1. 0 corresponds to a bottom scc 2 of� �

�.
2. No other scc of / corresponding to 2 is ancestor of 0.
3. For every subexpression �� � ����� of �, either all
nodes ��� �� of 0 have �� � � or there is a node ��� �� � 0
with �� � � or there is a summary edge of 0 whose label
set includes +.

Proof. Suppose that 0 is a bottom scc of 1 . Then 0
satisfies conditions 1 and 3 by Lemmas 5 and 6 respectively.
Suppose that it does not satisfy (2). Then from Lemma 7
there is a finite path � of2 that is not the projection of any
path in 0. Let ��� �� be any node of 0. A trajectory of� ��

�

starting at � contains with probability 1 the path � (in fact
the path occurs infinitely often in the trajectory). Such a
trajectory is not the projection of any path in 0. It follows
that ��� �� is not probable.

Conversely, suppose 0 satisfies the three conditions. We
show that 0 contains all probable pairs ��� �� whose first
component � is in2. From this it follows that 0 is the only
scc of 1 that corresponds to 2, and 0 is a bottom scc of
1 because any descendant scc must then also correspond to
2. To prove the above fact we show the following lemma.
The proof uses induction with a very involved case analysis.

Lemma 9 Suppose that 0 satisfies the three conditions of
Theorem 8. For every probable pair ��� �� with � � 2, the
following are true for each � � ��

 � �.
1. There is a node ��� ��� of 0 such that � and �� agree in the
first � coordinates.
2. There is a finite path 3��� �� �� of � ��

� starting at � such
that the type of almost all trajectories of the RMC from �

that do not exit �’s component, whose summary image has
prefix 3��� �� ��, agrees with � in the first � coordinates.

Summarizing, the qualitative model checking algorithm
for a RMC � and a LTL formula � works as follows.

1. Construct the graph of the summary chain� �
�.

2. Generate all consistent pairs ��� ��, � �� �
�, � a type.

3. Construct the graph/ on the consistent pairs.

4. Find the strongly connected components of /, and
construct the DAG of scc’s.

5. While there is a bottom scc that violates one of the
conditions of Theorem 8, remove it from/.

6. If the final graph 1 contains a node ��� ����� �� with
�� � � then reject, else accept.

By our analysis, the final graph is the subgraph 1 of /
induced by the probable pairs.

Step 1 (which depends only on the RMC �, not on the
formula �) can be done in polynomial space in � [11]. The
rest of the steps can be done in polynomial time in the size
of the graph / and the RSM �, both of which are poly-
nomial in ��� and exponential in ��� (more specifically, the
exponent only depends on the number of temporal operators
in �). If � is a 1-exit RMC, or Bd-RMC, or lr-RMC, then
Step 1 can be done in polynomial time in �. Thus:

Theorem 10 Given RMC � & LTL formula �, we can
check whether � satisfies � with probability 1 in PSPACE
in � & EXPTIME in �. If � is a 1-exit RMC or a Bd-RMC
or lr-RMC then the time complexity is polynomial in �.

4 Quantitative Model Checking

We are given a Recursive Markov Chain � and an a LTL
formula �. We are also given a rational number �, and we
want to determine whether the probability ����� that a tra-
jectory of � satisfies � is at least (or at most) �. As men-
tioned in Section 2, the probability ����� is in general ir-
rational and thus it cannot be computed explicitly. We will
construct a system of polynomial equations and inequalities
in a set of real variables, one of which stands for the desired
probability �����. The system will be constructed in such
a way that it has a unique solution. Then we will attach the
inequality ����� � � (or ����� � �) and invoke a proce-
dure for the existential theory of the reals to check whether
the resulting system is satisfiable.

