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Abstract—We present an approach to support the de-
bugging of stochastic system models using interactive
visualization. The goal of this work is to facilitate the
identification of causal factors in the potentially very large
sets of execution traces that form counterexamples in
stochastic model checking. The visualization is interactive
and allows the user to focus on the most meaningful aspects
of a counterexample. We present the application of the
visualization method as implemented in our prototype tool
DIPRO to two significant case studies.

I. INTRODUCTION

The success of model checking [1], [2] as an analysis
technique in various areas of system design is founded
in the automated nature of the state space exploration
algorithms that this technique uses. Model checking tools
are increasingly often used as debugging aids, not at
last since model checkers for functional properties return
diagnostic information describing a system execution
from the initial state into a property violating state. Such
an offending execution path is also referred to as a
counterexample. Once a counterexample is available it
is necessary to determine causal factors for the reacha-
bility of a property violating system state. This helps in
identifying faults in the system design, and in debugging
the model.

In the realm of stochastic model checking [3], [4]
counterexamples are not as readily available as in func-
tional model checking. Classical stochastic model check-
ers do not return counterexamples. Additionally, the
notion of a counterexample in stochastic model checking
is not that of a single execution path, but that of a set of
paths from the initial system state into offending system
states. For certain classes of dependability properties
explicit state space search techniques have been used to
compute such counterexamples in the stochastic setting.
The fact that the counterexample consists of a potentially

very large set of traces further complicates debugging.
This problem is alleviated by the fact that the coun-
terexample search methods construct the counterexample
from those offending system traces that carry the most
probability mass.

In this paper we present an approach to support the
analysis and debugging of stochastic system models
based on the interactive visualization of counterexamples
for probabilistic reachability properties. The visualiza-
tion is aiming at facilitating the determination of causal
factors for property violations. We follow an interactive
visualization approach in which the user can select
portions of the state space that s/he considers important,
while filtering out others. The visualization focuses on
the execution traces belonging to the counterexample
and brings out salient stochastic properties of the model,
in particular the probability mass of system execution
traces. We combine the presentation of variable valua-
tions with the presentation of system traces so that dif-
ferent views on potential causal factors can be obtained.
Finally, the visualization is dynamic and adds states and
transitions as they are produced by the search algorithm.
This aids in gaining a better understanding of the system,
since the order in which transitions are added to the
counterexample are indicative of their importance.

Precursory and Related Work:In precursory work
we have devised heuristics guided [5] counterexample
search methods for discrete-time and continuous-time
Markov Chains (DTMCs/CTMCs) [6], [7]. An alterna-
tive approach to this problem based on k-shortest-paths
search [8] has been proposed in [9], [10]. This approach
provides more precise results compared to our approach
presented in [6], [7]. The fact that this approach performs
an exhaustive search on the complete state space dra-
matically constraints its practical applicability to models
of realistic size. We proposed an on-the-fly algorithm
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called K∗ for solving the k-shortest paths in [11]. In
this paper we briefly explain K∗ and its application to
the counterexample generation for DTMCs and CTMCs.
We then visualize the thus obtained counterexamples.

There is some work on analyzing counterexamples for
the purpose of system debugging [12], [13] for functional
model checking, relying on comparing property violating
and property observing execution sequences. However,
at the time of writing we are not aware of any other
approach towards fault localization for counterexamples
using interactive visualization techniques, or of any
work suggesting counterexample analysis for stochastic
system models.

The work in [14] presents an interactive 3D-
visualization of the state space of a concurrent software
model. The goal of this work is the visual discovery of
structural properties of the state space, such as size, sym-
metries, connectedness of states or strongly connected
components of states. It is not obvious how this approach
can be applied to counterexample analysis. Our approach
is based on a 2D visualization since we believe that
3D-visualizations are problematic due to the hiding of
portions of the state space that is inevitable in 3D graph
models.

The algorithm visualization work described in [15],
[16] bears some similarity with our work in that they also
reconcile algorithm animation and software visualiza-
tion. While their objective is to enhance the understand-
ing of algorithms, our objective is to better understand
causal factors for property violations in stochastic system
models.

