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Abstract

A silent step in a dynamic system is a step that is considered unobservable and that
can be eliminated. We define a Markov chain with silent steps as a class of Markov chains
parameterized with a special real number τ . When τ goes to infinity silent steps become
immediate, i.e. timeless, and therefore unobservable. To facilitate the elimination of these
steps while preserving performance measures, we introduce a notion of lumping for the new
setting. To justify the lumping we first extend the standard notion of ordinary lumping
to the setting of discontinuous Markov chains, processes that can do infinitely many
transitions in finite time. Then, we give a direct connection between the two lumpings for
the case when τ is infinite. The results of this paper can serve as a correctness criterion
and a method for the elimination of silent (τ) steps in Markovian process algebras.

1 Introduction

Markov chains (see e.g. [12, 6]) have established themselves as very powerful, yet fairly simple,
models for performance analysis. There exists a well-developed and vast mathematical theory
to support these models. Efficient methods have been found to deal with Markov processes
with millions of states. They all facilitate performance evaluation using different schemes to
save storage space and enable faster calculations. However, although alleviated, the state
space explosion problem is not completely resolved and many real world problems still cannot
be feasibly solved.

One of the most important optimization techniques for the reduction of the complexity of
Markov processes is called lumping [18, 4]. Lumping is a method based on the aggregation of
states that exhibit the same behavior. It produces a smaller Markov process that retains the
same performance characteristics as the original one.

Over the past few years several stochastic process algebras have been developed in order to
allow for a compositional modeling of both qualitative and quantitative aspects of systems (for
an overview see [17, 3]). Although some of these algebras incorporate generally distributed
stochastic delays (e.g. [9, 2]), the most widely used are the ones that restrict to exponential
distributions (e.g. [14, 16]) due to the memoryless property. Typically, the employed model is
some kind of extension of Markov processes with action labels. When a system is modeled, all
action information is discarded and the system is reduced by lumping. Then, on the resulting
Markov process, analysis is performed by standard techniques.
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For the stochastic process algebra IMC (stands for Interactive Markov chain) [14], the
extension of Markov processes with actions is orthogonal, i.e. actions and stochastic delays
are not combined, but interleaved (see Fig. 1a). The elimination of action information from
the model is done together with its aggregation; all actions are first renamed into silent steps
and then the model is minimized using a suitably extended notion of weak bisimulation. This
bisimulation treats interaction between (exponentially) delayable transitions the same way as
ordinary lumpability does, but the interaction of delayable and silent steps is based on the
intuitive fact that silent steps are timeless and therefore always have priority over delayable
ones.
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Figure 1: An IMC, its corresponding Markov chain with silent steps and the induced Markov
chain

To give an example, consider the IMC depicted in Fig. 1a. If this model is considered
closed, i.e. if it does not interact with the environment, the action a can be renamed into
the silent step τ and, what we call a Markov chain with silent steps is obtained (Fig. 1b).
Now, assume that the process starts from state 1. The transition from state 1 to state 3
takes time distributed according to the exponential distribution of rate λ. However, as the
transition from state 1 to state 2 is determined by a silent step τ ; it does not take any
time, and so, due to the race-condition policy, it must be taken as soon as the process enters
state 1. Thus, the process in state 1 does not actually have a choice and always takes the
left transition, entering state 2. From state 2, there is only one possibility, to enter state 3
after an exponential delay of rate µ. The execution of the silent step cannot be observed and
one sees only the transition from state 2 to state 3. Therefore, according to the intuition, the
process in Fig. 1b is performance-equivalent to the one in Fig. 1c.
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Figure 2: Three equivalent Markov chains with silent steps

Next, observe the process in Fig. 2a. In state 1 this process exhibits classical non-
determinism, i.e. the probability of executing the left (right) transition is not determined.
However, if we observe the behavior of the states 2 and 3, we easily notice that it is the same.
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More precisely, no matter which transition is taken from state 1, after performing a silent
step and then delaying exponentially with rate λ, the process enters state 4. This suggests
that the process in Fig. 2a is equivalent to the ones in Fig. 2b and Fig. 2c.

The main goal of this paper is to give a mathematical underpinning for the elimination
of silent steps. We propose a new approach to reduction of Markov chains with silent steps.
We treat them as more general Markov chains and extend the notion of lumping to the new
setting. The lumping is shown to correspond to the above intuition. Moreover, staying in the
domain of stochastic processes, the performance properties of Markov chains with silent steps
are automatically defined and, therefore, we can speak of the correctness of the reductions.
The approach goes in two steps.

First we extend the standard Markov chain model by assuming that some transitions are
parameterized with a special (large) real number τ and call the notion a Markov chain with
fast transitions (Definition 4). Formalizing the idea that silent steps do not take any time, we
observe the parameterized process as τ tends to infinity, making therefore the parameterized
transitions immediate. The limit process may do infinitely many transitions in a finite amount
of time, i.e. may be discontinuous [8]. A Markov chain that can behave discontinuously we
call a Markov process. In standard literature this model is usually considered pathological
and we only use it to justify our results. We define a notion of ordinary lumping for Markov
processes (Definition 3) and, based on that, a new notion of lumping for Markov chains with
fast transitions, called τ -lumping (Definition 5). We justify the latter notion by showing that
the following diagram commutes:

M.c. with f.t. τ→∞ //

τ -lumping

²²

M.p.

ordinary
lumping

²²
τ -lumped

M.c. with f.t. τ→∞ // lumped
M.p.

In the second step, we treat a Markov chain with silent steps as a class of Markov chains
with fast transitions that have the same structure but different weights assigned to silent
steps (this is achieved by introducing a relation ∼). We define a notion of lumping, called
τ∼-lumping, directly for Markov chains with silent steps, and show that it is a proper lifting
of τ -lumping to equivalence classes. In other words, we show that τ∼-lumping induces a
τ -lumping such that the following diagram commutes:

M.c. with f.t.

induced
τ -lumping

²²

∼ M.c. with f.t.

induced
τ -lumping

²²
τ -lumped

M.c. with f.t. ∼ τ -lumped
M.c. with f.t.
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2 Preliminaries

All vectors are column vectors if not indicated otherwise. 1n denotes the vector of n 1’s. 0n×m

denotes the n×m zero matrix. In denotes the n×n identity matrix. When it is clear from the
context, we omit the n and m. We write A > 0 (resp. A ≥ 0) when all elements of a matrix
or a vector A are greater than (resp. greater than or equal to) zero. By diag (A1, . . . , An) we
denote a block matrix with blocks A1, . . . , An on the diagonal and 0’s elsewhere.

Partitioning is a central notion in the definition of lumping.

Definition 1 (Partitioning) Let S be a set. A set P = {C1, . . . , CN} is a partitioning of
S if S = C1 ∪ . . . ∪ CN , Ci 6= ∅ and Ci ∩ Cj = ∅ for i 6= j.

The partitionings P =
{
S

}
and P =

{{i} | i ∈ S
}

are called trivial.

With every partitioning P = {C1, . . . , CN} of S = {1, . . . , n} we associate the following
matrices. The matrix V ∈ Rn×N defined as

V [i, j] =
{

0, i 6∈ Cj

1, i ∈ Cj

is called the collector matrix for P. Its j-th column has 1’s for elements corresponding to
states in Cj and has zeroes otherwise. Note that V · 1 = 1. For the trivial partitionings, we
have V = 1 and V = I.

A matrix U ∈ RN×n such that U ≥ 0 and UV = IN×N is a distributor matrix for P. It
can be readily seen that U is actually any matrix of which the elements of the i-th row that
correspond to elements in Ci sum up to one while the other elements of the row are 0. For
the trivial partitioning P =

{
S

}
a distributor is a vector with elements that sum up to 1; for

the trivial partitioning P =
{{i} | i ∈ S

}
there exists only one distributor (I).

Example 1 Let S = {1, 2, 3} and P =
{{1, 2}, {3}}. Then V =

(
1 0
1 0
0 1

)
and U =

(
1
3

2
3

0
0 0 1

)
is

an example for a distributor matrix for P.

Let P1 = {C1, . . . , CN} be a partitioning of S and let P2 = {D1, . . . , DM} be a partitioning
of P1. The composition of P1 and P2 is a partitioning of S defined as:

P1 ◦ P2 = {L1, . . . , LM}, Li =
⋃

C∈Di

C.

Example 2 Let S = {1, . . . , 6} and let P1 =
{{1, 2}, {3, 4, 5}, {6}} and P2 ={{{1, 2}},

{{3, 4, 5}, {6}}
}

. Then P1 ◦ P2 =
{{1, 2}, {3, 4, 5, 6}}.

Note that VP1◦P2 = VP1VP2 .

3 Lumping Markov Processes

In this section we define Markov processes and a notion of ordinary lumping for them. Since
we drop the usual requirement that a Markov process is continuous, we generalize the existing
theory of lumpability [20].
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3.1 Markov Processes

A Markov process is a finite-state continuous-time stochastic process that is homogeneous
and satisfies the Markov property [12, 6]. It is known that a Markov process with an ordered
state space is completely determined by a transition matrix (called its transition matrix) and
a vector that gives the starting probabilities of the process for each state (called the initial
probability vector).

