
ar
X

iv
:0

90
2.

30
65

v1
 [

cs
.P

F
]

18
 F

eb
 2

00
9

The Multi-Branched Method of Moments for Queueing Networks

Giuliano Casale
SAP Research

TEIC Building, Shore Road
Newtownabbey, BT37 0QB, UK

giuliano.casale@ieee.com

Abstract

We propose a new exact solution algorithm for closed
multiclass product-form queueing networks that is several
orders of magnitude faster and less memory consuming
than established methods for multiclass models, such as the
Mean Value Analysis (MVA) algorithm. The technique is an
important generalization of the recently proposed Method
of Moments (MOM) which, differently fromMVA , recur-
sively computes higher-order moments of queue-lengths in-
stead of mean values.

The main contribution of this paper is to prove that the
information used in theMOM recursion can be increased
by considering multiple recursive branches that evaluate
models with different number of queues. This reformula-
tion allows to formulate a simpler matrix difference equa-
tion which leads to large computational savings with re-
spect to the originalMOM recursion. Computational analy-
sis shows several cases where the proposed algorithm is be-
tween1, 000 and10, 000 times faster and less memory con-
suming than the originalMOM, thus extending the range of
multiclass models where exact solutions are feasible.

1. Introduction

Product-form queueing networks [2] are popular
stochastic models used in capacity planning of com-
puter architectures and networks with the purpose of evalu-
ating the effect of resource sharing on scalability. In many
applications, notably modern multi-tier architectures host-
ing web sites and intranet applications, workloads are best
described as multiclass, that is, requests are assigned to dif-
ferent categories according to the statistical characteris-
tics of their demand at the different servers. Yet, multiclass
workloads are extremely challenging to analyze in queue-
ing networks even using state-of-the-art solution techniques
such as Mean Value Analysis (MVA) [23], the Convo-
lution Algorithm [6, 22], RECAL [13], LBANC [10], or

more recent methods based on the generating function ap-
proach [3,11,17]. The main problem is that multiclass mod-
els typically involve at least four or five classes, hundredsor
thousands of competing requests, and many servers. Yet, es-
tablished exact solution methods require computational
costs which are prohibitive for models of this size, e.g.,
memory requirements are usually of the order of many ter-
abytes or more. As a result, multiclass networks cannot be
usually solved with exact techniques and the focus is on ap-
proximation methods [1, 9, 14, 24], which yet cannot return
probabilistic measures because they ignore the normaliz-
ing constant of the Markov chain underlying the queueing
network.

Recently, we have proposed the Method of Moments
(MoM) [7, 8], a new exact technique for multiclass models
that recursively computes higher-order moments of queue-
length instead of mean values like the MVA approach. The
MoM approach is based on normalizing constants, thus
it can also compute probabilistic measures that cannot be
evaluated by the MVA algorithm. More importantly, the
higher-order moments approach is much more scalable that
the MVA approach, since the computational costs increase
at most log-quadratically with the total population in the
network, whereas they grow exponentially with the num-
ber of queues or classes in existing methods such as MVA,
RECAL, or LBANC. Although much more efficient than
MVA, the MoM approach becomes infeasible if the number
of queue and classes grows simultaneously [7], thus models
with many classes and many queues can be hard to analyze
even with MoM. In order to address this limitation, we pro-
pose in this paper a generalization of MoM. The proposed
approach is always more efficient that the original MoM in
all cases, yet the largest improvements are achieved on mod-
els with several queues and many classes which are infeasi-
ble in the original MoM.

Our idea consists in integrating the recursive equation
used in the Convolution Algorithm [6, 22] within the MoM
approach, which jointly considers in a linear matrix differ-
ence equation the exact recursive formulas for normalizing

http://arxiv.org/abs/0902.3065v1

constants used in RECAL [13] and LBANC [10], but not
those used in Convolution. By integrating a new formula in
the MoM matrix difference equation we obtain a new com-
putational scheme which evaluates higher-order moments
of queue-lengths on models with different populations and,
as a result of the generalization, also on models with differ-
ent number of queues. The main advantage of this approach
is that the size of the matrix recurrence equation solved at
each step of the recursion is much smaller that the one used
in the original MoM approach. This is a fundamental im-
provement since linear system solution required to solve the
matrix recurrence grows quadratically or cubically with the
coefficient matrix order. In particular, we show that even us-
ing a multi-branched recursion on hundreds or thousands
of models with different number of queues, the generalized
MoM is much more efficient than the original MoM which
does not consider models with different number of queues.

The remainder of this paper is organized as follows. Af-
ter giving background in Section 2, we use in Section 3 a
simple multiclass model to illustrate MoM and the princi-
ples of the generalization proposed in this paper. The anal-
ysis of the effects of the multi-branched recursion on mod-
els with different number of queues is derived in Section 4,
where we give in Theorem 1 and Theorem 2 the main theo-
retical results of this paper. Computational complexity of
the resulting algorithm is analyzed in Section 5. Finally,
Section 6 gives conclusions and outlines possible exten-
sions of this paper.