First we set up the system (1a) � � � ��� of fix-
point equations for the RMC � which contains one vari-
able ������� for every vertex � and exit �� of �’s com-
ponent. Recall that we can compute in PSPACE in ���
the set �� � �� � � � ����� � �� of deficient ver-
tices. We add to (1a) the constraints (1b) � � �; (1c)
4� � � � ����������

������� for every vertex �; (1d)

4� � � for every vertex � in ��; and (1e) 4� � � for every
vertex � in����. Let (1) be the system of constraints (1a)-
(1e). From the Unique Fixpoint Theorem of RMC’s (Theo-
rem 9 of [11]), system (1) has a unique solution �����, and
this solution is ������� � �������� and 4� � �����.

Now, we carry out the algorithm for the qualitative model
checking. As a result we compute all probable pairs ��� ��.
For a deficient vertex � and a type �, let � ���� �� be the

8

probability that a trajectory - starting at � has type � con-
ditioned on the event that - does not exit �’s component.
We have a corresponding variable %��� �� (we only need to
include the probable pairs, since the others have probability
0). These variables satisfy several constraints:
(2a)
�

� %��� �� � � for all � � ��.
(2b) If � is not a call port, then %��� �� �

�
�	�� �

�
��	%��� ��,

where ����	 is the probability of transition �� � in the sum-
mary Markov chain� �

�, and the sum ranges over all proba-
ble pairs ��� �� such that1 contains an edge ��� ��� ��� ��.
(2c) If � is a call port, � � ��� ���, then %��� �� �
������

�
 %���� ��

�
�	�� �

�
��	5��	���%��� ��, where the

first sum ranges over all types � such that 1 contains an
edge ��� �� � ���� ��, and the second sum ranges over all
exits � � ��� ��� of the box � and types � such that 1 con-
tains an edge ��� �� � ��� �� and 5��	��� is the fraction of
the probability of ��� paths of the RMC for which the type
� at � implies backwards the type � at �.

These constraints are justified by the following lemma.

Lemma 11 Probabilities� ���� �� satisfy constraints 2a-2c.

The transition probabilities ����	 of� �
� are rational func-

tions of the probabilities captured by the variables ����� of
system (1). The quantities 5��	��� are in general irrational,
so we cannot compute them explicitly; however, we will
later present a system of constraints with a unique solution
that gives precisely these quantities. Suppose for now that
we have also determined the parameters 5��	���. Then the
constraints (2) form a linear system in the variables %��� ��.
It turns out that this system has a unique solution.

Lemma 12 The system (2) of linear equations in the vari-
ables %��� �� has a unique solution.

We will now construct a system of constraints that de-
termines uniquely the parameters 5��	���. Recall the aug-
mented Recursive State machine � that we constructed. We
add weights to its edges and convert it to a weighted RSM;
it will not necessarily be a RMC because the weights out
of a node may not sum to 1. The edges of � are of the
form ��� �� � ��� ��. If � contains the edge � � � then
we let the weight of ��� �� � ��� �� be the probability of
the edge � � �. The other cases are that � � ��� ��� and
� � ��� ���, or � � ��� ��� and � � ��� ���; in these cases
we give these edges weight 1.

Let � � ��� ���, � � ��� ��� be a call port and a return
port of a box �, and let . be a path in the RMC correspond-
ing to the summary edge � � � in the summary graph, i.e.
. is a path ��� �� � ��� ��� �

 ��� ��� � ��� ��, where
all the intermediate nodes include � in the context. For ev-
ery type � for the final vertex �, we can infer uniquely types
for the vertices along the path, and in particular a type �
for the initial vertex �. Thus, the augmented RSM � con-
tains for every type � a unique path . corresponding to

. which goes from a vertex ��� �� for some � (with empty
context) to ��� �� and that path . has the same weight as
the probability of the path .. The path . is composed of
an edge from ��� �� to an entry ���� ���� ��� of the box �,
then a path that eventually reaches an exit ���� ���� ��� of
the box � and finally an edge from the exit to ��� ��. Sup-
pose that we have at hand for each entry ���� � �� and exit
���� ��� of each component �� of the weighted RSM � the
sum 6���� ��� ��� ��� of the weights of all the paths from
the entry to the exit. Then we can use them to compute
the quantity ������ � 5��	��� which is the sum of the proba-
bilities of all the paths . corresponding to summary edges
� � � for which type � at � is mapped back to type � at �.
Namely, (3a) ������ � 5��	��� �

�
6���� ��� ��� ��� where

the summation ranges over all ��� �� such that � has edges
��� ��� ���� ���� ��� and ���� ���� ��� � ��� ��.