Definition 2 (Transition matrix) A matrix P (t) ∈ Rn×n, (t > 0) is called a transition
matrix iff

1. P (t) ≥ 0,

2. P (t) · 1 = 1 and

3. P (t + s) = P (t) · P (s) for all s > 0.

If limt→0 P (t) is equal to the identity matrix, then P (t) is considered continuous, otherwise
it is discontinuous. Note that the limit always exists [12].

Example 3 Let 0 ≤ p ≤ 1 and λ ≥ 0. Then

P (t) =




(1−p) · e−pλt p · e−pλt 1−e−pλt

(1−p) · e−pλt p · e−pλt 1−e−pλt

0 0 1




is a transition matrix. It is discontinuous because

lim
t→0

P (t) =




1−p p 0
1−p p 0
0 0 1


 6= I.

The following theorem gives a convenient characterization of a transition matrix that does
not depend on t.

Theorem 1 Let (Π, Q) ∈ Rn×n × Rn×n be such that:

1. Π ≥ 0, Π · 1 = 1, Π2 = Π,

2. ΠQ = QΠ = Q,

3. Q · 1 = 0 and

4. Q + cΠ ≥ 0 for some c ≥ 0.

Then P (t) = ΠeQt is a transition matrix. Moreover, the converse also holds: For any transition
matrix P (t) there exists a unique pair (Π, Q) that satisfies Conditions 1–4 and such that
P (t) = ΠeQt.

Proof (⇒) Assume that (Π, Q) satisfies 1–4 and let P (t) = ΠeQt. We check the three
conditions of Definition 2.
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1. Let c ≥ 0 be such that Q + cΠ ≥ 0. Note that matrices cΠ and Q + cΠ commute. This
implies that

ΠeQt = Πe−cΠt+(Q+cΠ)t = Πe−cΠte(Q+cΠ)t.

Clearly, e(Q+cΠ)t ≥ 0 so, to prove that P (t) ≥ 0, it remains to show that Πe−cΠt ≥ 0.

From Π2 = Π it easily follows that Πn = Π for all n ≥ 1. Then,

Πe−cΠt = Π ·
∞∑

n=0

(−ct)nΠn

n!

= Π · (I +
∞∑

n=1

(−ct)nΠn

n!
)

= Π · (I +
∞∑

n=1

(−ct)nΠ
n!

)

= Π · (I + Π · (e−ct − 1))
= Π · e−ct ≥ 0.

2. For the second condition, we have

P (t) · 1 = ΠeQt · 1

= Π ·
∞∑

n=0

Qntn

n!
· 1

= Π · (I +
∞∑

n=1

Qntn

n!
) · 1

= Π · (1 +
∞∑

n=1

(Qn · 1)tn

n!
)

= Π · (1 + 0)
= 1.

3. From ΠQ = QΠ it follows that ΠQn = QnΠ for all n ≥ 0. Using this, we derive

ΠeQt = Π ·
∞∑

n=0

Qntn

n!

=
∞∑

n=0

Qntn

n!
·Π

= eQtΠ.

Thus,

P (t) · P (s) = ΠeQtΠeQs

= Π2eQteQs

= ΠeQ(t+s)

= P (t + s).
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(⇐) For the proof of the opposite direction suppose P (t) is a transition matrix. Define

Π = lim
t→0

P (t) and Q = lim
h→0

P (h)−Π
h

.

Now, it is not hard to check that Conditions 1–4 hold. See [8, 15] for the proof that the above
limits exist and for the uniqueness proof. ¥

Note that, if P (t) = Π · eQt is continuous, then it follows that Π = I and that Q is a
generator matrix, i.e. a square matrix of which the non-diagonal elements are non-negative
and each diagonal element is the additive inverse of the sum of the non-diagonal elements of
the same row.

Our results do not depend on the initial probability vector nor on the exact nature of states.
So, when we speak of Markov processes, we actually mean the class of processes with the same
transition matrix but with possibly different sets of states and initial probability vectors. This
allows us to identify a Markov process that has the transition matrix P (t) = Π · eQt ∈ Rn×n

with the pair (Π, Q) ∈ Rn×n × Rn×n and to refer to the indices {1, . . . , n} as its states.
A Markov process is called (dis)continuous if its transition matrix is (dis)continuous. In
standard literature, it is always assumed that Π = I [12, 6]. We call continuous Markov
processes Markov chains.

We now explain the behavior of a Markov process (Π, Q) ∈ Rn×n×Rn×n. Note that, after
a suitable renumbering of the states, Π gets the following form [8]:

Π =




Π1 0 . . . 0 0
0 Π2 . . . 0 0
...

...
. . .

...
...

0 0 . . . ΠM 0
Π1 Π2 . . . ΠM 0




where for all 1 ≤ i ≤ M , Πi = 1 ·µi and Π = δi ·µi for a row vector µi > 0 such that µi ·1 = 1
and a vector δi ≥ 0 such that

∑M
i=1 δi = 1. This numbering determines a partitioning

E = {E1, . . . , EM , T} of S = {1, . . . , n} (called the ergodic partitioning) into ergodic classes,
E1, . . . , EM , determined by Π1, . . . ,ΠM , and into a class of transient states, T , determined
by Π1, . . . ,ΠM .

In an ergodic class a Markov process spends a non-zero amount of time switching rapidly
among its elements. This time is exponentially distributed and determined by the matrix Q.
If the ergodic class contains one state only, then Q has the form of a generator in that state,
and Q[i, j] for i 6= j is interpreted as the rate from i to j. For every ergodic class Ei, the
vector µi is the vector of ergodic probabilities and, for each state in Ei, it holds the probability
that the process is in that state. If a Markov process is continuous, i.e. if it is a Markov chain,
then every ergodic class Ei must contain exactly one state and therefore µi =

(
1
)
.

In a transient state the process spends no time (with probability one) and goes immediately
to an ergodic class (and stays trapped there). The vector δi holds the trapping probabilities
from transient states to the ergodic class Ei and δi[j] > 0 iff state j can be trapped in some
ergodic class Ei. A Markov chain cannot have transient states.

Example 4 a. For 0 < p < 1, λ > 0, the pair (Π, Q) defined as:

Π =




1−p p 0
1−p p 0
0 0 1


 Q =



−p(1−p)λ −p2λ pλ
−p(1−p)λ −p2λ pλ

0 0 0



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is a (discontinuous) Markov process. Its has two ergodic classes E1 = {1, 2} and E2 =
{3} and no transient states. The corresponding ergodic probability vectors are µ1 =(
1−p p

)
and µ2 =

(
1
)
. In the first two states the process exhibits non-continuous

behavior. It constantly switches among those states and it is found in the first one with
probability 1−p and in the second one with probability p. We will see later that the
amount of time the process spends switching is exponentially distributed with the rate
pλ.

b. Let, for 0 < p < 1 and λ, µ, ρ > 0, (Π, Q) be defined as:

Π =




0 p 1−p 0
0 1 0 0
0 0 1 0
0 0 0 1


 and

Q =




0 −pλ −(1−p)µ pλ + (1−p)µ
0 −λ 0 λ
0 0 −µ µ
ρ 0 0 −ρ


 .

The ergodic partitioning is E1 = {2}, E2 = {3}, E3 = {4} and T = {1} (note that
the numbering does not make the ergodic partitioning explicit since the transient state
precedes the ergodic ones). We have µi =

(
1
)

for all i = 1, 2, 3 and δ1 =
(
p
)
, δ2 =

(
1−p

)
and δ3 =

(
0
)
. If the process is in the state 1, then with probability p it is trapped in the

state 2, the only state in the ergodic class E1, and with probability 1−p it is trapped
in the state 3. It cannot be trapped in the state 4.

3.2 Ordinary Lumping

We now define a notion of lumping for Markov processes.

Definition 3 (Ordinary lumping) A partitioning P of {1, . . . , n} is called an ordinary
lumping of a Markov process (Π, Q) ∈ Rn×n × Rn×n iff

V UΠV = ΠV and V UQV = QV

where V and U are respectively the collector and a distributor matrix for P.

The lumping condition actually says that the rows of ΠV (resp. QV ) that correspond
to the states that belong to the same class must be equal [18]. It does not depend on the
particular choice of the non-zero elements of U . To prove this, suppose that V UΠV = ΠV and
that there exists U ′ ≥ 0 such that U ′V = I. Then V U ′ΠV = V U ′V UΠV = V UΠV = ΠV .
Similarly, V U ′QV = QV .

Theorem 2 Let (Π, Q) be a Markov process and let P = {C1, . . . , CN} be an ordinary
lumping of (Π, Q). Define

Π̂ = UΠV and Q̂ = UQV.

