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Abstract—We present an approach to support the de- very large set of traces further complicates debugging.
bugging of stochastic system models using interactive This problem is alleviated by the fact that the coun-
visualization. The goal of this work is to facilitate the terexample search methods construct the counterexample
identification of causal factors in the potentially very large  from those offending system traces that carry the most
sets of execution traces that form counterexamples in probability mass.

stochastic model checking. The visualization is interactive In this paper we present an aporoach to support the
and allows the user to focus on the most meaningful aspects pap P PP PP

of a counterexample. We present the application of the @nalysis and debugging of stochastic system models
visualization method as implemented in our prototype tool Pased on the interactive visualization of counterexamples

DIPRO to two significant case studies. for probabilistic reachability properties. The visualiza-
tion is aiming at facilitating the determination of causal
. INTRODUCTION factors for property violations. We follow an interactive

The success of model checking [1], [2] as an analysissualization approach in which the user can select
technique in various areas of system design is foundeartions of the state space that s/he considers important,
in the automated nature of the state space exploratiohile filtering out others. The visualization focuses on
algorithms that this technique uses. Model checking todlsee execution traces belonging to the counterexample
are increasingly often used as debugging aids, notaatd brings out salient stochastic properties of the model,
last since model checkers for functional properties retuim particular the probability mass of system execution
diagnostic information describing a system executidraces. We combine the presentation of variable valua-
from the initial state into a property violating state. Suctions with the presentation of system traces so that dif-
an offending execution path is also referred to asferent views on potential causal factors can be obtained.
counterexample. Once a counterexample is available=ihally, the visualization is dynamic and adds states and
iS necessary to determine causal factors for the reactransitions as they are produced by the search algorithm.
bility of a property violating system state. This helps ifThis aids in gaining a better understanding of the system,
identifying faults in the system design, and in debuggirgince the order in which transitions are added to the
the model. counterexample are indicative of their importance.

In the realm of stochastic model checking [3], [4] Precursory and Related Workn precursory work
counterexamples are not as readily available as in fuvee have devised heuristics guided [5] counterexample
tional model checking. Classical stochastic model chedearch methods for discrete-time and continuous-time
ers do not return counterexamples. Additionally, th®arkov Chains (DTMCs/CTMCs) [6], [7]. An alterna-
notion of a counterexample in stochastic model checkitige approach to this problem based on k-shortest-paths
is not that of a single execution path, but that of a set séarch [8] has been proposed in [9], [10]. This approach
paths from the initial system state into offending systeprovides more precise results compared to our approach
states. For certain classes of dependability propertigesented in [6], [7]. The fact that this approach performs
explicit state space search techniques have been usedrtcexhaustive search on the complete state space dra-
compute such counterexamples in the stochastic settingatically constraints its practical applicability to models
The fact that the counterexample consists of a potentiadlf realistic size. We proposed an on-the-fly algorithm
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called K for solving the k-shortest paths in [11]. Indiscrete way by assuming that the system fires exactly
this paper we briefly explain Kand its application to one transition at every discrete time tick. Each transition
the counterexample generation for DTMCs and CTMCis labeled with a numerical value that is interpreted as
We then visualize the thus obtained counterexamplesindicating the probability of firing this transition as the
There is some work on analyzing counterexamples foext step of the system if the system is in the origin
the purpose of system debugging [12], [13] for functionakate of the transition. Formally, a DTMC is defined as
model checking, relying on comparing property violatingpllows:
and property observing execution sequences. HoweverDefinition 1: A labeleddiscrete-time Markov chain
at the time of writing we are not aware of any othefDTMC) D is a quadruplgs, 3, P, L), whereS$ is a set
approach towards fault localization for counterexamples states,s < § is the initial state,? : § x § — [0, 1]
using interactive visualization techniques, or of ang a transition probability matrix, satisfying that for éac
work suggesting counterexample analysis for stochasiates, S° P(s,s') = 1, andl : § — 22P is a labeling