2. Background

We consider a closed product-form queueing network
with M distinct queues andR service classes. Jobs are
routed probabilistically through the queues where they re-
ceive service; after completing service, all jobs re-enterthe
network with a delay ofZr units of time which depends
on the request’s service classr = 1, . . . , R. The mean ser-
vice demand, i.e., the mean service time multiplied by the
mean number of visits [15], of class-r jobs at queuek is in-
dicated withDk,r. The number of jobs of classr is the in-
tegerNr; we define~N = (N1, N2, . . . , NR) as the popula-
tion vector of the model andN = N1 +N2 + . . .+NR is
the total number of jobs circulating in the network.

We consider the computation of mean performance in-
dices such as the mean throughputXr(~N) and the mean
response timeRr(~N) = Nr/Xr(~N) of class-r jobs; ad-
ditionally, for each queuek and classr, we are inter-
ested in computing the utilizationUk,r(~N) = Dk,rXr(~N),
the mean queue-lengthQk,r(~N), and the mean residence
timesRk,r(~N) = Qk,r(~N)/Xr(~N). These quantities are
uniquely determined if one knows how to compute ef-
ficiently throughput and mean queue-lengths, which are

given by the following ratios [20]:

Xr(~N) =
G(~m, ~N − ~1r)

G(~m, ~N)
, (1)

Qk,r(~N) =
Dk,rG(~m+ ~1k, ~N − ~1r)

G(~m, ~N)
, (2)

whereG(~m, ~N) denotes the normalizing constant of the
equilibrium state probabilities of the Markov chain under-
lying the queueing network [16],~1l indicates a vector com-
posed by all zeros except for a one in thelth position, and
~m ≡ (m1,m2, . . . ,mM) is the multiplicity vector such that
the multiplicity mk is the number of queues in the model
with identical service demandsDk,1, Dk,2, . . . , Dk,R. Ac-
cording to these definitions, e.g.,G(~m+~1k, ~N −~1r) repre-
sents the normalizing constant of a model augmented with
an additional copy of queuek and with a job of classr re-
moved. Because of the presence of replicated stations, the
total number of queues in the model isMtot =

∑M

k=1 mk,
among which onlyM have distinct demands.

The advantage of working with normalizing constants
instead of mean values is thatG(~m, ~N) enables the compu-
tation of probabilistic measures that provide fine-grain in-
formation about the equilibrium state of the network. For
instance, for the case~m = (1, 1, . . . , 1) where all queues
are distinct, the equilibrium state probabilities can be com-
puted as

Pr(~n1, ~n2, . . . , ~nM) =

∏M

k=1 C(~nk)
∏R

r=1 D
nk,r

k,r

G(~m, ~N)
, (3)

where~nk = (nk,1, nk,2, . . . , nk,R), beingnk,r the number
of class-r jobs in queuek in the considered state,C(~nk) =
(
∏

r nk,r!)/nk!, andnk = nk,1+nk,2+. . .+nk,R. Note that
quantities like (3) cannot be computed neither by the MVA
algorithm nor by local iterative approximations [1,9,14,24],
thus the normalization constant approach considered in this
paper is inherently more general that these methods.

2.1. Computational Solution

The analysis of queueing networks can be performed ef-
ficiently either by approaches that directly evaluate mean
queue-lengths and throughputs in a recursive fashion, such
as the Mean Value Analysis (MVA) algorithm [23], or by
computational methods for the normalizing constants in
(1), see [5]. The normalizing constant approach is usually
slightly more efficient, although it can suffer numerical is-
sues that do not apply to the mean value approach [19].
From a probabilistic perspective, the MVA algorithm and
some methods for the normalizing constant, such as the
LBANC algorithm [10], can be interpreted as a recursive

evaluation ofmeanqueue-lengths1 over models with differ-
ent population sizes. Yet, we have recently noted in [7, 8]
that recursively evaluating a set ofhigher-order momentsof
queue-lengths can be much more efficient computationally
than computing mean values, while still returning the exact
solution of the model. The Method of Moments (MoM) [7]
is an algorithm that implements this higher-order moment
approach and that we generalize for increased efficiency
in the next sections; thus we give here a brief overview of
the method. Due to limited space and thanks to wide avail-
ability of material on the subject, we point to the literature
for MVA [23], LBANC [10], RECAL [13], and Convolu-
tion [6,22]; comparative analyses can be found in [4,7].