Then (Π̂, Q̂) ∈ RN×N × RN×N is a Markov process.
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Proof We show that the four conditions of Theorem 1 hold.

1. Since U ≥ 0, V ≥ 0 and Π ≥ 0, we have Π̂ = UΠV ≥ 0. Also,

Π̂ · 1 = UΠV · 1
= UΠ · 1
= U · 1
= 1

and, since V UΠV = ΠV ,

Π̂2 = UΠV UΠV

= UΠΠV

= UΠV

= Π̂.

2. For the second condition we have

Π̂Q̂ = UΠV UQV

= UΠQV

= UQV

= Q̂

and
Q̂Π̂ = UQV UΠV

= UQΠV

= UQV

= Q̂.

3. We calculate,

Q̂ · 1 = UQV · 1
= UQ · 1
= U · 0
= 0.

4. Let c be such that Q + cΠ ≥ 0. Then

Q̂ + cΠ̂ = UQV + cUΠV = U(Q + cΠ)V ≥ 0. ¥

The definition of (Π̂, Q̂) does not depend on a particular distributor matrix U . To show
this, let U ′ be another distributor matrix for P. Then U ′ΠV = U ′V UΠV = UΠV . Similarly,
U ′QV = UQV .

If P is an ordinary lumping of (Π, Q) and Π̂ and Q̂ are defined as in the preceding theorem,
then we say that (Π, Q) lumps to (Π̂, Q̂) (with respect to P). We write (Π, Q) PÃ (Π̂, Q̂) when
P is an ordinary lumping of (Π, Q) and (Π, Q) lumps to (Π̂, Q̂) with respect to P.

Note that, if (Π, Q) PÃ (Π̂, Q̂) and (Π, Q) is a Markov chain, then Π̂ = UΠV = UIV = I
and by Theorem 1, Q̂ is a generator matrix. In this case, our notion coincides with the known
definition of ordinary lumping for Markov chains proposed in [20].
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Example 5 a. Let (Π, Q) be the Markov process from Example 4a. Then P =
{{1, 2}, {3}}

is an ordinary lumping and the lumped process (Π̂, Q̂) is defined by:

Π̂ =
(

1 0
0 1

)
and Q̂ =

(−pλ pλ
0 0

)
.

Note that, in this case, the lumped process is a Markov chain. This example also shows
how a whole ergodic class can constitute a lumping class. It is not hard to show that
an ergodic class is always a correct lumping class.

b. Let (Π, Q) be the Markov process from Example 4b. If λ 6= µ, by checking the lumping
condition for all possible partitionings, we conclude that this Markov process does not
have a non-trivial lumping. The states 2 and 3 cannot be joined in a class because they
have different rates leading to the state 4. The state 1 cannot be joined together with
the state 2 because 2 cannot reach the state 3 whereas the state 1 can. Similarly, 1
cannot be joined together with the state 3.

For λ = µ however, the partitioning P =
{{1}, {2, 3}, {4}} is an ordinary lumping and,

with respect to it, (Π, Q) lumps to (Π̂, Q̂) defined as:

Π̂ =




0 1 0
0 1 0
0 0 1


 and Q̂ =




0 −λ λ
0 −λ λ
ρ 0 −ρ


 .

If λ = µ, also the partitioning P =
{{1, 2, 3}, {4}} is an ordinary lumping. With respect

to this partitioning (Π, Q) lumps to (Π̂, Q̂) defined as:

Π̂ =
(

1 0
0 1

)
and Q̂ =

(−λ λ
ρ −ρ

)
,

which is a Markov chain.

The following theorem reflects the conditions of Definition 3 to the corresponding transi-
tion matrix.

Theorem 3 Let (Π, Q) be a Markov process and let P (t) = ΠeQt (t > 0), be its transition
matrix. Let P be an ordinary lumping of (Π, Q). Then

V UP (t)V = P (t)V.

Proof It is not hard to show (e.g. by induction on n) that ΠQn = Qn and V UQnV = QnV
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for all n ≥ 1. Using this,

V UP (t)V = V UΠeQtV

= V UΠ
∞∑

n=0

Qntn

n!
V

= V UΠ

(
I +

∞∑

n=1

Qntn

n!

)
V

= V UΠV +
∞∑

n=1

V UΠQnV tn

n!

= ΠV +
∞∑

n=1

V UQnV tn

n!

= ΠV +
∞∑

n=1

QnV tn

n!

= ΠV +
∞∑

n=1

ΠQnV tn

n!

= Π

(
I +

∞∑

n=1

Qntn

n!

)
V

= Π
∞∑

n=0

Qntn

n!
V

= ΠeQtV = P (t)V. ¥

The following theorem shows that the transition matrix of the lumped process can also
be obtained directly from the transition matrix of the original process.

Theorem 4 Let (Π, Q) PÃ(Π̂, Q̂). Let P (t) = ΠeQt and P̂ (t) = Π̂eQ̂t (t > 0) be the transition
matrices of (Π, Q) and (Π̂, Q̂) respectively. Then

P̂ (t) = UP (t)V.

Proof By induction, it is not hard to prove (UQV )n = UQnV for all n ≥ 0. Using this and
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that V UQnV = QnV for all n ≥ 1, we have the following derivation:

P̂ (t) = Π̂eQ̂t

= UΠV eUQV t

= UΠV
∞∑

n=0

(UQV )ntn

n!

= UΠV
∞∑

n=0

UQnV tn

n!

= UΠ
∞∑

n=0

V UQnV tn

n!

= UΠ
∞∑

n=0

QnV tn

n!

= UΠ
( ∞∑

n=0

Qntn

n!
)
V

= UΠeQtV

= UP (t)V. ¥

We finish this section by giving some relational properties of ordinary lumping. The
relation ’lumps to’ is clearly reflexive (set U = V = I). We show that it is also transitive.

Theorem 5 (Transitivity of ordinary lumping) Suppose (Π, Q) P1Ã (Π̂, Q̂) and (Π̂, Q̂) P2Ã
(Π̌, Q̌). Then (Π, Q) P1◦P2Ã (Π̌, Q̌).

Proof Let Vi and Ui be respectively the collector and a distributor matrix associated with
Pi, i ∈ {1, 2}. Let U = U2U1 and V = V1V2. Recall that V and U are the collector and

a distributor for P1 ◦ P2. From (Π, Q) P1Ã (Π̂, Q̂) we have V1U1ΠV1 = ΠV1 and Π̂ = U1ΠV1.

From (Π̂, Q̂) P2Ã (Π̌, Q̌), we have V2U2Π̂V2 = Π̂V2 and Π̌ = U2Π̂V2. Then,

V UΠV = V1V2U2U1ΠV1V2

= V1V2U2Π̂V2

= V1Π̂V2

= V1U1ΠV1V2

= ΠV1V2

= ΠV

and

Π̌ = U2Π̂V2

= U2U1ΠV1V2

= UΠV.

Similarly, V UQV = QV and Q̌ = UQV . ¥
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4 Lumping Markov Chains with Fast Transitions

In this section we introduce an extension to Markov chains by letting them perform steps
of (drastically) different scales. In the limit these processes become Markov processes. We
define a notion of lumping for the new model.

4.1 Markov Chains with Fast Transitions

A Markov chain with fast transitions is defined as a pair of generator matrices; the first matrix
represents the normal (slow) transitions, while the second matrix represents the (speed of)
fast transitions.

Definition 4 (Markov chain with fast transitions) Let Qλ and Qτ be generator matri-
ces. The Markov chain with fast transitions determined by Qλ and Qτ , denoted (Qλ, Qτ ), is a
function that assigns to each τ > 0 the Markov chain (I, Qλ + τQτ ).

We picture a Markov chain with fast transitions (Qλ, Qτ ) by the usual visual representation
of the generator matrix Qλ + τQτ (see Fig. 3).

If Q is a generator matrix, then Π = limt→∞ eQt is called the ergodic projection of Q. It
is proven in [12] that the limit always exists; moreover it is known (see [1] and the references
therein) that Π is actually the unique matrix such that Π ≥ 0, Π · 1 = 0, Π2 = Π, ΠQ =
QΠ = 0 and rank(Π) + rank(Q) = n. The following theorem shows that, when τ → ∞,
a Markov chain with fast transitions becomes a Markov process and that, in this case, the
behavior of the Markov chain with fast transitions depends only on the ergodic projection of
the matrix that models the fast transitions and not on the matrix itself.

Theorem 6 Let Pτ (t) = e(Qλ+τQτ )t. Then

lim
τ→∞Pτ (t) = ΠeQt (t > 0)

where Π = limt→∞ eQτ t is the ergodic projection of Qτ and Q = ΠQλΠ. In addition, (Π, Q)
satisfies Conditions 1–4 of Theorem 1.

Proof See [5] for the first proof, or [19] for a proof written in more modern terms. See [8]
for the proof that convergence is also uniform. ¥

When (Π, Q) is the limit of (Qλ, Qτ ) we write (Qλ, Qτ ) →∞ (Π, Q). In this situation, we
also define the ergodic partitioning of (Qλ, Qτ ) to be the ergodic partitioning of (Π, Q).