system models. . S'ES .
The work in [14] presents an interactive gplfunction, which assigns to each state a subset of the set

visualization of the state space of a concurrent softwaOf atomic propositionsAP. For any state, we interpret

model. The goal of this work is the visual discovery oﬁs) as the set. of valid proposnlc/)ns n tr/]at .state.
structural properties of the state space, such as size, synf-C" €aCh pair of states and s, 7(s,s') gives the
metries, connectedness of states or strongly connedtégPability to move froms to i A move froms to s
components of states. It is not obvious how this approashPossible ',f and only it°(s, s') > 0 holds. In this case
can be applied to counterexample analysis. Our approé&ﬁ?\ call(s,s') a tra.nsmon o

is based on a 2D visualization since we believe thatBecause of their conceptual simplicity, DTMCs are
3D-visualizations are problematic due to the hiding d¥idely used in the modeling and analysis of stochastic

portions of the state space that is inevitable in 3D grag¥Stems, based on aldiscrete time abstra_ction. If a more
models. realistic dense modeling of the time passing in states is

The algorithm visualization work described in [15]"€quired, thercontinuous-time Markov chains (CTMCs)
[16] bears some similarity with our work in that they als§@n be used. While each transition of a DTMC corre-
reconcile algorithm animation and software visualiz&POnds to a discrete time step, in a CTMC transitions
tion. While their objective is to enhance the understan@¢cur in dense real time. In a CTMC, each transition is
ing of algorithms, our objective is to better understari@oeled by a number that is interpreted to represent the

causal factors for property violations in stochastic systeProbability of a transition from some stateto some
models. state s within ¢ time units after being enabled. The

Structure of the PaperWe introduce the founda- durationt is determined by a random variable which
tions of stochastic models and its model checking fellows a negative exponential distribution with the rate
Section II. This section also sketches the #gorithm Of the transition froms to s’ as a parameter. A CTMC
and its application to counterexample search in stochadgcdefined as follows:
model checking. The visualization techniques that we Definition 2: A labeled continuous-time Markov
propose are explained in Section IlI. In Section IV wehain (CTMC) C is a quadruplés, 3, R, L), wheres is
present our visualization tool IPRO and discuss the @ set of states; € § is the initial stateR : $x8 — Rxg
app”cation of our approach to two case studies. is a transition rate matrix antl : § — 2P is a labeling
function as in Definition 1.

The transition probability matrixP, which we defined

A. Markov Chains for DTMCs, is replaced by a transition rate matfRx
System dependability and performance models drer any pair of states ands’, R(s, s’) is the time rate

often represented by variants of Markov chains. Thégr moving froms to s’. A move froms to s’ is possible

describes the system behavior as a stochastic proogéswd only if R(s,s’) > 0. In this case we calls,s’) a

in which system transitions are labeled with probabilitffansition In this paper, we use the notion of\darkov

and time consumption values. A popular type of sudthainas a generic term referring to either a DTMC or a

dependability models ardiscrete-time Markov chains CTMC.

(DTMCs). DTMCs can be considered as probabilistic A path in a Markov chain is intuitively a concrete

transition systems. In DTMCs, time is modeled in axecution of the system, i.e., it is encompassing a

II. STOCHASTIC MODEL CHECKING



sequence of state transitions. Since systems considalredrespective Markov model. A probabilistic reachabil-
in the domain of stochastic model checking are usualily property expresses that the probability of the system
reactive systems, paths are assumed to be infinite. Wereach a state where a given “undesired” condition
often need to refer to finite path prefixes. We use thmlds does not exceed a given upper probability bound
termfinite path or simply path, to refer to a path prefix p. One can add further constrains such as restricting the
and the terminfinite pathto denote a full path. The reachability to be satisfied within a given time bound
probability of paths in Markov chains is measurabl&his kind of properties can be formulated in stochastic
using suitable probability measures for both DTMC&mporal logics by means of thentil-operatorU. In
and CTMCs[17], [4]. We denote the measures for bofPRISM such properties can be specified as
DTMCs and CTMCs ad’r.