Structure of the Paper:We introduce the founda-
tions of stochastic models and its model checking in
Section II. This section also sketches the K∗ algorithm
and its application to counterexample search in stochastic
model checking. The visualization techniques that we
propose are explained in Section III. In Section IV we
present our visualization tool DIPRO and discuss the
application of our approach to two case studies.

II. STOCHASTIC MODEL CHECKING

A. Markov Chains

System dependability and performance models are
often represented by variants of Markov chains. They
describes the system behavior as a stochastic process
in which system transitions are labeled with probability
and time consumption values. A popular type of such
dependability models arediscrete-time Markov chains
(DTMCs). DTMCs can be considered as probabilistic
transition systems. In DTMCs, time is modeled in a

discrete way by assuming that the system fires exactly
one transition at every discrete time tick. Each transition
is labeled with a numerical value that is interpreted as
indicating the probability of firing this transition as the
next step of the system if the system is in the origin
state of the transition. Formally, a DTMC is defined as
follows:

Definition 1: A labeleddiscrete-time Markov chain
(DTMC) D is a quadruple(S, ŝ,P,L), whereS is a set
of states,̂s ∈ S is the initial state,P : S × S −→ [0, 1]
is a transition probability matrix, satisfying that for each
states,

∑

s′∈S

P(s, s′) = 1, andL : S −→ 2AP is a labeling

function, which assigns to each state a subset of the set
of atomic propositionsAP. For any states, we interpret
L(s) as the set of valid propositions in that state.

For each pair of statess and s′, P(s, s′) gives the
probability to move froms to s′. A move froms to s′

is possible if and only ifP(s, s′) > 0 holds. In this case
we call (s, s′) a transition.

Because of their conceptual simplicity, DTMCs are
widely used in the modeling and analysis of stochastic
systems, based on a discrete time abstraction. If a more
realistic dense modeling of the time passing in states is
required, thencontinuous-time Markov chains (CTMCs)
can be used. While each transition of a DTMC corre-
sponds to a discrete time step, in a CTMC transitions
occur in dense real time. In a CTMC, each transition is
labeled by a number that is interpreted to represent the
probability of a transition from some states to some
state s′ within t time units after being enabled. The
duration t is determined by a random variable which
follows a negative exponential distribution with the rate
of the transition froms to s′ as a parameter. A CTMC
is defined as follows:

Definition 2: A labeled continuous-time Markov
chain (CTMC) C is a quadruple(S, ŝ,R,L), whereS is
a set of states,̂s ∈ S is the initial state,R : S×S −→ R≥0

is a transition rate matrix andL : S −→ 2AP is a labeling
function as in Definition 1.
The transition probability matrixP, which we defined
for DTMCs, is replaced by a transition rate matrixR.
For any pair of statess ands′, R(s, s′) is the time rate
for moving froms to s′. A move froms to s′ is possible
if and only if R(s, s′) > 0. In this case we call(s, s′) a
transition. In this paper, we use the notion of aMarkov
chainas a generic term referring to either a DTMC or a
CTMC.

A path in a Markov chain is intuitively a concrete
execution of the system, i.e., it is encompassing a



sequence of state transitions. Since systems considered
in the domain of stochastic model checking are usually
reactive systems, paths are assumed to be infinite. We
often need to refer to finite path prefixes. We use the
term finite path, or simplypath, to refer to a path prefix
and the terminfinite path to denote a full path. The
probability of paths in Markov chains is measurable
using suitable probability measures for both DTMCs
and CTMCs[17], [4]. We denote the measures for both
DTMCs and CTMCs asPr.

CTMCs and DTMCs can be modeled in the modeling
language PRISM, supported by the identically named
stochastic model checker [3]. The PRISM language is
a state-based stochastic modeling language based on
the Reactive Modules formalism presented in [18]. A
PRISM model is composed of a number of modules
which can interact with each other. A module contains
a number of local variables. The values of all local
variables as well as the points of control of some module
define its current local state. The global state of the
PRISM model is determined by the local states of all
modules. The behaviour of each module is described by
a set of command of the form

[ action ] guard − > p1 : update1

+ ...