The ergodic partitioning of (Qλ, Qτ ) can also be obtained differently. We write i → j if
Qτ [i, j] > 0, i.e. if there is a direct fast transition from i to j. Let ³ denote the reflexive-
transitive closure of →. If i ³ j we say that j is reachable from i. If i ³ j and j ³ i we say
that i and j communicate and write i ³́ j. Now, it can be shown (see [12]) that every ergodic
class is actually a closed class of communicating states, closed meaning that for all i inside
the class there does not exist j outside the class such that i → j.

Example 6 a. Consider a Markov chain with fast transitions (Qλ, Qτ ) depicted in Fig. 3a.
It is defined with

Qλ =



−λ 0 λ
0 −µ µ
0 0 0


 and Qτ =



−a a 0
0 0 0
0 0 0


 .

13
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Figure 3: Markov chains with fast transitions from Example 6

The transition from state 1 to state 2 is fast and has the speed a. The other two
transitions are normal.

The limit of (Qλ, Qτ ) is obtained as follows:

Π = lim
t→∞ eQτ t =




0 1 0
0 1 0
0 0 1


 and

Q = ΠQλΠ =




0 −µ µ
0 −µ µ
0 0 0


 .

The ergodic partitioning is E1 = {2}, E2 = {3} and T = {1}.
b. Consider the Markov chain with fast transitions depicted in Fig. 3b. The limit of this

Markov chain with fast transitions is the Markov process from Example 4a (for p = a
a+b).

c. The limit of the Markov chain with fast transitions in Fig. 3c is the Markov process of
Example 4b (for p = a

a+b and λ = µ).

4.2 τ-lumping

We now define a special notion of lumping for Markov chains with fast transitions introduced
in the previous section. The notion is based on the notion of ordinary lumping for Markov
processes: a partitioning is a lumping of a Markov chain with fast transitions if it is an
ordinary lumping of its limit.

Definition 5 (τ -lumping) A partitioning P of {1, . . . , n} is called a τ -lumping of a Markov
chain with fast transitions (Qλ, Qτ ) ∈ Rn×n×Rn×n if it is an ordinary lumping of the Markov
process (Π, Q) where (Qλ, Qτ ) →∞ (Π, Q).

As for Markov processes, we give a definition of the lumped process by multiplying Qλ and
Qτ with the collector matrix and a distributor matrix. Since ordinary lumping for Markov
processes is closed under Markov chains this technique gives a Markov chain with fast transi-
tions as a result. However, since the lumping condition does not hold for Qλ and Qτ , but only
for Π and Q, the definition of the lumped process may depend on the choice for a distributor.
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We define a special distributor and show that it is correct in the sense that it gives a lumped
process of which the limit is the lumped version of the limit of the original Markov chain with
fast transitions.

Definition 6 Let P = {C1 . . . , CN} be a τ -lumping of a Markov chain with fast transitions
(Qλ, Qτ ) and let Π = limt→∞ eQτ t. Define W ∈ RN×n as

W [k, i] =





0, i 6∈ Ck

Π[i,i]P
j∈Ck

Π[j,j]
, i ∈ Ck,

∑
j∈Ck

Π[j, j] > 0

1

|Ck|
, i ∈ Ck,

∑
j∈Ck

Π[j, j] = 0

for 1 ≤ k ≤ N . Define Q̂λ, Q̂τ ∈ RN×N as

Q̂λ = WQλV and Q̂τ = WQτV.

We say that (Qλ, Qτ ) τ -lumps to (Q̂λ, Q̂τ ) (with respect to P).

Let us explain the form of W . We consider it as a matrix that gives weights to the elements
of Qλ and Qτ . The weights are normalized to fit the form of a distributor. States that belong
to ergodic classes are identified by the fact that their diagonal elements in Π are greater than
zero. The transient states have diagonal elements in Π equal to zero. An exponential rate
that goes out of a state in an ergodic class is weighted according to its ergodic probability.
The transient states do not influence the ergodic probabilities, so transient states that are
lumped together with states from ergodic classes are assigned zero weight. We have complete
freedom when lumping transient states with other transient states because they play no role
when τ goes to infinity. We choose to assign them equal weights.

Example 7 a. Consider the Markov chain with fast transitions depicted in Fig. 3a. We
show that

{{1, 2}, {3}} is its τ -lumping and that the process τ -lumps to the one in
Fig. 4a. We obtain

V =




1 0
1 0
0 1


 and W =

(
0 1 0
0 0 1

)
.

The conditions for τ -lumping hold:

V WΠQλΠV =



−µ µ
−µ µ
0 0


 = ΠQλΠV

and V WΠV =




1 0
1 0
0 1


 = ΠV.

The lumped process is defined by the following two matrices and is indeed depicted in
Fig. 4a:

Q̂λ = WQλV =
(−µ µ

0 0

)
, Q̂τ = WQτV =

(
0 0
0 0

)
.
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This example illustrates how, in transient states, fast transitions have priority over slow
transitions.

b. Consider the Markov chain with fast transitions depicted in Fig. 3b. It is easily checked
that

{{1, 2}, {3}} is a τ -lumping of this Markov chain with fast transitions. We obtain

W =
(

b
a+b

a
a+b 0

0 0 1

)
, Q̂λ =

(− a λ
a+b

a λ
a+b

0 0

)
, Q̂τ = 0.

So, the process τ -lumps to the one in Fig. 4b.

This example shows that when two ergodic states with different slow transition rates
are lumped together, the resulting state is ergodic and it can perform the same slow
transition but with an adapted rate. The example also shows that the Markov chain
with fast transitions of Fig. 3b spends an exponentially distributed amount of time with
rate a λ

a+b switching between the state 1 and the state 2.

c. Example 5b shows that for the Markov chain with fast transitions depicted in Fig. 3c,
the partitionings P =

{{1}, {2, 3}, {4}} and P =
{{1, 2, 3}, {4}} are τ -lumpings. For

the first partitioning we have

W =




1 0 0 0
0 1

2
1
2 0

0 0 0 1


 , Q̂λ =




0 0 0
0 −λ λ
ρ 0 −ρ


 ,

Q̂τ =



−a−b a+b 0

0 0 0
0 0 0


 .

For the second partitioning we obtain

W =
(

0 1
2

1
2 0

0 0 0 1

)
, Q̂λ =

(−λ λ
ρ −ρ

)
, Q̂τ = 0.

The two lumped Markov chains with fast transitions are depicted in Fig. 4c and Fig. 4d
respectively.

This example shows that τ -lumping need not eliminate all silent steps (Fig. 4c). It also
shows how transient states can be lumped with ergodic states, resulting in an ergodic
state (Fig. 4d).

The following example shows some Markov chains with fast transitions that are minimal
in the sense that they only admit the trivial τ -lumpings.

Example 8 a. Consider the Markov chain with fast transitions in Fig. 5a. From Exam-
ple 5b it directly follows that, for λ 6= µ, this Markov chain with fast transitions does
not have a non-trivial lumping.

b. The Markov chain with fast transitions in Fig. 5b also has only the trivial lumpings
(unless λ = µ and then the states 3 and 4 can form a lumping class).
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Figure 4: τ -lumped Markov chains with fast transitions – Example 7
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Figure 5: Markov chains with fast transitions without non-trivial τ -lumpings – Example 8

c. The Markov chain with fast transitions in Fig. 5c has only the trivial lumpings if λ 6= µ
and b 6= c. If λ = µ then the states 3 and 4 can form a lumping class. If b = c then the
states 1 and 2 constitute a lumping class.

Definition 6 induces the following diagram:

(Qλ, Qτ ) τ→∞ //

τ -lumping

²²

(Π, Q)

ordinary
lumping

²²
(Q̂λ, Q̂τ ) (Π̂, Q̂)

.

For the definition to be sound, we have to show that the diagram can be closed, i.e. that

(Q̂λ, Q̂τ ) τ→∞ // (Π̂, Q̂) .

We first show some properties of the matrix W . For that we need a more refined numbering
of states. The required renumbering is based on the following lemma. The lemma expresses
an important connection between the ergodic partitioning and the lumping partitioning. If
two lumping classes contain states from the same ergodic class, then whenever one of the
lumping classes contains states from another ergodic class, the other must also contain states
from that ergodic class.
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Lemma 1 Let (Qλ, Qτ ) be a Markov chain with fast transitions and let E = {E1, . . . , EM , T}
be its ergodic partitioning. Let P = {C1, . . . , CN} be a τ -lumping of (Qλ, Qτ ). Then, for all
1 ≤ i, j ≤ M and 1 ≤ k, ` ≤ N , if Ei∩Ck 6= ∅, Ei∩C` 6= ∅ and Ej ∩Ck 6= ∅, then Ej ∩C` 6= ∅.