CTMCs and DTMCs can be modeled in the modeling
language PRISM, supported by the identically namext in a more general form as
stochastic model checker [3]. The PRISM language is
a state-based stochastic modeling language based on P=t[9U¢] or P=7[0U<ty]
the Reactive Modules formalism presented in [18]. &vhered denotes an arbitrary state formula. Note that in
PRISM model is composed of a number of moduldbe second formulation< p” is replaced by - ?7”.
which can interact with each other. A module contairiBhis causes PRISM to compute the total probability
a number of local variables. The values of all locaf the property and to deliver it as a result. We call
variables as well as the points of control of some modude path which starts at the initial stateand satisfies
define its current local state. The global state of thhe property[¢ U ¢] (or [0 U<t ¢]) an offending
PRISM model is determined by the local states of ghlath The counterexample of a probabilistic reachability
modules. The behaviour of each module is described psoperty is a setX of offending paths such that the

P<p|trueU ¢] or P<p[trueU<t ],

a set of command of the form accumulated probability ofX violates the probability
[action] guard — > p; : update; constraint < p”. If the probability bound is not speci-
+ fied, i.e., we have= ?” instead of ‘< p”, then we refer

+  pp: updatey; to any set of offending paths as a counterexample.

in which “action” is an optional name of the commandc. Generation of Counterexamples using K
The action name has a meaning in action synchroniza-r,,, algorithm K finds k shortest paths in a given

tion, and we use action names in our visualization (&ﬁr cted graphG for a start vertex and a set of target
counterexamples to denote observable events. The g ﬁices. The following are the main design ideas for

is a predicate over all the variables in the model. Ea%y
updatg describes a transition of the model that can el) We apply the directed search algorithm [S] on
taken in case the guard evaluates to true. Each updaté G in order to determine a shortest path tiE@n
is assigned a probability; in the case of a DTMCS, a P

and a rate in the case of a CTMC. Dependlng_ on the2) All edges fromG which A* explores are inserted
model type the state space of a PRISM maodel is either™ . )
into a special graph structure callgghth graph

a DTMC or a CTMC. P(G). The details about the structure B{G) are
B. Probabilistic Reachability beyond the scope of this paper. For understanding

In order to verify a dependability property using  our approach it is sufficient to know th&(G) is
stochastic model checking the property has to be formu-  used to construct the shortest paths id:. This is
lated as a formula of a stochastic temporal logic, such ~ accomplished by a shortest path searchRit),
as PCTL [17] in the discrete-time case or CSL [19],  for example by using Dijkstra’s algorithm.

[4] in the continuous-time case. For a given model and3) Dijkstra’s search orP(G) performs concurrently

a given PCTL or CSL captured property a stochastic ~ with A* on G. Consequently, Dijkstra will be able
model checker can automatically verify whether the  to deliver solution paths befor&' is completely
model satisfies the property or not. As we have shown in ~ searched by A

precursory work, for a limited class of properties called* stores vertices on the search front in a priority queue
probabilistic reachabilityit is possible to efficiently com- open which is sorted by deuristic evaluation function
pute counterexamples using explicit state space searchfoiThis function indicates the desirability of expanding a