2.1.1. Method of Moments (MoM) MoM computes the
normalizing constant by simultaneously considering into
a linear system of equations the following exact formu-
las for normalizing constants: theconvolution expression
(CE) [10,20]

G(~m+~1k, ~N) = G(~m, ~N) +

R
∑

r=1

Dk,rG(~m+~1k, ~N −~1r)

(4)
for all 1 ≤ k ≤ M , and thepopulation constraint(PC) [7,
13]

NrG(~m, ~N) = ZrG(~m, ~N − ~1r)

+

M
∑

k=1

mkDk,rG(~m+ ~1k, ~N − ~1r), (5)

for all 1 ≤ r ≤ R, which are also the fundamental recur-
rence relations employed in the LBANC and RECAL algo-
rithms. These recursions are subject to the following termi-
nation conditions: (i)G(~m, ~N) = 0 if any entry in ~N or
~m is negative; (ii)G(~0,~0) = 1, where~0 = (0, 0, . . . , 0).
In classic algorithms,G(~m, ~N) is obtained by recursively
evaluating one between (4) and (5) until termination con-
ditions are met. Following this approach, time and space
requirements grow roughly asO(NR) if (4) is used (e.g.,
LBANC) and asO(NM) if (5) is used (e.g., RECAL). In
practice, these costs are often prohibitive since in modeling
modern systems it is not difficult to haveN of the order of
hundreds or thousands andmin{M,R} ≥ 5 − 6 (see [18]
for a recent case study), which make the storage require-
ment of hundreds of gigabytes regardless of the recursion
used.

MoM avoids this memory inefficiency by observing that,
if one considers a certain subset of normalizing constants
~V (~N), which we callbasis, then this basis can be computed
recursively by jointly using (4) and (5) to define the matrix

1 For normalizing constant methods such as LBANC, the computation
focuses onun-normalizedmean queue-lengths [20].

difference equation

A(~N)~V (~N) = B(~N)~V (~N − ~1R), (6)

where ~V (~0) is known from the termination conditions of
(4)-(5), and the matricesA(~N) andB(~N) are square of
identical size. The matricesA(~N) andB(~N) are defined
by the coefficients of the equations (4)-(5) that relateall
and onlythe normalizing constants in~V (~N) with those in
~V (~N − ~1R). The basis is:

~V (~N) = {G(~m′, ~N), G(~m′, ~N−~11), . . . , G(~m′, ~N−~1R−1)

| ~m′ = ~m+ (δ1, . . . , δM), R− 1 ≤
∑M

k=1δk ≤ R},

which is the set of normalizing constants of models where
we have increased the elements of the vector~m by R or
R − 1 units in all possible ways and where the models are
evaluated over the populations~N , ~N − ~11, . . ., ~N − ~1R−1.
The multiplicity increase operation is equivalent to add new
queues to the model and, probabilistically, this can be in-
terpreted as computing binomial moments of queue-lengths
in the original queueing network [7, 8, 13]; hence one con-
cludes that a recursive computation of~V (~N) is also a recur-
sive evaluation of higher-order moments of queue-length.
Indeed, the knowledge of~V (~N) is sufficient to compute all
the normalizing constants used in (1), see [7]; thus, comput-
ing ~V (~N) is equivalent to solve the model.

The interest for (6) is that the matrix recursion is linear
and does not branch exponentially like (4)-(5), since we can
progressively remove the elements of~N without increas-
ing the size of the~V (·) vectors and until the termination
condition~V (~0) is reached. If the linear system (6) is non-
singular, one can compute~V (~N) = A

−1(~N)B(~N) by an
exact solution technique, like exact Gaussian eliminationor
the Wiedemann algorithm2 which prevent the critical effects
of round-off error accumulation when the recursion is eval-
uated hundreds or thousands of times and also avoid numer-
ical issues arising in normalizing constant computations [8].
If the Wiedemann algorithm is used, the computational cost
of linear system solution grows quadratically with the ba-
sis size and asO(N2 logN) with respect to the total popu-
lation, which is typically much less than theO(NR) and
O(NM) of classic methods. An example illustrating the
MoM algorithm is given below, together with intuition on
the MoM generalization proposed in this work.

2 See, e.g., the LinBox open source library
(http://www.linalg.org) for a free implementation of
the Wiedemann algorithm, exact Gaussian elimination, and other ex-
act methods that can be used to solve the MoM matrix difference
equation.

http://www.linalg.org

+11 +12

+11 +12+ 2·11 + 2·12

R-1 added queues

R added queues

Figure 1. Basis of normalizing constants ~V (~N) for a

model with M = 2 queues and R = 2 classes. Each circle

represents a group of R normalizing constants of mod-

els with populations ~N and ~N−11. Labels indicate the in-

crease of the multiplicity vector ~m relatively to that sub-

set of normalizing constants.