+ pn : updaten;

in which “action” is an optional name of the command.
The action name has a meaning in action synchroniza-
tion, and we use action names in our visualization of
counterexamples to denote observable events. The guard
is a predicate over all the variables in the model. Each
update describes a transition of the model that can be
taken in case the guard evaluates to true. Each update
is assigned a probabilitypi in the case of a DTMCS,
and a rate in the case of a CTMC. Depending on the
model type the state space of a PRISM model is either
a DTMC or a CTMC.

B. Probabilistic Reachability

In order to verify a dependability property using
stochastic model checking the property has to be formu-
lated as a formula of a stochastic temporal logic, such
as PCTL [17] in the discrete-time case or CSL [19],
[4] in the continuous-time case. For a given model and
a given PCTL or CSL captured property a stochastic
model checker can automatically verify whether the
model satisfies the property or not. As we have shown in
precursory work, for a limited class of properties called
probabilistic reachabilityit is possible to efficiently com-
pute counterexamples using explicit state space search on

the respective Markov model. A probabilistic reachabil-
ity property expresses that the probability of the system
to reach a state where a given “undesired” conditionϕ

holds does not exceed a given upper probability bound
p. One can add further constrains such as restricting the
reachability to be satisfied within a given time boundt.
This kind of properties can be formulated in stochastic
temporal logics by means of theUntil-operatorU . In
PRISM such properties can be specified as

P ≤ p [ true U ϕ ] or P ≤ p [ true U≤ t ϕ ],

or in a more general form as

P =? [ϑ U ϕ ] or P =? [ϑ U≤ t ϕ ],

whereϑ denotes an arbitrary state formula. Note that in
the second formulation “≤ p” is replaced by “= ?”.
This causes PRISM to compute the total probability
of the property and to deliver it as a result. We call
a path which starts at the initial statês and satisfies
the property[ϑ U ϕ ] (or [ϑ U≤ t ϕ ]) an offending
path. The counterexample of a probabilistic reachability
property is a setX of offending paths such that the
accumulated probability ofX violates the probability
constraint “≤ p”. If the probability bound is not speci-
fied, i.e., we have “= ?” instead of “≤ p”, then we refer
to any set of offending paths as a counterexample.

C. Generation of Counterexamples using K∗

The algorithm K∗ finds k shortest paths in a given
directed graphG for a start vertex and a set of target
vertices. The following are the main design ideas for
K∗:

1) We apply the directed search algorithm A∗ [5] on
G in order to determine a shortest path treeT on
G.

2) All edges fromG which A∗ explores are inserted
into a special graph structure calledpath graph
P(G). The details about the structure ofP(G) are
beyond the scope of this paper. For understanding
our approach it is sufficient to know thatP(G) is
used to construct thek shortest paths inG. This is
accomplished by a shortest path search onP(G),
for example by using Dijkstra’s algorithm.

3) Dijkstra’s search onP(G) performs concurrently
with A∗ on G. Consequently, Dijkstra will be able
to deliver solution paths beforeG is completely
searched by A∗.

A∗ stores vertices on the search front in a priority queue
open which is sorted by aheuristic evaluation function
f . This function indicates the desirability of expanding a



vertex. Vertices in the search queueopen are calledopen
vertices.open is sorted according tof . In each search
iteration the head ofopen is removed from the queue and
expanded. Vertices that have been expanded are called
closed vertices and they are stored in theclosed set,
which is commonly implemented as a hash table. Notice
that K∗ is correct in terms of delivering a shortest path
tree only if the heuristic function used in A∗ is monotone.

In order to apply K∗ to the generation of counterexam-
ples for a DTMC we use a probabilistic version of A∗

on the state transition graph of the DTMC. The result
of K∗ is an enumeration of the most probable property
violating paths. When the accumulated probability of the
setX consisting of all found offending paths is sufficient
to violate the probability bound, thenX is provided
as a counterexample. In order to analyze a CTMC we
transform it into a DTMC using a uniformization step.
Similarly to how it was suggested in [10], we ignore the
self loops in the transformed DTMCs that are due to the
uniformization step.

Each property violating path delivered in this way is a
linear CTMC and its accurate probability can efficiently
be computed using a stochastic model checker like
PRISM. In our experiments monotone heuristics were
not available for the problems we analyzed, hence we
used K∗ with the trivial monotone heuristicsh(s) = 1
for any states. Note that in this case A∗ degenerates into
Dijkstra’s algorithm for determining shortest paths.