Proof Let Π be the ergodic projection of Qτ . Let the numbering be such that makes the
ergodic partitioning explicit and that, in each ergodic class, states in a lumping class with
a lower index precede states in a lumping class with a higher index. Then, Πi is a square
matrix of the following form:

Πi = 1 · µi = 1 · (µ(1)
i . . . µ

(N)
i )

where, for some 1 ≤ k ≤ N , µ
(k)
i is the restriction of the vector µi to the elements that belong

in Ck. Note that it can be the empty vector.
Let V be the collector matrix associated with P; then

V =




V1
...

VM

. . .


 and Vi = diag

(
1|Ei∩C1|, . . . ,1|Ei∩CN |

)
, 1 ≤ i ≤ M

(transient states are not important for this lemma).
Define, for every 1 ≤ i ≤ M , a row vector σi as:

σi[k] =

{
µ

(k)
i · 1, Ei ∩ Ck 6= ∅
0, Ei ∩ Ck = ∅

for 1 ≤ k ≤ n. Note that σi[k] > 0 iff Ei ∩ Ck 6= ∅. Then

ΠV =




Π1V1 0
...

...
ΠMVM 0

. . .


 and ΠiVi = 1 · σi, 1 ≤ i ≤ M.

Suppose now Ei ∩ Ck 6= ∅, Ei ∩ C` 6= ∅ and Ej ∩ Ck 6= ∅ for some 1 ≤ i, j ≤ M and
1 ≤ k, ` ≤ N . This implies that σi[k] > 0, σi[`] > 0 and σj [k] > 0. By the lumping condition
all rows of ΠiVi and ΠjVj that correspond to the class Ck must be equal. Since both ΠiVi

and ΠjVj , are matrices that consist of equal rows, we have that σi[`] = σi[k] = σj [k] = σj [`].
Therefore, σj [`] > 0. We conclude that Ej ∩ C` 6= ∅. ¥

Let P = {C1, . . . , CN} be a lumping and let E = {E1, . . . , EM , T} be the ergodic partition-
ing. Let C1, . . . , CL contain states from ergodic classes (and possibly some transient states
too) and let CL+1, . . . , CN consist only of transient states. By Lemma 1 we can rearrange
C1, . . . , CN and E1, . . . , EM and divide them into S blocks as follows. Let Ei1, . . . , Eiei and
Ci1, . . . , Cici (1 ≤ i ≤ S) denote the ergodic and lumping classes such that, for all 1 ≤ j ≤ ei,
1 ≤ k ≤ ci, Eij ∩ Cik 6= ∅, and that Eij has no common elements with other partitioning
classes. Note that L =

∑S
i=1 ci. We then renumber states such that those that belong to an

ergodic class with a lower index precede those that belong to an ergodic class with a higher
index (assuming the lexicographic order). We also renumber transient states to divide them
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into those that are lumped together with some states from ergodic classes and those that are
lumped only with other transient states.

We give an example of such renumbering.

Example 9 Consider the Markov chain with fast transitions depicted in Fig. 6a. Its ergodic
partitioning is E = {E1, E2, E3, T} where E1 = {2, 5}, E2 = {6, 8}, E3 = {4, 7} and T = {1, 3}
(note that the ergodic classes can also be numbered differently). Let P = {C1, C2, C3, C4}
where C1 = {1}, C2 = {2, 4}, C3 = {5, 7} and C4 = {3, 6, 8}. It is directly checked that P is
a τ -lumping. Note that the ergodic classes E1 and E3 share states from the lumping classes
C2 and C3 and that E2 shares states only with C4. So, L = 3 and S = 2. Note that the
transient state 3 lumps together with the ergodic states 6 and 8, and that the transient state
1 lumps alone. We renumber ergodic and lumping classes as E1 7→ E11, E3 7→ E12, C2 7→ C11,
C3 7→ C12, E2 7→ E21, C4 7→ C21 and C1 7→ C3. Then, we renumber states as 2 7→ 1, 5 7→ 2,
4 7→ 3, 7 7→ 4, 6 7→ 5, 8 7→ 6, 3 7→ 7, and 1 7→ 8. The new Markov chain with fast transitions
is depicted in 6b.
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Figure 6: Markov chain with fast transitions before and after the renumbering of states –
Example 9

The effect of the renumbering is that the matrices Π, V and W get the following forms:

Π =




Π1 0 . . . 0 0 0
0 Π2 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . ΠS 0 0
Π1 Π2 . . . ΠS 0 0
Π̃1 Π̃2 . . . Π̃S 0 0




Πi = diag (Πi1, . . . ,Πiei) Πij = 1|Eij | · µij

Πi =
(
Πi1 . . . Πiei

)
Πij = δij · µij

Π̃i =
(
Π̃i1 . . . Π̃iei

)
Π̃ij = δ̃ij · µij ,

where the matrices Πi and Π̃i respectively represent the transient states that are lumped
together with ergodic classes and the ones that are lumped only with other transient states;
the vectors δij and δ̃ij are the corresponding restrictions of the vector δij .
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The collector matrix V associated with P now has the following form:

V =




V1 0 . . . 0 0
0 V2 . . . 0 0
...

...
. . .

...
...

0 0 . . . VS 0
V 1 V 2 . . . V S 0
0 0 . . . 0 Ṽ




Vi =




Vi1
...

Viei




Vij = diag
(
1|Ei1∩Ci1|, . . . ,1|Eiei

∩Cici
|
)

V i = diag
(
1|T∩Ci1|, . . . ,1|T∩Cici

|
)

Ṽ = diag
(
1|T∩CL+1|, . . . ,1|T∩CN |) .

Let µ
(k)
ij denote the restriction of µij to the elements of Cik. Then

ΠiVi =




Πi1Vi1
...

ΠieiViei


 =




1|Ei1| ·
(
µ

(1)
i1 · 1 . . . µ

(ci)
i1 · 1

)

...
1|Eiei

| ·
(
µ

(1)
iei
· 1 . . . µ

(ci)
iei

· 1
)


 .

By the lumpability condition, rows of ΠiVi that correspond to the same partitioning class are
equal. This implies that

µ
(`)
ij · 1 = µ

(`)
ik · 1,

for all 1 ≤ j, k ≤ ei, 1 ≤ ` ≤ ci. Define a row vector ρi as

ρi[`] = µ
(`)
ij · 1

(for any 1 ≤ j ≤ ei). Then

µijVij = ρi, for any 1 ≤ j ≤ ei, and ΠiVi = 1 · ρi.

The matrix W of Definition 6 has the following form:

W =




W1 0 . . . 0 0 0
0 W2 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . WS 0 0
0 0 . . . 0 0 W̃




Wi =
(
Wi1 . . . Wiei

)

W̃ = diag (w̃L+1, . . . , w̃N )

where

Wij = diag

(
µ

(1)
ij∑ei

k=1 µ
(1)
ik · 1

, . . . ,
µ

(ci)
ij∑ei

k=1 µ
(ci)
ik · 1

)
=

1
ei
· diag

(
µ

(1)
ij

ρi[1]
, . . . ,

µ
(ci)
ij

ρi[ci]

)
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and

w̃i =
(

1
|Ci| . . .

1
|Ci|

)
∈ R1×|Ci|.

The following lemma gives an important property of the matrix W .

Lemma 2 Let Π, V and W be as in Definition 6. Then

ΠV WΠ = ΠV W.

Proof To prove that ΠV WΠ = ΠV W it suffices to show that

XiViWiΠi = XiViWi for all Xi ∈ {Πi,Πi, Π̃i}, (1 ≤ i ≤ S).

This is equivalent to
µijVijWikΠik = µijVijWik, (1 ≤ j, k ≤ ei)

and that to
ρiWikΠik = ρiWik, (1 ≤ k ≤ ei).

We calculate

ρiWik =
1
ei
· (ρi[1] . . . ρi[ci]) · diag

(
µ

(1)
ik

ρi[1]
, . . . ,

µ
(ci)
ik

ρi[ci]

)
=

1
ei
· µik,

and so

ρiWikΠik =
1
ei
· µik · 1 · µik

=
1
ei
· 1 · µik

= ρiWik. ¥

We write (Qλ, Qτ )
PÃτ (Q̂λ, Q̂τ ) when P is a τ -lumping of the Markov chain with fast

transitions (Qλ, Qτ ) and when (Qλ, Qτ ) τ -lumps to (Q̂λ, Q̂τ ) with respect to P.
We are now ready for the soundness proof.

Theorem 7 Suppose (Qλ, Qτ )
PÃτ (Q̂λ, Q̂τ ), (Qλ, Qτ ) →∞ (Π, Q) and (Π, Q) PÃ (Π̂, Q̂). Then

(Q̂λ, Q̂τ ) →∞ (Π̂, Q̂).

Proof By Theorem 6, we have to show that Π̂ is the ergodic projection of Q̂τ and that
Π̂Q̂λΠ̂ = Q̂.