3. Motivating Example

We begin by illustrating the structure of (6) on a sim-
ple queueing network withM = 2 queues,R = 2 classes,
a population~N = (N1, N2), and where~m = (1, 1), i.e.,
all queues are distinct. To compact notation, let use denote
dz,k,s = (mk+z) ·Dk,s andG+a,b

c,d = G(~m+~1a+~1b, ~N−

~1c−~1d). Then, the linear system (6) has the following struc-
ture:

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

1 −D1,1 · · · · −1 · · ·
· · 1 −D1,1 · · · · −1 ·
· · 1 −D2,1 · · −1 · · ·
· · · · 1 −D2,1 · · −1 ·
· −d1,1,1 · −d0,2,1 · · N1 −Z1 · ·
· · · −d0,1,1 · −d1,2,1 · · N1 −Z1

· · · · · · N2 · · ·
· · · · · · · N2 · ·
· · · · · · · · N2 ·
· · · · · · · · · N2

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

| {z }

A(~N)

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

G+1,1

G
+1,1
1

G+1,2

G
+1,2
1

G+2,2

G
+2,2
1

G+1

G
+1

1

G+2

G
+2

1

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

| {z }

~V (~N)

=

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

D1,2 · · · · · · · · ·
· · D1,2 · · · · · · ·
· · D2,2 · · · · · · ·
· · · · D2,2 · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·

d1,1,2 · d0,2,2 · · · Z2 · · ·
· d1,1,2 · d0,2,2 · · · Z2 · ·
· · d0,1,2 · d1,2,2 · · · Z2 ·
· · · d0,1,2 · d1,2,2 · · · Z2

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

| {z }

B(~N)

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

G
+1,1
2

G
+1,1

1,2

G
+1,2
2

G
+1,2
1,2

G
+2,2
2

G
+2,2

1,2

G
+1

2

G
+1

1,2

G
+2

2

G
+2

1,2

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

| {z }

~V (~N−~1R)

where · indicates a zero element, and the four blocks of
the coefficient matrices represent from top: the CE (4) for
k = 1, the CE fork = 2, the PC (5) forr = 1, and the
PC for r = 2. The basis of normalizing constants is de-
picted in Figure 1. We remark that, for each element in the
figure, the basis includes both normalizing constants for the
populations~N and ~N − ~11, hence the total number of ele-
ments iscard(~V (~N)) = 10.
The fundamental observations presented in this paper to im-
prove MoM and, specifically, to considerably reduce the
cost of computing~V (~N), are as follows:

1. we first note that it is possible to add independent equa-
tions to the above linear system by taking in considera-
tion a generalization of the convolution expression (4)
explained later in the paper; this generalization pro-
vides independent information and makes the linear
system over-determined.

2. we show that, if the linear system is over-determined,
then the basis~V (~N) can be defined smaller, while still
preserving the capability of MoM of solving exactly
queueing networks. The basis size reduction leads to
remarkable computational savings compared to the
original MoM approach.

3. however, as we explain in Section 4, for models of
arbitrary size the additional independent information
comes at the price of additional recursions over mod-
els with different number of queues. We investigate in
the rest of the paper if accepting these additional recur-
sions is convenient with respect to the computational
savings implied by the basis size reduction.

The previous observations are further illustrated in the next
subsection.

3.1. Improved Computation of the Basis of Nor-
malizing Constants

We begin by observing that (4) can be seen as a special-
ization of the recursive equation used by the Convolution
Algorithm [6, 22], which we call thegeneralized convolu-
tion expression(GCE)

G(~m, ~N) = G(~m−~1k, ~N)+

R
∑

r=1

Dk,rG(~m, ~N−~1r), (7)

for all 1 ≤ k ≤ M . Here queues are removed through the
parameter~m−~1k, instead of being added as in (4). This im-
plies that a recursion involving (7) may also evaluate mod-
els which contain less queues than in the original queue-
ing network, while (4) operates on networks with multiplic-
ity ~m′ ≥ ~m only. However, by instantiating (7) on a model
with multiplicity ~m + ~1k instead of~m, it is found that (7)
becomes identical to (4), thus (4) specifies a subset of (7).
Whenever (7) is instantiated on models with less queues
than in the original network, the information provided by
(7) is independent with respect to the one provided by (4),
because the two equations are defined over models with dif-
ferent network structure. For example, equation (7) may be
added to the simple queueing network considered before if
instantiated as

G(~m+ 2 ·~11, ~N) = G(~m+ 2 ·~11 − ~12, ~N)

+

R
∑

r=1

D2,rG(~m+ 2 ·~11, ~N − ~1r). (8)

In this case, the normalizing constantG(~m+2 ·~11−~12, ~N)

lies outside the basis~V (~N), thus equation (8) does not re-
duce to a CE and provides independent information. Note
also thatG(~m+2 ·~11 −~12, ~N) is the normalizing constant
of a model where queue2 has been completely removed
since we have assumed~m = (1, 1), thus it can be computed
easily with closed-form formulas for the balanced network
case [21] and therefore the addition of (8) does not increase
the number of unknowns in the linear system.