We introduce a variable 6��� �� ��� �� for every pair con-
sisting of a vertex ��� �� of � and an exit ���� �� of its com-
ponent, to represent the sum of the weights of all the paths
from ��� �� that exit at ���� ��. We will construct a set of fix-
point equations, whose solution will be the desired weights.
The fixpoint equations are similar to the system of equa-
tions for an RMC, given in Section 2. The only difference
now is that the weights on the edges out of a vertex may not
sum to 1. Let (3b) � � � ��� be this system of equations.
We add the constraints (3c): � � �. Finally we add the
following constraints (3d):

�
� 6��� �� ��� �� � ���� ��� for

every triple �� ��� � where � is a vertex of component � �

of the RMC �, �� is an exit of the same component and �
is a type. Note that ��� �� is a vertex of component �� and
���� �� is an exit of the component. The justification for
these constraints is the following. For every path . from �

to �� (with empty context) and every type � there is a unique
corresponding path in � to ���� ��, and this path starts at a
vertex ��� �� for some � and has weight equal to the proba-
bility of the path .. Summing over all such paths . gives
the constraint (3d).

We claim now that having fixed the � variables (from
constraints (1)), the system (3b-d) has a unique solution.
First, note that the intended solution � representing the
weights of the vertex-exit paths is the least fixed point so-
lution of the system (3b-c). This can be shown in the same
way as it is shown for Recursive Markov Chains. Namely,
if we start with � � � and apply repeatedly the operator
� then the vector will converge to the least fixpoint solu-
tion and this coincides with the desired vector of weights.
If we pick a fixpoint solution that is strictly greater in some
component 6��� �� ��� �� than the correct weights, then the
solution will violate a constraint (3d). We conclude that the
system (3b-d) has a unique solution. It follows then that
(3a) determine uniquely the parameters 5��	���.

To summarize, we have three sets of constraints
(1),(2),(3). The quantities � ���	 in constraints (2) (the tran-

9

sition probabilities of the summary chain) are ratios, so
we first rewrite (2) to clear the denominators so that they
become also polynomial equations. If we want to check
whether the probability �����, that a trajectory of � satis-
fies �, is at least a given threshold �, then we add the con-
straint (4)

�
%�������� �� � �, where the summation ranges

over all � with �� � �. Then we call a procedure for the
existential theory of the reals on the system (1-4). Similarly
we can determine if the probability is less than �. We can
also approximate the probability ����� within any number
� of bits of precision by doing a binary search using the
above procedure � times.

The size of the system of constraints is polynomial in
��� and exponential in ���. It follows that the complexity is
polynomial space in ��� and exponential in ���. For linear
RMCs, we can solve the constraints explicitly by solving a
series of linear systems of equations.

Theorem 13 Given RMC �, LTL formula � and rational
value �, we can determine whether the probability �����
that a trajectory of � satisfies � is � (or �) � in space
polynomial in � and exponential in �. If � is a lr-RMC,
then we can compute ����� exactly in time polynomial in
� and exponential in �.

5 Lower Bound

Theorem 14 The qualitative problem of determining
whether an RMC � satisfies an LTL formula � with proba-
bility 1 (i.e., whether ����� � �) is EXPTIME-hard (thus
EXPTIME-complete). Furthermore, this holds even if the
RMC is fixed and each component has 1 entry and 1 exit.

The theorem is similar to theorems in [3, 17] showing
that LTL model checking for Pushdown Systems and Basic
Process Algebra (equivalent to RSMs, resp. RSMs with 1
exit) is EXPTIME-hard. We show that the same holds in the
probabilistic case, and it holds even for a fixed RMC.