III. T HE V ISUALIZATION TECHNIQUE

Let M denote a Markov chain and letΦ denote a
probabilistic reachability property. Our approach is to use
interactive visualization techniques in order to facilitate
debugging, which in this setting means analyzing a coun-
terexample in order to determine the causality behind the
violation of Φ. In principle we visualize the state space
of M as a directed graph where states are represented
by node icons and transition are represented by lines.
The visualization has the following three objectives:

• First, we visualize the exploration ofM using
K∗. The visualization component monitors the K∗

algorithm while it explores the state space ofM on-
the-fly. It displays changes caused by each search
step immediately on the screen which helps in
understanding how the search progresses through
the state space The user can interact with the search
algorithm thus enabling the type of simulation that
we will explain in Section III-D.

• Second, our approach emphasizes the so far found
portion of the counterexample using various high-

lighting mechanisms. This improves the readability
of the counterexample and significantly increases
the effectiveness of extracting information relevant
for debugging.

• Third, we enable the use of interactive visual analyt-
ics functions that allow the user to selectively filter
the displayed information, which helps to focus the
visual analysis.

A. Drawing of States and Transitions

We use a circle to represent each state. We identify
states that belong to the search front, i.e., states which are
in the queue of the search algorithm, by depicting them
as a rectangle. A hexagon represents the initial state.
We also give visual indicators as to which states are
going to be expanded next in order to assist the user in
cases where the color differentiation between states in
the search front is too subtle to be visually recognizable.
We mark the first three states inopen by drawing arrows
of different width on the nodes.

Recall that K∗ employs A∗ to explore the state space
of the Markov chain. A∗ uses an evaluation functionf
which estimates for each explored states the probability
of a potentially offending path which will be obtained
by completing the current path leading tos. We use this
fact in our visualization to bring out states having highf -
values, i.e., states which very likely belong to offending
paths having high probability. The highlighting is done
by varying the colour intensity of nodes and edges and
the line width of edges. This feature is intended to attract
the user’s attention to the critical behaviour of the system
regarding the given safety property, while not discarding
information belonging to the remainder of the behaviour.

The attribute variation factor used in emphasizing
nodes and edges with highf -value is computed as
follows. First, let fmin be the minimalf -value and
fmax be the maximalf -value found so far during the
exploration. Further, we extend the definition off to
cover transitions in the following way. For a transition
t = (s, s′), we definef(t) as the median off(s) and
f(s′), i.e., f(t) = f(s)+f(s′)

2 . This extension relies on
the fact that the relevance of a transition is derived from
the relevance of its origin and destination states. Then we
map the range[fmin, fmax] to a given range of colours
or line widths, respectively.

Colouring: We start with defining a colour scale
of a particular number of coloursC ranging from little
emphasizing to strongly emphasizing colours. In DIPRO,
we created such colour scales using a tool developed
in [20]. We map the range[fmin, fmax] into the interval



[0, 1] using the following monotonic function:a : f 7→
f−fmin

fmax−fmin

. Then, we determine the colour of the node
representing a states as follows:colour(s) = a(f(s)) ·
(C − 1). We use the same calculation to determine the
colors of edges.

Edge and Line Width:In order to bring out the
information which paths through the graph are more
relevant than others we define the edge width to be
proportional to thef -value of the corresponding tran-
sition. In other words, we render transitions with high
f -values by thick lines, while transitions with smallf -
values are represented by thin lines. We map the range
[fmin, fmax] into the interval]0, 1] using the following
exponential grading function:b : f 7→ exp(a(f) − 1).
Let W be the designated maximal edge width. Then, we
determine the width of the edge representing a transition
t by width(t) = b(f(t)) ·W . The use of the exponential
function entails that the less important transitions are,
the faster the corresponding edges become thinner. As a
consequence the contrast between relevant and irrelevant
transitions is extremely high so that irrelevant edges
become almost imperceptible.