vertex. Vertices in the search querygen are calledopen lighting mechanisms. This improves the readability
vertices.open is sorted according t¢. In each search of the counterexample and significantly increases
iteration the head adpen is removed from the queue and  the effectiveness of extracting information relevant
expanded Vertices that have been expanded are called for debugging.
closed vertices and they are stored in thésed set, « Third, we enable the use of interactive visual analyt-
which is commonly implemented as a hash table. Notice ics functions that allow the user to selectively filter
that K* is correct in terms of delivering a shortest path  the displayed information, which helps to focus the
tree only if the heuristic function used in*As monotone visual analysis.
In order to apply K to the generation of counterexam- _ .
ples for a DTMC we use a probabilistic version of A/ Drawing of States and Transitions
on the state transition graph of the DTMC. The result We use a circle to represent each state. We identify
of K* is an enumeration of the most probable propersgtates that belong to the search front, i.e., states wheh ar
violating paths. When the accumulated probability of the the queue of the search algorithm, by depicting them
setX consisting of all found offending paths is sufficienas a rectangle. A hexagon represents the initial state.
to violate the probability bound, theX is provided We also give visual indicators as to which states are
as a counterexample. In order to analyze a CTMC vg®ing to be expanded next in order to assist the user in
transform it into a DTMC using a uniformization stepcases where the color differentiation between states in
Similarly to how it was suggested in [10], we ignore théhe search front is too subtle to be visually recognizable.
self loops in the transformed DTMCs that are due to th¥e mark the first three statesapen by drawing arrows
uniformization step. of different width on the nodes.
Each property violating path delivered in this way is a Recall that K employs A to explore the state space
linear CTMC and its accurate probability can efficientlpf the Markov chain. A uses an evaluation functiofi
be computed using a stochastic model checker likéhich estimates for each explored statéhe probability
PRISM. In our experiments monotone heuristics wemd a potentially offending path which will be obtained
not available for the problems we analyzed, hence Wy completing the current path leading4oWe use this
used K with the trivial monotone heuristicg(s) = 1 factin our visualization to bring out states having hjgh
for any states. Note that in this case Adegenerates into values, i.e., states which very likely belong to offending
Dijkstra’s algorithm for determining shortest paths.  paths having high probability. The highlighting is done
by varying the colour intensity of nodes and edges and
the line width of edges. This feature is intended to attract
Let M denote a Markov chain and l&t denote a the user’s attention to the critical behaviour of the system
probabilistic reachability property. Our approach is te ugsegarding the given safety property, while not discarding
interactive visualization techniques in order to faciéta information belonging to the remainder of the behaviour.
debugging, which in this setting means analyzing a coun-The attribute variation factor used in emphasizing
terexample in order to determine the causality behind thedes and edges with higlf-value is computed as
violation of ®. In principle we visualize the state spacfollows. First, let f,.;, be the minimal f-value and
of M as a directed graph where states are represenfgd, be the maximalf-value found so far during the
by node icons and transition are represented by lingesploration. Further, we extend the definition 6fto
The visualization has the following three objectives: cover transitions in the following way. For a transition
« First, we visualize the exploration aM using ¢ = (s,s’), we definef(¢) as the median off(s) and
K*. The visualization component monitors thé K f(s), i.e., f(t) = M This extension relies on
algorithm while it explores the state spaceMfon- the fact that the relevance of a transition is derived from
the-fly. It displays changes caused by each seaitie relevance of its origin and destination states. Then we
step immediately on the screen which helps imap the rangef,,in, fmaz| t0 @ given range of colours
understanding how the search progresses throumghline widths, respectively.
the state space The user can interact with the search Colouring: We start with defining a colour scale
algorithm thus enabling the type of simulation thatf a particular number of colour§' ranging from little
we will explain in Section 1lI-D. emphasizing to strongly emphasizing colours. IfPRO,
« Second, our approach emphasizes the so far found created such colour scales using a tool developed
portion of the counterexample using various highn [20]. We map the ranggf,.in, fmaz] iNto the interval