For the second part, using Lemma 2, we have the following derivation:

Π̂Q̂λΠ̂ = UΠV WQλV UΠV

= UΠV WΠQλΠV

= UΠΠQλΠV

= UΠQλΠV

= UQV

= Q̂.
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By Theorems 1 and 2 we have that Π̂ ≥ 0, Π̂ · 1 = 1 and that Π̂2 = Π̂.
We also derive Π̂Q̂τ = UΠV WQτV = UΠV WΠQτV = 0 since ΠQτ = 0. Similarly,

Q̂τ Π̂ = WQτV UΠV = WQτΠV = 0 since QτΠ = 0.
Now we prove that rank(Π̂) + rank(Q̂τ ) = N .
First, we compute Π̂:

Π̂ = WΠV =




W1Π1V1 0 . . . 0 0
0 W2Π2V2 . . . 0 0
...

...
. . .

...
...

0 0 . . . WSΠSVS 0
W̃ Π̃1V1 W̃ Π̃2V2 . . . W̃ Π̃SVS 0




where WiΠiVi = Wi · 1 · ρi = 1 · ρi

Since Π̂ is idempotent, its rank is equal to its trace and so:

rank(Π̂) = trace(Π̂)

=
S∑

i=1

trace(WiΠiVi)

=
S∑

i=1

trace(1 · ρi)

= S · 1
= S.

We now show that rank(Q̂τ ) = N − S.
Note that a generator is called irreducible if there does not exist a renumbering after which

it is represented as
(

A′ A′′
0 B

)
for some (non-empty) square matrices A′ and B. It is known (cf.

[11]) that, in a numbering that makes the ergodic partitioning of (Qλ, Qτ ) explicit (and our
numbering is just a more refined one), Qτ has the following form:

Qτ =




Q1 0 . . . 0 0 0
0 Q2 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . QS 0 0
Q1 Q2 . . . QS Q Q

′

Q̃1 Q̃2 . . . Q̃S Q̃ Q̃′




Qi = diag (Qi1, . . . , Qiei) ,

where Qij are irreducible and
(

Q Q
′eQ eQ′ ) cannot be further reduced (after any renumbering) to

(
Q
′′

0

0 eQ′′ ) such that Q
′′ is an (irreducible) generator matrix.
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We compute Q̂τ :

Q̂τ = WQτV =




W1Q1V1 0 . . . 0 0
0 W2Q2V2 . . . 0 0
...

...
. . .

...
...

0 0 . . . WSQSVS 0

W̃

( eQ1V1
+eQV 1

)
W̃

( eQ2V2
+eQV 2

)
. . . W̃

( eQSVS
+eQV S

)
W̃ Q̃′Ṽ




and

WiQiVi =
ei∑

j=1

WijQijVij .

Since by Theorem 2 Q̂τ is a generator matrix, to show that rank(Q̂τ ) = N−S it is sufficient
to show that, for all 1 ≤ i ≤ S, WiQiVi is an irreducible generator matrix and that W̃ Q̃′Ṽ
cannot be represented in a form

(
G 0
0 X

)
, where G is an irreducible generator matrix.

That WiQiVi is a generator follows directly from the form of Q̂τ . We prove by contradiction
that WiQiVi is also irreducible. Note that the matrix WiQiVi is a restriction of Q̂τ on the
states Ci1, . . . , Cici . Let us assume that WiQiVi is not an irreducible matrix. Then we can
number the states such that WiQiVi =

(
Â B̂
0 D̂

)
, for some square matrices Â and D̂.

Using the same numbering (but now the states Cij are classes of states) we obtain the
following forms of Wij , Qij and Vij :

Wij =
(

W ′
ij 0

0 W ′′
ij

)
Qij =

(
Aij Bij

Cij Dij

)
Vij =

(
V ′ij 0

0 V ′′ij

)
,

where Aij , Dij are square matrices for 1 ≤ j ≤ ci. We compute:

WiQiVi =
ei∑

j=1

WijQijVij =
ei∑

j=1

(
W ′

ijAijV
′
ij W ′

ijBijV
′′
ij

W ′′
ijCijV

′
ij W ′′

ijDijV
′′
ij

)
.

Clearly, one obtains
∑ei

j=1 W ′′
ijCijV

′
ij = 0. The matrix WiQiVi is a generator, so Cij ≥ 0.

However, Wij has a positive diagonal and Vij is a collector matrix, so we conclude that
Cij = 0. Contradiction, because Qij is an irreducible matrix for every 1 ≤ j ≤ ci. Thus,
WiQiVi is irreducible.

Assume now that there exists a numbering in which W̃ Q̃′Ṽ =
(

G 0
0 X

)
and G is an irre-

ducible generator matrix. Similarly as in the previous proof we conclude that in this num-
bering Q̃′ =

(
A 0
0 B

)
, for some square matrices A and B. To obtain the contradiction we need

to show that A is a generator.
Because Q̂τ is a generator matrix, W̃ Q̃iVi + W̃ Q̃V i =

(
0
Xi

)
, for all 1 ≤ i ≤ S and some

matrix Xi. Note that Q̃i, Q̃ ≥ 0 and W̃ is a distributor matrix for the collector matrices Vi

and V i. We conclude that Q̃ and Q̃i have the form Q̃ =
(

0
Y

)
and Q̃i =

(
0
Yi

)
. Now, because

Qτ is a generator matrix we conclude that A is a generator matrix. ¥

We now consider to what extent τ -lumping is transitive. In general, τ -lumping is not
transitive. Consider the following example.
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Example 10 Let S = {1, . . . , 4}, P1 =
{{1, 2}, {3}, {4}} and P2 =

{{{1, 2}, {3}}, {{4}}.
We have

?>=<89:;1
aτ

­­

bτ

··
?>=<89:;2

cτ ""

?>=<89:;3

dτ||?>=<89:;4

P1Ãτ

?>=<89:;1

c
2
τ

¶¶

b
2
τ

··
?>=<89:;2

dτ||?>=<89:;3

P2Ãτ

?>=<89:;1

( c
4
+ d

2 )τ
² ²
?>=<89:;2

but

?>=<89:;1
aτ

­­

bτ

··
?>=<89:;2

cτ ""

?>=<89:;3

dτ||?>=<89:;4

P1◦P2Ãτ

?>=<89:;1
c+d
3

τ
²²
?>=<89:;2

The resulting Markov chains with fast transitions are not identical but they have the same
limit. If one loosens the criterion for transitivity and only considers infinite behavior, τ -
lumping becomes transitive. This is shown in the following theorem.

Theorem 8 (Transitivity of τ -lumping) Suppose (Qλ, Qτ )
P1Ãτ (Q̂λ, Q̂τ ), (Q̂λ, Q̂τ )

P2Ãτ (Q̌λ, Q̌τ )
and (Q̌λ, Q̌τ ) −→∞ (Π̌, Q̌). Then

(Qλ, Qτ )
P1◦P2Ãτ (Q̌′

λ, Q̌′
τ )

for some Markov chain with fast transitions (Q̌′
λ, Q̌′

τ ) such that

(Q̌′
λ, Q̌′

τ ) −→∞ (Π̌, Q̌).

Proof That P1 ◦ P2 is a good τ -lumping follows directly from Theorem 5. What needs to
be shown is that lumping directly with the composed partitioning results in a Markov chain
with fast transitions that has the same limit as (Q̌λ, Q̌τ ).

Let V = V1V2. Assume that Q̌′
i = WQiV for i ∈ {λ, τ} and let (Q̌′

λ, Q̌′
τ ) −→∞ (Π̌′, Q̌′).

We show that Π̌′ = Π̌ and Q̌′ = Q̌.
Clearly Π̌′ = WΠV = UΠV = Π̌. By Lemma 2, ΠV WΠ = ΠV W , so we have

Q̌′ = Π̌′Q̌λΠ̌′

= Π̌Q̌λΠ̌
= UΠV WQλV UΠV
= UΠV WΠQλΠV
= UΠ2QλΠV
= UΠQλΠV

= Q̌. ¥

Remark 1 It is not hard, only notationally quite cumbersome, to show that, if there are no
partitioning classes that contain only transient states, the notion of τ -lumping is transitive
also up to isomorphism.
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5 Lumping Markov Chains with Silent Steps

We define a Markov chain with silent steps to be a Markov chain with fast transitions in
which the speeds of the fast transitions are considered not known. In other words, a Markov
chain with silent steps is obtained by abstracting from the speeds in a Markov chain with fast
transitions. We give a notion of lumping that satisfies the following criterion: the lumping is
good if it induces a τ -lumping for all possible speeds of fast transitions and, moreover, the
slow transitions in the lumped process do not depend on those speeds.

5.1 Markov Chains With Silent Steps

First, we introduce an equivalence on matrices.

Definition 7 (Matrix grammar) Two matrices A,B ∈ Rn×n are said to have the same
grammar, denoted A ∼ B, if for all 1 ≤ i, j ≤ n, A[i, j] = 0 iff B[i, j] = 0.

Example 11 For a, b, c 6= 0, matrices ( a a
b 0 ) and

(
a b
c 0

)
have the same grammar.