B. Layout Algorithm

In graph drawing, the arrangement of nodes and edges
significantly influences the amount of clutter in the
graph and hence determines its readability. Various graph
layout algorithms have been proposed to optimize the
graph layout in order to maximize graph readability, e.g.
[21]. Since we are visualizing the on-the-fly state space
exploration as it occurs we have to use anincremental
layout algorithm. An incremental layout algorithm is an
online algorithm that permits nodes and edges to be
added at any time. It ensures a certain degree of stability
in the layout of the already visible part of the graph.
Without this stability the online visualization would be
more confusing than helpful. The graph drawing library
yfiles [22] used in our implementation provides four
layout algorithms which are suitable for incremental
visualization. In our tool we make all four algorithms
available to the user.

C. Counterexample Highlighting

Once a counterexample is completely or partially
found we surround each counterexample state with a red
line and color the action name of each counterexample
transition in red. This enables the user to quickely iden-
tify the offending behaviour of the system. We facilitate
debugging by permitting a comparison of correct and
offending behaviour. For instance, letn be a red node,

i.e., a node representing a state which belongs to the
counterexample.n must have a red successorn′. If n

also has another successorn′′ which is not red, i.e.,n′′

does not belong to the counterexample, then comparing
both transitions(n, n′) and(n, n′′ can help determining
causal factors for the property violation.

We also render the size of each node and action
name proportional to the accummulated probability of all
offending paths that have been found so far, including the
corresponding state or transition. We increase the node
size compared to the default size by

α ·
Pr(X ′)

Pr(X)
,

whereX is the currently selected counterexample and
X ′ ⊆ X is the set of offending paths which include the
considered state or transition.α is a factor which the user
defines to control the amplification degree. Based on this
scaling, states and transitions which contribute a large
amount of probability mass to the property violation will
appear very large on the screen. It then becomes much
easier for the user to identify the actions which mostly
contribute to the property violation.

D. Online Visualization

The on-the-fly nature of K∗ means that only a rela-
tively small portion of the state space will be generated
and be available for visualization. This greatly increases
the practicability of our approach since it permits the
visualization of much larger state spaces. The online
visualization allows the user to interactively control the
search algorithm. While watching the progress of the
search, she or he can interactively halt the algorithm
and modify the order of the search queue by selecting
one or more states to be expanded next. It is also
possible to execute the algorithm in step-wise exploration
mode in which the user is free to manually determine
the next state to be explored. These features makes
our visualization technique very useful for interactive
simulation purposes. The user can simulate the model
in a stepwise fashion and alter its behaviour in order to
detect model faults.

E. Visual Analytics

Our visualization approach is able to accommodate
various visual analytics functions to analyse the infor-
mation gathered during the search. This will help in
detecting causal factors for the property violation. In
our tool we provide a number of basic visualization
functions:



• The user can hide nodes, edges or complete parts
of the visible graph.

• The user can select nodes and edges.
• The user can query state information, such as the

values of state variables or the effect of transition
actions.

• The user can hide outgoing or incoming edges for
selected states.

• The user can select paths through the state space
which she/he is interested in and hide all of the
model except for these paths. Optionally the model
elements directly connected to the selected nodes
can also be included in the selection.

• Selected paths can be analyzed and compared with
each other by means of charts that can, for instance,
display the development of the values of certain
state variables along the selected paths.

The comparison of selected execution paths is a key tool
in the analysis of counterexamples, as we shall illustrate
in the following section.

IV. EXPERIMENTAL VALIDATION

We have implemented a prototype tool for the visu-
alization approach that we have described. The tool is
called DIPRO and is based on Java. DIPRO calls K∗ in
order to explore the state space of the PRISM models
that we use as case studies. The state space is explored
on-the-fly using the PRISM Simulation Engine [3]. For
the drawing of the state space graph we mainly use the
yfileslibrary [22]. We illustrate DIPRO using two PRISM
case studies.

A. Embedded Control System (ECS)

This case study models an embedded control system,
closely based on the one presented in [23]. The system
consists of a main processor (M ), an input processor (I ),
an output processor (O), 3 sensors and two actuators.
The input processor I reads data from the sensors and
forwards it to M. Based on this data, M sends instructions
to the output processor O which controls both actuators
according to the received instructions. We analyze the
failure behavior of the model. The possible failures are
the following:

• Any of the three sensors can fail. This is modeled
by the PRISM actionSensorFail. The system is shut
down if more than one sensor fails.