Acknowledgement: Research partially supported by NSF
Grant CCF-04-30946. Thanks to Amir Pnueli for asking us
about the special case of lr-RMCs.

References

[1] R. Alur, K. Etessami, and M. Yannakakis. Analysis of recur-
sive state machines. In Proc. of 13th Int. Conf. on Computer-
Aided Verification, pages 304–313, 2001.

[2] M. Benedikt, P. Godefroid, and T. Reps. Model check-
ing of unrestricted hierarchical state machines. In Proc. of
ICALP’01, volume 2076 of LNCS, pages 652–666, 2001.

[3] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis
of pushdown automata: Applications to model checking. In
CONCUR’97, pages 135–150, 1997.

[4] T. Brázdil, A. Kučera, and O. Stražovský. Decidability of
temporal properties of probabilistic pushdown automata. In
Proc. of 22nd STACS’05. Springer, 2005.

[5] J. Canny. Some algebraic and geometric computations in
PSPACE. In Prof. of 20th ACM STOC, pages 460–467, 1988.

[6] C. Courcoubetis and M. Yannakakis. The complexity of
probabilistic verification. J. of ACM, 42(4):857–907, 1995.

[7] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Effi-
cient algorithms for model checking pushdown systems. In
12th CAV, volume 1855, pages 232–247. Springer, 2000.

[8] J. Esparza, A. Kučera, and R. Mayr. Model checking proba-
bilistic pushdown automata. In Proc. of 19th LICS’04, 2004.

[9] J. Esparza, A. Kučera, and R. Mayr. Quantitative analysis
of probabilistic pushdown automata: expectations and vari-
ances. To appear in Proc. of 20th IEEE LICS, 2005.

[10] K. Etessami and M. Yannakakis. Recursive Markov Chains,
Stochastic Grammars, and Monotone Systems of Nonlin-
ear Equations. In Proc. of 22nd STACS’05. Springer, 2005.
(Tech. Report, U. Edinburgh, June 2004.)

[11] K. Etessami and M. Yannakakis. Algorithmic Verification
of Recursive Probabilistic State Machines. In Proc. 11th
Int. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’05), 2005.

[12] K. Etessami and M. Yannakakis. Recursive Markov Decision
Processes and Recursive Stochastic Games. To appear in
ICALP’05, 2005.

[13] M. Garey, R. Graham, and D. Johnson. Some NP-complete
geometric problems. In 8th ACM STOC, pages 10–22, 1976.

[14] T. E. Harris. The Theory of Branching Processes. Springer-
Verlag, 1963.

[15] M. Kwiatkowska. Model checking for probability and time:
from theory to practice. In Proc. 18th IEEE LICS, pages
351–360, 2003.

[16] C. Manning and H. Schütze. Foundations of Statistical Nat-
ural Language Processing. MIT Press, 1999.

[17] R. Mayr. Strict lower bounds for model checking BPA. In
Elec. Notes in Theor. Comp. Sci., 1998.

[18] A. Pnueli. The temporal logic of programs. In Proc. 18th
Symp. on Foundations of Comp. Sci., pages 46–57, 1977.

[19] A. Pnueli and L. D. Zuck. Probabilistic verification. Inf. and
Comp., 103(1):1–29, 1993.

[20] J. Renegar. On the computational complexity and geome-
try of the first-order theory of the reals. parts i,ii, iii. J. of
Symbolic Computation, pages 255–352, 1992.

[21] P. Tiwari. A problem that is easier to solve on the unit-cost
algebraic ram. Journal of Complexity, pages 393–397, 1992.

[22] M. Vardi. Automatic verification of probabilistic concurrent
finite-state programs. In Proc. of 26th IEEE FOCS, pages
327–338, 1985.

[23] M. Y. Vardi and P. Wolper. An automata-theoretic approach
to automatic program verification. In Proc. 1st Symp. on
Logic in Comp. Sci. (LICS), pages 322–331, 1986.

10