A Markov chain with silent steps is a class of Markov chains with fast transitions of which
the generator matrices that model fast transitions have the same grammar; abstraction from
the speeds is achieved by identifying generator matrices that have the same grammar.

Definition 8 (Markov chain with silent steps) A Markov chain with silent steps is a
pair (Qλ, [Qτ ]∼) where (Qλ, Qτ ) is a Markov chain with fast transitions.

If (Qλ, [Qτ ]∼) is a Markov chain with silent steps, it is visualized as the Markov chain
with fast transitions (Qλ, Qτ ) but omitting the speeds on τ transitions. Note that the notions
of reachability, communication and ergodic partitioning are speed independent, and so they
carry over to the setting of Markov chains with silent steps naturally.

5.2 τ∼-lumping

In this section we introduce a notion of lumping for Markov chains with silent steps, called
τ∼-lumping, and show that it is a proper lifting of τ -lumping to equivalence classes of the
relation ∼. First we give an example that shows that not every τ -lumping can be taken for
τ∼-lumping.

Example 12 a. Consider the Markov chain with silent steps depicted in Fig. 7a. The
Example 7b shows that the partitioning P =

{{1, 2}, {3}} is a τ -lumping for every
possible speeds given to the silent transitions. However, the slow transition in the
lumped process depends on the speed of the fast transitions.

b. Consider the Markov chain with silent steps depicted in Fig. 7b. The Example 8c
shows, that although for some speeds the partitioning

{{1, 2}, {3}, {4}} is a τ -lumping,
it need not be so for some other speeds.

Carefully restricting to the cases when τ -lumping is “speed independent” we come up with
the following definition for τ∼-lumping.
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Figure 7: Markov chains with silent steps – Example 12

Definition 9 (τ∼-lumping) Let (Qλ, [Qτ ]∼) ∈ Rn×n × Rn×n be a Markov chain with silent
steps and let {E1, . . . , EM , T} be its ergodic partitioning. Let P be a partitioning of {1, . . . , n}.
Let, for all i ∈ {1, . . . , n}, erg(i) = {j ∈ ⋃

1≤k≤M Ek | i ³ j} be the set of all ergodic states
reachable from the state i. Let for all C ∈ P, erg(C) denote

⋃
i∈C erg(i). We say that P is a

τ∼-lumping of (Qλ, [Qτ ]∼) iff

1. for all C ∈ P at least one of the following holds:

(a) erg(C) ⊆ D, for some D ∈ P.

(b) erg(C) = Ei, for some 1 ≤ i ≤ M .

(c) C ⊆ T and i → j, for exactly one i ∈ C and some j 6∈ C;

and

2. for all C ∈ P, all i, j ∈ C ∩
(⋃

1≤k≤M Ek

)
and all D ∈ P such that C 6= D,

∑

`∈D

Qλ[i, `] =
∑

`∈D

Qλ[j, `].

Condition 1a says that the ergodic states reachable by silent transitions from the states
in C are all in the same lumping class. Condition 1b says that the ergodic states reachable
by silent transitions from the states in C constitute an ergodic class. Condition 1c says that
C is a set of transient states with precisely one (silent) exit. Conditions 1a and 1b overlap
when Ei ⊆ D. If, in addition, C contains only transient states and has only one exit, all
three conditions overlap. Condition 2 says that every ergodic state in C must have the same
accumulative rate to every other lumping class.

We now show that a τ∼-lumping of a Markov chain with silent steps induces a grammar
preserving τ -lumping of any Markov chain with fast transitions to which it corresponds.

Theorem 9 Suppose (Qλ, [Qτ ]∼) PÃτ∼ (Q̂λ, [Q̂τ ]∼). Then (Qλ, Qτ )
PÃτ (Q̂λ, Q̂τ ), and for all

Q′
τ ∼ Qτ it holds that (Qλ, Q′

τ )
PÃτ (Q̂λ, Q̂′

τ ) and Q̂′
τ ∼ Q̂τ .

Proof We first show that P is a τ -lumping for all (Qλ, Q′
τ ), where Q′

τ ∼ Qτ . Let (Qλ, Q′
τ ) →∞

(Π, Q). We have to show that V UΠV = ΠV and V UQV = QV . Recall that V UΠV = ΠV
is equivalent to the condition that the rows of ΠV that correspond to the states that belong

26



to the same partitioning class are equal. Note that this is the same as saying that, for all
C, D ∈ P, the vector Π(C,D) · 1 has all elements equal (Π(C,D) denotes the restriction of Π to
the elements of C row-wise and the elements of D column-wise). By E we denote the set of
ergodic states, i.e. E =

⋃M
i=1 Ei, where Ei are the ergodic classes. We refer to [12] for the

property that j ∈ erg(i) iff Π[i, j] > 0.
Consider Π(C,D) for some C, D ∈ P. We distinguish three cases according to the conditions

of Definition 9.
Assume that Condition 1a holds. Suppose i ∈ C ∩ E. Since erg(i) ⊆ D and i ∈ erg(i),

we obtain that i ∈ D. Because P is a partitioning, it follows that C = D and erg(i) ⊆ C.
From erg(i) ⊆ C, it follows that Π({i},F ) = 0 for all F 6= C. Recall that Π is a stochastic
matrix, so Π({i},C) · 1 = 1. Now, assume that i ∈ C ∩ T . From erg(i) ⊆ D we conclude that
Π({i},F ) = 0 for all F 6= D. Let K ⊆ {1, . . . ,M} be such that Ek ⊆ D for all k ∈ K. Then,∑

k∈K δk[i] = 1, because i is trapped only in the ergodic classes contained in D. One calculates
Π({i},D) · 1 =

∑
k∈K δk[i] · µk · 1 =

∑
k∈K δk[i] · 1 = 1. We conclude that if Condition 1a of

Definition 9 holds then either Π(C,F ) · 1 = 1 or Π(C,F ) · 1 = 0, for every F ∈ P, so Π(C,F ) · 1
always has equal elements.

Next, assume that Condition 1b of Definition 9 holds. Assume that i ∈ C ∩ E and
erg(C) = Ej , for some 1 ≤ j ≤ M . Then one concludes that i ∈ Ej , so C ⊆ Ej and
C = D. Thus, the restriction Π({i},D) presents a part of an ergodic vector for all i ∈ C,
so Π(C,D) = Π(C,C) = 1 · µ(D)

j . Note that Π(C,F ) = 0 for F ∩ Ej = ∅. Now, assume that
i ∈ C ∩ T . Since erg(i) = Ej , one concludes that δk[i] = 0, for k 6= j because the transient
state i can only be trapped the ergodic class Ej . As Π is a stochastic matrix, δj [i] = 1. Thus,
Π(C,D) = 1 · (1 · µ(D)

j ) = Π(D,D). Note that Π(C,F ) = 0 for F ∩ Ej = ∅. We conclude that if

Condition 1b of Definition 9 holds then either Π(C,F ) = Π(F,F ) = 1 · µ(F )
j or Π(C,F ) = 0. In

the first case Π(C,F ) · 1 = 1 · (µ(F )
j · 1) and in the second Π(C,F ) · 1 = 0, so all elements of

Π(C,F ) · 1 are equal.
Finally, assume that Condition 1c of Definition 9 holds. Since there is only one state

i ∈ C such that i → j and j 6∈ C and all the states in C are transient, we conclude that
the trapping probabilities of i are equal to the trapping probabilities of all other states in C.
More precisely, a transient state must be trapped in an ergodic class, so for all states k ∈ C it
must hold that k ³ `, for some ` 6∈ C. The only way to do this is by k ³ i → j′ ³ `, where
j′ 6∈ C and j′ ³ `. Thus, all states have the same trapping probabilities, so Π(C,D) = 1 · x
for some row vector x 6= 0. We conclude that if Condition 1c of Definition 9 holds then
Π(C,F ) · 1 = 1 · (x · 1), for every F ∈ P, so again all elements of Π(C,D) · 1 are equal.

We conclude that V UΠV = ΠV holds.
To show that V UQV = QV , let numbering be such that it makes the division between

ergodic and transient states explicit. Note that Condition 2 of Definition 9 imposes the
lumping condition only on ergodic states. In order to use matrix manipulation, we rewrite it
in matrix form using the following form of Qλ and V :

V =
(

VE 0
VTE VT

)
Qλ =

(
QE QET

QTE QT

)
.

Now, Condition 2 of Definition 9 can be rewritten in matrix form as:

VEUE ( QE QET ) V = ( QE QET ) V,

where UE is a distributor matrix corresponding to (the collector matrix) VE .
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Note that

Q = ΠQλΠ = Π
(

QE QET
0 0

)
Π and ΠV = Π

(
VE 0
0 0

)
.