• The actionActFail models the failure of an actuator.
The system is also shut down if both actuators fail.

• The I/O processors themselves can also fail, which
is represented by the actionsIProcFail andOProc-
Fail. In either case, if I or O is unavailable, then
the main processor M retries to read data from
I or to send instructions to O. If the number of
failure tries exceeds a limit MAX_COUNT, then
the system is shut down. In our experiments we set
MAX_COUNT=4.

• The actionMProcFail indicates the failure of the
main processor M, in which case the system is
automatically shut down.

The model is translated by PRISM into a CTMC that
consists of 4323 states and 18206 transitions.

We are interested in the likelihood that the system is
shut down within one hour, i.e., 3600 seconds. According
to the description of the PRISM model, one time unit
corresponds to one second. This induces the property

P =? [ true U≤ 3600 down ]. (1)

For this property the Prism model checker computes a
total probability of4.363 · 10−4.

In DIPRO, the user is offered the possibility to per-
form a step-by-step exploration of the state space. The
different intensities of the blue color in Figure 3 aid
the user in identifying which states are more and which
are less probable. The user can control which state to
explore next or to let the algorithm automatically expand
the next most probable state. This feature and many
other interaction functions allow the user to navigate
through the state space, thereby learning about modeling
errors during the modeling phase or about faults when
debugging the model.

Figure 3 represents the output that DIPRO produces
after a search progress of 208 iterations. The explored
portion of the state space contains 417 states and 680
transitions. The generated counterexample is highlighted
by surrounding states with red lines and writing the
transition labels in red. The user can select a particular
path and, for instance, analyze the state variable evalu-
ations for selected nodes along this path. An important
feature is the highlighting of the paths which are most
responsible for the failure. The size of the symbol
representing a state and the font size of a transition label
are proportional to the probability of reaching an failure
state through the respective state or transition. In Figure3
we see three paths which are very much highlighted in
this way compared to other paths. The first path (Path
0) consists of one transition with the actionMProcFail
which models the failure of the main processor. The



Fig. 1. Visualization of the Embedded Control System model.

second path (Path 1) starts withIProcFail, which in-
dicates the failure of the input processor I, followed by
Timeoutactions representing the unavailability of input
data. The third path (Path 2) is the path which starts
with OProcFail representing the failure of the output
processor O. This indicates that a major portion of the
failure probability flows along these paths, indicating that
a promising approach to make the system more reliable
is to improve the reliability of the processors I, O and M.
Conversely, it would not be effective to try to improve the
reliability of the sensors, actuators or the communication
bus.

We also notice another two failure paths which are
interesting although they are not emphasized as much
as the above mentioned three paths. The first of these is
the path starting with the actionIProcTransFail(Path 3),
which models a transient failure of the input processor.

The other is the one starting withOProcTransFail(Path
4), which models a transient failure of the input or output
processor. This means that transient failures of the I/O
processors represent further causal factors for the error.
Such transient failures can be rectified automatically by
the processor rebooting itself. However, the rate of reboot
seems to be too low. Hence, speeding up the reboot in
case of a transient fault is a further measure to increase
the reliability of the system. Note that this change to the
system has less impact than improving the reliability of
the processors I, O and M.

A further visualization in DIPRO that aids in debug-
ging is the visualization of the development of variable
valuations along execution paths of the model. This fea-
ture is aiming at identifying causal factors for property
violations that are to be found in the development of
variable valuations. In Figure 2 we depict bar charts



(a) Status of the input processor (variablei) (b) Status of the output processor (variableo)

(c) Status of the main processor (variablem) (d) Communication failure count (variablecount)

Fig. 2. Visual analysis of some variable valuations along primary counterexample paths

to show the evolution of the valuation of some state
variables along the five paths described above. From
Figures 2(a) and 2(b) we can derive that the variablei
in path 3 (yellow bars) and the variableo in path 4 (pink
bars) drop to 1. In the PRISM model this phenomenon
is caused by a transient failure of I and O. We can also
observe thati along path 1 (blue bars) ando along
path 3 (green bars) attain the value 0. This points at
a failure of I and O. Each of these failures causes a
failure in transferring the signals from the sensor or
sending instructions to the actuators, as can be learned
from the corresponding code in the PRISM models.
This is confirmed by Figure 2(d) where the variable
count, which stores the number of failing transfer tries,
increases for all paths 1, 2, 3 and 4. Figure 2(c) shows
that the variablem attains the value 0 for path 0 (red
bars). This represents a failure of the main processor M,
as can be seen by inspecting the PRISM code.