[Il. THE VISUALIZATION TECHNIQUE



[0, 1] using the following monotonic function: : f — i.e., a node representing a state which belongs to the
ﬁf:fﬁ Then, we determine the colour of the nodeounterexamplen must have a red successet If n
representing a stateas follows:colour(s) = a(f(s)) - also has another successdrwhich is not red, i.e.n”
(C —1). We use the same calculation to determine tl®es not belong to the counterexample, then comparing
colors of edges. both transitiongn,n’) and (n,n” can help determining
Edge and Line Width:In order to bring out the causal factors for the property violation.
information which paths through the graph are more We also render the size of each node and action
relevant than others we define the edge width to In@me proportional to the accummulated probability of all
proportional to thef-value of the corresponding tran-offending paths that have been found so far, including the
sition. In other words, we render transitions with higlsorresponding state or transition. We increase the node
f-values by thick lines, while transitions with smght size compared to the default size by
values are represented by thin lines. We map the range Pr(X’
. . . ) r(X)
[fmin, fmaz] INtO the interval]0, 1] using the following «- ,
exponential grading functiorti : f — exp(a(f) — 1). Pr(X)
Let W be the designated maximal edge width. Then, wehere X is the currently selected counterexample and
determine the width of the edge representing a transitidif C X is the set of offending paths which include the
t by width(t) = b(f(t))-W. The use of the exponentialconsidered state or transitiomis a factor which the user
function entails that the less important transitions aréefines to control the amplification degree. Based on this
the faster the corresponding edges become thinner. Ascaling, states and transitions which contribute a large
consequence the contrast between relevant and irrelevamopunt of probability mass to the property violation will
transitions is extremely high so that irrelevant edg@ppear very large on the screen. It then becomes much
become almost imperceptible. easier for the user to identify the actions which mostly
contribute to the property violation.

B. Layout Algorithm

In graph drawing, the arrangement of nodes and edds ©nliné Visualization

significantly influences the amount of clutter in the The on-the-fly nature of K means that only a rela-
graph and hence determines its readability. Various graiprely small portion of the state space will be generated
layout algorithms have been proposed to optimize tla@d be available for visualization. This greatly increases
graph layout in order to maximize graph readability, e.the practicability of our approach since it permits the
[21]. Since we are visualizing the on-the-fly state spawéualization of much larger state spaces. The online
exploration as it occurs we have to useinoremental visualization allows the user to interactively control the
layout algorithm. An incremental layout algorithm is asearch algorithm. While watching the progress of the
online algorithm that permits nodes and edges to bearch, she or he can interactively halt the algorithm
added at any time. It ensures a certain degree of stabiityd modify the order of the search queue by selecting
in the layout of the already visible part of the graplone or more states to be expanded next. It is also
Without this stability the online visualization would bepossible to execute the algorithm in step-wise exploration
more confusing than helpful. The graph drawing libramnode in which the user is free to manually determine
yfiles [22] used in our implementation provides fouthe next state to be explored. These features makes
layout algorithms which are suitable for incrementaiur visualization technique very useful for interactive
visualization. In our tool we make all four algorithmssimulation purposes. The user can simulate the model
available to the user. in a stepwise fashion and alter its behaviour in order to

N detect model faults.
C. Counterexample Highlighting

Once a counterexample is completely or partially- Visual Analytics

found we surround each counterexample state with a redur visualization approach is able to accommodate
line and color the action name of each counterexamplarious visual analytics functions to analyse the infor-
transition in red. This enables the user to quickely idemation gathered during the search. This will help in
tify the offending behaviour of the system. We facilitateletecting causal factors for the property violation. In
debugging by permitting a comparison of correct amulr tool we provide a number of basic visualization
offending behaviour. For instance, letbe a red node, functions:



« The user can hide nodes, edges or complete parts The I/O processors themselves can also fail, which
of the visible graph. is represented by the actioi®rocFail and OProc-

o The user can select nodes and edges. Fail. In either case, if | or O is unavailable, then

« The user can query state information, such as the the main processor M retries to read data from
values of state variables or the effect of transition | or to send instructions to O. If the number of

actions. failure tries exceeds a limit MAX_COUNT, then
« The user can hide outgoing or incoming edges for the system is shut down. In our experiments we set
selected states. MAX_COUNT=4.