The main idea investigated in this paper is that this in-
dependent information can be exploited effectively to re-
duce the size of the basis~V (~N). In fact, consider a new
basis ~Vnew(~N) composed by normalizing constants with
R − 2 ≤

∑

k mk ≤ R − 1 additional queues instead of
theR − 1 ≤

∑

k mk ≤ R as in the original definition of
~V (~N). Then, using (4), (5), and (8), we can define a lin-
ear system with square matrix of coefficients

2

6
6
6
6
6
4

1 −D1,1 · · −1 ·
· · 1 −D2,1 −1 ·
1 −D2,1 · · · ·
· −d0,1,1 · −d0,2,1 N1 −Z1

· · · · N2 ·
· · · · · N2

3

7
7
7
7
7
5

| {z }

Anew(~N)

2

6
6
6
6
6
6
4

G+1

G
+1

1

G+2

G
+2

1

G

G1

3

7
7
7
7
7
7
5

| {z }

~Vnew(~N)

=

2

6
6
6
6
6
4

·
·

G+1,+1,−2

·
·
·

3

7
7
7
7
7
5

| {z }

~V
−k
new(~N)

+

2

6
6
6
6
6
4

D1,2 · · · · ·
· · D2,2 · · ·

D2,2 · · · · ·
· · · · · ·

d0,1,2 · d0,2,2 · Z2 ·
· d0,1,2 · d0,2,2 · Z2

3

7
7
7
7
7
5

| {z }

Bnew(~N)

2

6
6
6
6
6
6
4

G
+1

2

G+1

1,2

G
+2

2

G
+2

1,2

G2

G1,2

3

7
7
7
7
7
7
5

| {z }

~Vnew(~N−~1R)

where the new vector~V −k
new(

~N) includes the normalizing
constantG+1,+1,−2 ≡ G(~m + 2 · ~11 − ~12, ~N) used in (8),
and the blocks of the coefficient matrix are from the top: the
CE for k = 1, the CE fork = 2, the GCE (8), the PC for
r = 1, and the PC forr = 2. The new linear system may be
written compactly as

Anew(~N)~Vnew(~N) = V −k
new(~N)+Bnew(~N)~Vnew(~N−~1R)

(9)
with square coefficient matrix, thus ifA−1

new(~N) existsthe
solution of the linear system (9) provides an alternative
way to recursively compute normalizing constants that is
cheaper than the original linear system (6), since (9) halves
the order of the coefficient matrix with respect to (6). We
stress that without (8) the new system (9) would be under-
determined, thus resorting to the GCE equations is critical
for this new approach.

It is also important to remark that, for queueing networks
larger than the one considered in this experiment, the nor-
malizing constants inV −k

new(
~N) may not be available from

closed-form expressions. In this case, the computation of
V −k
new(

~N) requires additional recursions over models with
different number of queues; we show in the next section

(1,1,0)

3 queues

m=

(1,1,1)

2 queues

1 queue
(1,0,0)

k=3

k=2

linear recursion

(a) Single GCE

(0,1,1)

m=

(1,1,1)

(0,1,0) (0,0,1)(1,0,0)

(1,1,0) (1,0,1)

k=2
k=3

k=1 k=3 k=2
k=1

k=3 k=2 k=1

multi-branched recursion

(b) Multiple GCEs

Figure 2. Structure of the MoM recursion after addition

of a single or multiple GCEs (7) on a model with M = 3

queues. The label k = 1, e.g., indicates a GCE instan-

tiated for k = 1 on all models with l added queues in

the redefined basis. Labels within a circle indicate the

multiplicity vector ~m on which the basis is defined, e.g.,

(1, 0, 1) is the model obtained from the original queue-

ing network by removing queue 2.

that, if multiple equations (7) are used simultaneously, this
yields a multi-branched recursive structure for the MoM al-
gorithm, where one needs to evaluate recursively also mod-
els with less queues that are not considered in the original
MoM recursion.

4. The Multi-Branched Method of Moments

The integration of the GCE (7) into the MoM linear sys-
tem can be done in different ways depending on the number
of equations (7) simultaneously instantiated into the matrix
difference equation. As observed earlier, integrating GCEs
into MoM allows to reduce the basis size; this reduction can
be specified by a decrease in the number of queues added to
the multiplicity vectors in the basis, which is equivalent to
considering queue-length moments of smaller order. Specif-
ically, if the new basisVnew(~N) includes models with only
l− 1 andl added queues, one can integrate a single or mul-
tiple GCEsfor each model withl additional queues only3.
A comparison of the recursion trees arising from the two al-
ternatives (single or multiple GCEs) is given in Figure 2.