B. Workstation Cluster (WsC)

The second case study is given by a Prism model of
a dependable cluster of workstations as first presented
in [24]. The model is a CTMC which describes a
system consisting of two sub-clusters connected via a
backbone. Each sub-cluster consists ofN workstations
with a central switch that provides an interface to the
backbone. We setN = 10 in the case study. Each of
the components of the system (workstations, switches,

and backbone) can break down. The failure of different
components is indicated in the Prism model by the
following actions:

• The actionsFailWSLeft and FailWSRight indicate
the failure of one workstation in the left or the right
cluster, respectively.

• The actionFailLine represents the failure of the
backbone.

• The actionsFailToLeft and FailToRight represent
the failure of the switches of the left and the right
cluster, respectively.

In order to provide minimum quality of service (QoS),
at least75% of the workstations have to be operational
and connected to each other via operational switches and
the backbone.

The CTMC derived from the PRISM model consists
of 4180 states and 19552 transitions. We are interested
in the likelihood that the quality of service drops below
the minimum within 10 time units. In other words, we
are interested in the property

P =? [ true U≤ 10 !”minimum” ], (2)

where “minimum” is a label which asserts the mini-
mum QoS. Checking the property using Prism results in
a probability for the full model of3.252 · 10−6.

Our visualization of this model as given in Figure 3
shows the counterexample. It emphazises two paths,
namely the path〈FailToLeft, InspectToLeft, FailToRight〉



Fig. 3. Visualization of the Workstation Cluster System model.

and the path〈FailToRight, InspectToRight, FailToLeft〉.
This indicates that the most probable cause for the
QoS to drop below the minimum required value are the
failure of the left and the right switch, respectively. Other
actions like FailWSLeft and FailWSRightare depicted
using relatively small icons which means that they have
only a secondary influence on the property violation. We
can conclude that the appropriate approach for making
the system more dependable is not to invest effort in
increasing the reliability of the individual workstations
but to increase the reliability of the switches.

V. CONCLUSION

We presented an approach to the debugging of system
dependability models given as DTMCs and CTMCs
using an interactive visualization of counterexamples
to probabilistic reachability properties. The counterex-
amples are generated by an on-the-fly k-shortest-paths
search using our K∗ algorithm. The objective of the

interactive visualization that we use is to bring out in-
formation that is important to understand what execution
traces contribute most probability mass to the violation
of some property. The visualization also permits the
interactive filtering out of portions of the state graph,
and to follow the evolution of variable valuations along
execution paths. All of these measures are designed to
facilitate the discovery of causal factors in the property
violation. We have implemented the approach in the
DIPRO tool and have shown its usefulness using two
case studies.

In principle, the visualization approach can also be
applied to the explicit-state based search for counterex-
amples in Markov Decision Processes (MDPs) that we
presented in [25]. However, that approach searches for
a scheduler that maximizes the total probability with
every new offending path that is found. With each such
iteration the counterexample changes, and this makes
an incremental, step-wise visualization as the search



progresses not very informative. However, a visualization
of the final result of the search in a way that we have
described in this paper will be very helpful and can
be easily accomplished. We currently extend DIPRO to
handle MDPs in this way.

We currently work on extending the approach with a
variety of data mining and visual analytics techniques
in order to enhance the detection of property violation
causalities. An example for that is our current work
on visual comparison of correct and offending system
executions, and to automatically elicit information from
the sequences of variable valuations along counterex-
ample paths. We also work on techniques to display
the counterexamples on gigapixel displays such as the
Powerwall at the University of Konstanz in order to be
able to visualize large excerpts of complex state spaces.
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