Then using Condition 2 of Definition 9 and V UΠV = ΠV we compute:

V UQV = V UΠQλΠV

= V UΠ
(

QE QET
0 0

)
ΠV

= V UΠ
(

QE QET
0 0

)
V UΠV

= V UΠ
(

VEUEQE VEUEQET
0 0

)
V UΠV

= V UΠ
(

VE 0
0 0

) (
UEQE UEQET

0 0

)
V UΠV

= V UΠV
(

UEQE UEQET
0 0

)
V UΠV

= ΠV
(

UEQE UEQET
0 0

)
V UΠV

= ΠQλΠV

= QV.

Next, we show that Q̂λ = Q̂′
λ. We assume that the distributor matrices are W,W ′ such

that Q̂λ = WQλV , Q̂τ = WQτV , Q̂′
λ = W ′QλV and Q̂′

τ = W ′Q′
τV , where V is the collector

implied by P. The matrices W and W ′ have the following form:

W = ( WE WT ) W ′ = ( W ′
E W ′

T )

By Definitions 6 and 9,

W ′
T = WT and W

(
QE QET
0 0

)
V = W ′ ( QE QET

0 0

)
V.

We compute:
Q̂λ = WQλV

= W
(

QE QET
QTE QT

)
V

= W
(

QE QET
0 0

)
V + W

(
0 0

QTE QT

)
V

= W ′ ( QE QET
0 0

)
V + ( WE WT )

(
0 0

QTE QT

)
V

= W ′ ( QE QET
0 0

)
V + ( W ′

E W ′
T )

(
0 0

QTE QT

)
V

= W ′ ( QE QET
0 0

)
V + W ′ ( 0 0

QTE QT

)
V

= W ′QλV

= Q̂′
λ.

Finally, we show that Q̂′
τ ∼ Q̂τ . We observe Q̂τ [k, `]. It is computed as:

Q̂τ [k, `] =
∑

i∈Ck,j∈C`

W [k, i]Qτ [i, j]V [j, `] =
∑

i∈Ck,j∈C`

W [k, i]Qτ [i, j]

Thus, Q̂τ [i, j] = 0, iff
∑

i∈Ck,j∈C`
W [k, i]Qτ [i, j] = 0. If k 6= ` then Qτ [i, j] ≥ 0 and W [k, i] > 0,

for all i ∈ Ck, j ∈ C`. We conclude that Q̂τ [i, j] = 0 iff Qτ [i, j] = 0, for all i ∈ Ck, j ∈ C`.
If k = ` then Qτ [i, i] = −∑

j∈C,C∈P Qτ [i, j], so the sum is equal to zero iff Qτ [i, j] = 0 for
j 6∈ Ck. Since, in both cases, the conditions for Q̂τ [i, j] = 0 depend only on the grammar of
Qτ and Qτ ∼ Q′

τ , we conclude that Q̂τ ∼ Q̂′
τ , which completes the proof. ¥
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Figure 8: Markov chains with silent steps with non-trivial τ∼-lumpings – Example 13

Now, if (Qλ, Qτ )
PÃτ (Q̂λ, Q̂τ ) we say that (Qλ, [Qτ ]∼) τ∼-lumps to (Q̂λ, [Q̂τ ]∼) (with respect

to P) and denote it by (Qλ, [Qτ ]∼) PÃτ∼ (Q̂λ, [Q̂τ ]∼).
We give an example of τ∼-lumpings.

Example 13 Consider the Markov chains with silent steps depicted in Fig. 8. For each one
of them we give a τ∼-lumping and for each lumping class we show which option of Condition 1
of Definition 9 holds. The corresponding lumped Markov chains with silent steps are depicted
in Fig. 9.

a. For the Markov chain with silent steps depicted in Fig. 8a the partitioning P ={{1, 2}, {3}} is a τ∼-lumping. For the lumping class {1, 2} Condition 1a in Definition
9 is satisfied. For the class {3} both Conditions 1a and 1b are satisfied.

b. For the Markov chain with silent steps in Fig. 8b P =
{{1, 2}, {3}} is a τ∼-lumping.

For both lumping classes Conditions 1a and 1b are satisfied.

c. For the Markov chain with silent steps in Fig. 8c P =
{{1, 2}, {3}, {4}} is a τ∼-lumping.

For the lumping classes {1, 2} and {4} both Conditions 1a and 1b are satisfied. For the
class {3} only Condition 1b is satisfied.

d. For the Markov chain with silent steps in Fig. 8d P =
{{1, 2}, {3}, {4}} is a τ∼-lumping.

For the classes {3} and {4} both Conditions 1a and 1b are satisfied. Since {1, 2} contains
only transient states, for this class only Condition 1c is satisfied.

To finalize the section, we prove that τ∼-lumping is also transitive.

Theorem 10 (Transitivity of τ∼-lumping) Suppose (Qλ, [Qτ ]∼) P1Ãτ∼ (Q̂λ, [Q̂τ ]∼) and

(Q̂λ, [Q̂τ ]∼) P2Ãτ∼ (Q̌λ, [Q̌τ ]∼). Then (Qλ, [Qτ ]∼)P1◦P2Ãτ∼ (Q̌λ, [Q̌τ ]∼).

Proof From (Qλ, [Qτ ]∼) P1Ãτ∼ (Q̂λ, [Q̂τ ]∼), we have (Qλ, Qτ )
P1Ãτ (Q̂λ, Q̂′

τ ) where Q̂′
τ ∼ Q̂τ . From

(Q̂λ, [Q̂τ ]∼) P2Ãτ∼ (Q̌λ, [Q̌τ ]∼) and Q̂′
τ ∼ Q̂τ , we have (Q̂λ, Q̂′

τ )
P2Ãτ (Q̌λ, Q̌′

τ ) where Q̌′
τ ∼ Q̌τ . From
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Figure 9: τ∼-lumped Markov chains with silent steps – Example 13

the transitivity of τ -lumping and Theorem 9, (Qλ, Qτ )
P1◦P2Ãτ (Q̌λ, Q̌′′

τ ) for some Q̌′′
τ ∼ Q̌′

τ ∼ Q̌τ .

Therefore, (Qλ, [Qτ ]∼)P1◦P2Ãτ∼ (Q̌λ, [Q̌τ ]∼).

6 Conclusions and Related Work

We presented a new approach to minimizing Markov chains with silent steps. We treated silent
steps as exponentially distributed delays of which the rates tend to infinity. We extended the
notion of ordinary lumping to the resulting (discontinuous) processes. Based on this theory,
we provided a method for direct minimization of the original process, both, when the speed of
going to infinity is given, and when it is not. The approach was illustrated in several examples
which showed how the proposed definition corresponded to the intuition.

Related work We discuss how our reduction technique is different to that of IMC’s. First
we do not allow silent steps to lead from a state to itself. However, as we treat them as
exponential rates, they are redundant. Second, we give priority to silent steps over exponential
delays only in transient states (see Example 13a) and not in ergodic states (see Example
12a). This leads to a different treatment of τ -divergence. For us, an infinite avoidance of an
exponential delay is not possible. The transition must eventually be taken after an exponential
delay (see Example 13b). This can be considered as some kind of fairness incorporated in the
model. Third, due to the strong requirement that the lumping of Markov chains with silent
steps is good if it is good for all possible speeds assigned to silent steps, our lumping does not
always allow for joining states that lead to different ergodic classes (see Example 12b) unless
these ergodic classes are also inside some lumping class. This means that we only disallow
certain intermediate lumping steps.

Elimination of fast transitions in Markov processes is a subject in the field of perturbation
theory. A perturbed Markov process is a Markov process in which some transitions (so-called
rare transitions) are multiplied by a small number ε > 0. When considered on a time scale
t/ε the perturbed process exhibits the same behavior as a Markov chain with fast transitions.
Rare transitions become ordinary transitions and other transitions become fast transitions. To
eliminate discontinuities in the model when ε → 0, an aggregation method that eliminates all
immediate transitions was introduced [11]. Later, this method was extended to all time scales
[10, 8] leading to a hierarchy of simplified models. In [8], discontinuous Markov processes were
used to clarify the presentation of ideas. Having another origin and motivation and not being
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based on lumpability, this aggregation method has several differences with our approach.
First, intermediate lumping steps, i.e. steps that need not eliminate all silent steps left, like
the one in Fig. 2b are not considered. Second, the focus is on eliminating only silent steps;
nothing else is aggregated (contrary to joining the states 2 and 3 as in Fig. 2b). Third,
the reduction can “split” states (they belong to multiple aggregation classes). This can be
considered as a generalization of the lumping method but it is easily shown that it must not
be allowed when lifting to Markov chains with silent steps. Fourth, it always gives a pure
Markov process as a result (if, in Fig. 2a, we had ρ instead of one of the λ’s, our lumping
fails, while the aggregation technique does not). Fifth, to some extent, disaggregation to the
exact original is possible. This is not true in our case but it is not a serious limitation if
rewards are added to the model.

Fast transitions in Markov chains are also considered in the Petri Nets community. An
algorithm for removal of fast transitions in generalized stochastic Petri Nets is given in [7]. In
[13] an algorithm for finding equilibrium probabilities in the presence of immediate transitions
with known speed is developed.
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