Using a single GCE implies an additionalM recursions
which first remove from the model queueM , followed by
queueM−1, and so forth up to a trivial model with a single
queue. Instead, using all possible GCEs implies that the ad-
ditional recursions first considerall possible

(

M
M−1

)

models

with M−1 queues, followed byall possible
(

M
M−2

)

models

3 The GCE is not needed for models withl− 1 additional queues, since
their normalizing constants are all immediately computed from the ba-
sis for ~V (~N − 1R) using the PC of classR.

with M − 2 queues, and so on up to models with a single
queue. The latter approach appears to be the most expen-
sive, at least if one ignores the basis size reduction, because
it has a number of new recursions that grows combinatori-
ally instead of linearly. Yet, while limiting to a single GCE
seems a natural choice to control the number of new recur-
sions, we have noted that in practice the additional informa-
tion of the multiple GCEs implies a much larger reduction
of the basis than in the case of a single GCE. This in turn
provides computational savings often greater than the addi-
tional overheads imposed by the extra recursions. Thus, in
this section we investigate the trade-off imposed by differ-
ent types of integrations of GCEs and consider the general
case of simultaneously considering up toB, 1 ≤ B ≤ M ,
GCEs in the linear system. We also provide a complexity
analysis to evaluate the best choice of thisbranching fac-
tor B as a function of the other model parameters.

4.1. Basis Reduction

We now investigate the reduction of the basis cardinal-
ity as a function of the number of GCE equations added to
the MoM matrix difference equation. Indeed, the most in-
teresting cases are 1) when (7) is added for a single value of
k or 2) when all possible equations in (7) are added; in fact,
intermediate cases imply a combinatorial branching of the
recursion and thus grow in computational complexity sim-
ilarly to the second case. Let us define abasis of levell,
l ≥ 1, as the set

~Vl(~N) = {G(~m′, ~N), G(~m′, ~N−~11), . . . , G(~m′, ~N−~1R−1)

| ~m′ = ~m+ (δ1, . . . , δM), l − 1 ≤
∑M

k=1δk ≤ l}, (10)

which is the set of normalizing constants withl− 1 or l ad-
ditional replicated queues. According to this definition, in
MoM it is always ~V (~N) ≡ ~VR(~N), while the basis in the
example of the last section after the addition of the GCE
is ~Vnew(~N) ≡ ~VR−1(~N). A basis of levell has cardinal-
ity card(~Vl(~N)) =

(

M+l−1
l

)

R, thusa decrease, thanks to
the GCEs, ofl even by a few units implies a quick combina-
torial reduction of the number of elements in the basis. The
next theorems are the fundamental result of this paper and
exactly quantify the amount of this reduction.

Theorem 1. The inclusion in the MoM matrix difference
equation (6) of the GCEs (7) fork = 1, . . . ,M on all mod-
els havingl additional queues in the basis~Vl(~N) allows to
define a linear system of the type

Al(~N)~Vl(~N) = ~V −k
l (~N) +Bl(~N)~Vl(~N − ~1R), (11)

which has more equations than unknowns if
l ≥ max{1, R − M}. Therefore, the basis has mini-
mum cardinality forl = max{1, R−M}.

Proof. A basis of level l has
(

M+l−1
l

)

R normaliz-
ing constants, while the total number of CEs and PCs
is
(

M+l−2
l−1

)

(M + R − 1) since there existM CEs and

R − 1 PCs for each of the
(

M+l−2
l−1

)

normalizing con-
stant with l − 1 additional queues and all other possi-
ble CEs and PCs require constants outside the basis. Thus
we have that, in absence of GCEs, there are more equa-
tions than unknowns in the matrix difference equation if
(

M+l−2
l−1

)

(M + R − 1) ≥
(

M+l−1
l

)

R, which is true for
all l ≥ R. In particular,l = R gives the minimum car-
dinality of the basis and for this reason it is the choice
done by MoM for its basis~V (~N) ≡ ~VR(~N) which ig-
nores the GCEs. We now add to the previous condi-
tion the number of additional GCEs which do not specialize
into CEs and that we can formulate for models withl addi-
tional queues, which is

∑min{M,l}
h=1

(

M
h

)(

l−1
l−h

)

(M−h). This
can be explained as follows. Consider a model with normal-
izing constant in~Vl(~N) and where we have addedl queues.
Denote byh the number of distinct queues among thel
queues we have added. It is possible to see that removing
any of theseh queues using a GCE involves only normaliz-
ing constants withl−1 added queues that are already in the
bases~Vl(~N) and~Vl(~N−~1R), thus these specific GCE equa-
tions are identical to the CEs and do not provide indepen-
dent information. Therefore, for a model withh distinct ad-
ditional queues, onlyM − h GCEs are different from
the existing CEs. Note that there are

(

M
h

)

ways of choos-

ing theh distinct queues and
(

h+(l−h)−1
l−h

)

=
(

l−1
l−h

)

ways
of addingl queues to the model chosen among theseh dis-
tinct ones under the constraint that each of theh queues is
chosen at least once. Combining these expressions gives
the number of GCEs that are not CEs, which simpli-
fies to

∑min{M,l}
h=1

(

M
h

)(

l−1
l−h

)

(M − h)

=
(

M+l−2
l−1

)

(M+R−1) =
(

M+l−2
l

)

M, where the first pas-
sage follows by Vandermonde convolution [12].