« The user can select paths through the state space The actionMProcFail indicates the failure of the
which she/he is interested in and hide all of the main processor M, in which case the system is
model except for these paths. Optionally the model automatically shut down.

elements directly connected to the selected nodege model is translated by PRISM into a CTMC that
can also be included in the selection. consists of 4323 states and 18206 transitions.

« Selected paths can be analyzed and compared withye are interested in the likelihood that the system is
each other by means of charts that can, for instanggy; down within one hour, i.e., 3600 seconds. According
display the development of the values of certaiy the description of the PRISM model, one time unit
state variables along the selected paths. corresponds to one second. This induces the property

The comparison of selected execution paths is a key tool
in the analysis of counterexamples, as we shall illustrate P =7 [true U< 3600 down]. 1)

in the following section. _ _
For this property the Prism model checker computes a

total probability 0f4.363 - 10~

In DIPRO, the user is offered the possibility to per-

We have implemented a prototype tool for the visdform a step-by-step exploration of the state space. The
alization approach that we have described. The tooldéferent intensities of the blue color in Figure 3 aid
called DPRO and is based on Java.Pro calls K* in the user in identifying which states are more and which
order to explore the state space of the PRISM moddlge less probable. The user can control which state to
that we use as case studies. The state space is expléx¢@ore next or to let the algorithm automatically expand
on-the-fly using the PRISM Simulation Engine [3]. Fothe next most probable state. This feature and many
the drawing of the state space graph we mainly use tpker interaction functions allow the user to navigate
yfileslibrary [22]. We illustrate DPRO using two PRISM through the state space, thereby learning about modeling

IV. EXPERIMENTAL VALIDATION

case studies. errors during the modeling phase or about faults when
debugging the model.
A. Embedded Control System (ECS) Figure 3 represents the output thatHRO produces

_ after a search progress of 208 iterations. The explored
This case study models an embedded control syst&fgytion of the state space contains 417 states and 680

closely based on the one presented in [23]. The systgmhsitions. The generated counterexample is highlighted
consists of a main processdd}, an input processot), py surrounding states with red lines and writing the
an output processoi), 3 sensors and two actuatorsyansition labels in red. The user can select a particular
The input processor | reads data from the sensors giglh and, for instance, analyze the state variable evalu-
forwards it to M. Based on this data, M sends instructiongions for selected nodes along this path. An important
to the output processor O which controls both actuato{syyre is the highlighting of the paths which are most
according to the received instructions. We analyze ﬂﬁ@sponsible for the failure. The size of the symbol
failure behavior of the model. The possible failures atgpresenting a state and the font size of a transition label

the following: are proportional to the probability of reaching an failure
« Any of the three sensors can fail. This is modelestate through the respective state or transition. In Fiure
by the PRISM actiorsensorFail The system is shut we see three paths which are very much highlighted in
down if more than one sensor fails. this way compared to other paths. The first path (Path
« The actionActFail models the failure of an actuator.0) consists of one transition with the actidfProcFail
The system is also shut down if both actuators failvhich models the failure of the main processor. The
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Visualization of the Embedded Control System model.

The other is the one starting withProcTransFail(Path
dicates the failure of the input processor |, followed b¥), which models a transient failure of the input or output
Timeoutactions representing the unavailability of inpuprocessor. This means that transient failures of the I/O
data. The third path (Path 2) is the path which stamsocessors represent further causal factors for the error.
with OProcFail representing the failure of the outpuSuch transient failures can be rectified automatically by
processor O. This indicates that a major portion of thbe processor rebooting itself. However, the rate of reboot
failure probability flows along these paths, indicatingtthdeems to be too low. Hence, speeding up the reboot in
a promising approach to make the system more relialdlase of a transient fault is a further measure to increase
is to improve the reliability of the processors |, O and Mhe reliability of the system. Note that this change to the
Conversely, it would not be effective to try to improve theystem has less impact than improving the reliability of
reliability of the sensors, actuators or the communicatidhe processors I, O and M.
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Fig. 2. Visual analysis of some variable valuations alonignpry counterexample paths

to show the evolution of the valuation of some stat@nd backbone) can break down. The failure of different
variables along the five paths described above. Framomponents is indicated in the Prism model by the
Figures 2(a) and 2(b) we can derive that the variablefollowing actions:

in path 3 (yellow bars) and the variatiein path 4 (pink . The actionsFailWSLeftand FailWSRightindicate
bars) drop to 1. In the PRISM model this phenomenon  the failure of one workstation in the left or the right
is caused by a transient failure of | and O. We can also cluster, respectively.