Adding the number of GCEs that are not CEs, we evalu-
ate the following condition for (11) to have more equations
than unknowns

(

M+l−2
l

)

M +
(

M+l−2
l−1

)

(M +R− 1)

≥
(

M+l−1
l

)

R. Suppose firstR > M + 1 and thusl =
max{1, R − M} = R − M , then we consider the con-
dition

(

R−2
R−M

)

M +
(

R−2
R−M−1

)

(M + R − 1) ≥
(

R−1
R−M

)

R

which using the property of binomial coefficients
(

n
k

)

=
(

n−1
k

)

+
(

n−1
k−1

)

on the right hand side gives
(

R−2
R−M

)

M +
(

R−2
R−M−1

)

(M+R−1) ≥
(

R−2
R−M

)

R+
(

R−2
R−M−1

)

R that sim-

plifies to
(

R−2
R−M−1

)

(M − 1) ≥
(

R−2
R−M

)

(R − M) which is
actually an equality because, after expanding the binomial
coefficients, both sides are found identical. Hence, since
l = R −M always returns an equality between number of
equations and number of unknowns, it is easy to verify that
l < R − M would always give an under-determined sys-
tem and thusl = R−M gives the minimum allowable ba-

sis size for the caseR > M + 1.
Consider now the other caseR ≤ M+1wherel takes the

minimum possible valuel = max{1, R−M} = 1, we have
then

(

M
1

)

(M − 1)+
(

M−1
0

)

(M +R− 1) ≥
(

M
1

)

R which is
equivalent toM(M−1)+(M+R−1) ≥ MR and assum-
ing the worst caseR = M +1 we getM(M − 1)+ 2M ≥
M(M +1) which is always true because the two sides sim-
plify to the same identical value. This means that the lin-
ear system is always square if we use the minimum value
l = 1 whenR ≤ M + 1.

We can summarize the above findings saying thatl =
max{1, R − M} always implies aAl(~N) matrix that is
square or over-determined and that smaller values ofl in-
stead result in under-determined systems for certain values
of M andR. This concludes the proof of the theorem.

Theorem 2. The inclusion of a single GCE (7) for givenk
in the MoM matrix difference equation (6) allows to define
a linear system similar to (11), but which has more equa-
tions than variables ifl ≥ max{1, R − 1}. In particular,
the basis has minimum cardinality forl = max{1, R− 1}.

Proof. The proof differs from that of Theorem 1 for the
number of GCE equations that are not CEs. Suppose that
GCEs for givenk are used, and assume without loss of gen-
erality that the GCE of stationk = M is the one included
in the matrix difference equation. Then the number of GCEs
that are not CEs is

min{M,l}
∑

h=1

(

M

h

)(

l − 1

l − h

)

−

min{M−1,l−1}
∑

h=1

(

M

h

)(

l − 1

l − h

)

,

where the left term follows similarly to the number of GCEs
in Theorem 1, but for the case where one GCE is added,
instead ofM , to the models in~Vl(~N) with l additional
queues. The right term counts instead the number of times
this GCE is identical to an existing CE. The above ex-
pression becomes simpler thanks to Vandermonde convo-
lution [12] and gives that we have more equations than un-
knowns if

(

M+l−2
l

)

+
(

M+l−2
l−1

)

(M +R−1) ≥
(

M+l−1
l

)

R.

Now using
(

n
k

)

=
(

n−1
k

)

+
(

n−1
k−1

)

on the right hand side we

get
(

M+l−2
l

)

+
(

M+l−2
l−1

)

(M + R − 1) ≥
(

M+l−2
l

)

R +
(

M+l−2
l−1

)

R, which is equivalent to
(

M+l−2
l−1

)

(M − 1) ≥
(

M+l−2
l

)

(R−1). and expanding the binomial coefficients it
is found that the two sides are identical ifl = max{1, R−1}
which completes the proof.

The results in Theorem 1 and Theorem 2 show that: (1)
if all GCEs are added to the MoM matrix difference equa-
tion, then the basis level can be decreased by up toM units;
(2) if a single GCE is used, the basis level can instead be
decreased by a single unit. Following the same line of the
proofs of Theorem 1 and Theorem 2 it is then straightfor-
ward to show the following corollary.

Corollary 1. If B GCEs,1 ≤ B ≤ M , are added to the ma-
trix difference equation, then the basis can be decreased by
up toB levels and the minimal basis size is obtained with
the basis levell = min{1, R−B}.

The next section investigates the computational implica-
tions of the last result.

5. Computational Complexity

Corollary 1 enables the evaluation of the optimal choice
of thebranching factorB as a function of the model size.
In practice, we are interested to understand when the addi-
tional recursions implied by a branching factorB give an
overhead that is less that the savings implied by the reduc-
tion of the basis level froml = R of the original MoM to
l = min{1, R−B} of MoM with GCEs.