observe that along path 1 (blue bars) andl along . The actionFailLine represents the failure of the
path 3 (green bars) attain the value 0. This points at packbone.
a failure of I and O. Each of these failures causes a, The actionsFailToLeft and FailToRight represent

failure in transferring the signals from the sensor or the failure of the switches of the left and the right
sending instructions to the actuators, as can be learned cluster, respectively.

from the corresponding code in the PRISM modelg, orger to provide minimum quality of service (QoS),
This is confirmed by Figure 2(d) where the variablg; |6ast75% of the workstations have to be operational
count, which stores the number of failing transfer tries,nq connected to each other via operational switches and
increases for all paths 1, 2, 3 and 4. Figure 2(c) showss packbone.
that the variablem attains the value 0 for path O (red The CTMC derived from the PRISM model consists
bars). This represents a failure of the main processor M. 4180 states and 19552 transitions. We are interested
as can be seen by inspecting the PRISM code. in the likelihood that the quality of service drops below
the minimum within 10 time units. In other words, we
are interested in the property

The second case study is given by a Prism model of
a dependable cluster of workstations as first presented
in [24]. The model is a CTMC which describes avhere “minimum” is a label which asserts the mini-
system consisting of two sub-clusters connected viamaum QoS. Checking the property using Prism results in
backbone. Each sub-cluster consistshofworkstations a probability for the full model 08.252 - 1076,
with a central switch that provides an interface to the Our visualization of this model as given in Figure 3
backbone. We selV = 10 in the case study. Each ofshows the counterexample. It emphazises two paths,
the components of the system (workstations, switchemmely the patiiFailToLeft InspectToLeftFailToRight

B. Workstation Cluster (WsC)

P =7 [true U< 10 "minimum” |, (2)
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Fig. 3. Visualization of the Workstation Cluster System mlod

and the path(FailToRight InspectToRightFailToLeft. interactive visualization that we use is to bring out in-
This indicates that the most probable cause for tfiermation that is important to understand what execution
QoS to drop below the minimum required value are theaces contribute most probability mass to the violation
failure of the left and the right switch, respectively. Qtheof some property. The visualization also permits the
actions like FailWSLeft and FailWSRightare depicted interactive filtering out of portions of the state graph,
using relatively small icons which means that they hawnd to follow the evolution of variable valuations along
only a secondary influence on the property violation. Wexecution paths. All of these measures are designed to
can conclude that the appropriate approach for makifagilitate the discovery of causal factors in the property
the system more dependable is not to invest effort uolation. We have implemented the approach in the
increasing the reliability of the individual workstationd1PRO tool and have shown its usefulness using two

but to increase the reliability of the switches. case studies.
V. CONCLUSION In principle, the visualization approach can also be
' applied to the explicit-state based search for counterex-

We presented an approach to the debugging of systamples in Markov Decision Processes (MDPs) that we
dependability models given as DTMCs and CTMCgresented in [25]. However, that approach searches for
using an interactive visualization of counterexamples scheduler that maximizes the total probability with
to probabilistic reachability properties. The counterexevery new offending path that is found. With each such
amples are generated by an on-the-fly k-shortest-pattesation the counterexample changes, and this makes
search using our K algorithm. The objective of the an incremental, step-wise visualization as the search
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of the final result of the search in a way that we have the-fly algorithm for finding the k shortest paths,
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