We first observe that ifB GCEs are used in the MoM lin-
ear system, then the basis~V −k

l (~N) in (11) is computed re-
cursively fromB bases of models with a queue less. These
models haveM−1 queues, thus the branching factor in this
case is upper bounded byB ≤ M − 1. That is, the maxi-
mum number of GCEs added to the linear system changes
according to the distanced, d = 0, . . . ,M − 1, in the re-
cursion tree from the root (i.e., the original model). For
d = 0, . . . , B − 1, only up tod GCEs can be added to the
linear system, while for distancesd = B, . . . ,M we can al-
ways addB GCEs. This can be seen immediately from Fig-
ure 2, where the number of GCE equations instantiated for
a model with three queues are three (k = 1, k = 2, and
k = 3), two for a model with two queues, and they decrease
progressively during the recursion.

Starting from the previous consideration, we analyze be-
low the computational complexity of MoM with GCEs for
the two limit casesB = 1 andB = M , and provide discus-
sion about the intermediate cases1 < B < M at the end of
this subsection.

Time Requirements. If B = 1, thenV −k
l (~N) is com-

puted byM recursions. During thedth recursive stepd =
0, . . . ,M − 1, the model hasM − d queues; the basis is al-
ways of levell = R − 1 for all steps. Assuming quadratic
costs in the solution of the linear system, e.g., using a
method like the Wiedemann algorithm, we have that the
time for computing~V (~N) from ~V (~N − ~1R) grows as

M−1
∑

d=0

((

M − d+R − 2

R − 1

)

R

)2

Sd
exact, (12)

where the term between parenthesis is the coefficient matrix
order in (11) and

Sd
exact ≈ (N log(M − d+N))

(

M − d+R − 2

R− 1

)

R

2 4 6 8 10

2
4

6
8

10
0

10

20

M

MOM+GCE − B=1

RT
im

e
R

eq
ui

re
m

en
ts

 (
lo

g 10
(f

lo
ps

))

2 4 6 8 10

2
4

6
8

10
0

10

20

M

MOM+GCE − B=M

RT
im

e
R

eq
ui

re
m

en
ts

 (
lo

g 10
(f

lo
ps

))

2 4 6 8 10

2
4

6
8

10
0

10

20

M

Original MOM

RT
im

e
R

eq
ui

re
m

en
ts

 (
lo

g 10
(f

lo
ps

))

Figure 3. Time requirements of MoM and the divide-and-conquer MoM for different number of queues M and number of ser-

vice classes R. All queues are assumed distinct. The results indicate that assuming a branching level B = M is far supe-

rior to B = 1, unless a small number of queues is considered in the model (M ≤ 4). The total population in the network is set

to N = 100.

is the overhead of exact algebra for a model withM − d
queues and assuming that the linear system solver uses mul-
tiprecision arithmetic [7]. In the expression (12) we have
ignored the exact number of iterations of the solution algo-
rithm and thus the expression may be regarded as a cost per
iteration of the linear system solver.

In the case where we use all possible GCEs, it isB = M
at the first recursive step, thenB = M − 1 at the sec-
ond step, andB = M − d at thedth recursive step4. In
addition, the level used at thedth step of the recursion is
l ≡ l(d) = max{1, R−M + d}, which is thus a function
of the distanced from the root of the recursion tree. Follow-
ing these observations, the time requirements grow as

M−1
∑

d=0

(

M

M − d

)((

M − d+ l(d)− 1

l(d)

)

R

)2

Sd
exact

wherel(d) = max{1, R−M + d} and the term
(

M
M−d

)

ac-
counts for the combinatorial branching of the recursion and
is the number of all possible queueing network models with
M − d distinct queues chosen among the initialM . For ex-
ample, whenM < R

M−1
∑

d=0

(

M

M − d

)((

R− 1

R−M + d

)

R

)2

Sd
exact

which is significantly smaller than (12) since the binomial
coefficient does not longer depend on the sum ofM andR.

4 This observation holds true under the assumption that the model is
composed initially by queues that have all multiplicitymk = 1, i.e.,
which are all distinct. The case of models with replicated queues has
more favorable computational costs if the total number of queues (in-
cluding the non-replicated ones) is the same, thus our analysis is a
worst-case scenario whenM is interpreted as the total number of
queues instead of the number of distinct ones.

Similarly to the caseB = 1, the time requirements ex-
pression is a cost per solver iteration and the term raised to
square is the linear system order. Compared to the above ex-
pressions, the original MoM algorithm has a time require-
ment per iteration of

((

M +R− 1

R

)

R

)2

Sd
exact. (13)

Figure 3 quantifies the savings per solver iteration of the
new algorithm forB = 1 andB = M compared to the
costs of the original MoM. Since the costs are dependent on
M , R, and the population sizeN , we simplify the evalua-
tion and consider the variation ofM andR under a quite
largeN = 100. The cost surfaces indicate that the algo-
rithm withB = M is typically the most efficient except for
very low values ofM where it is much more expensive than
B = 1 and the original MoM, although the cost per iteration
remains quite small. Overall, the savings of theB = 1 case
are quite limited compared to the original MoM, while mas-
sive cost reduction is achieved with the multi-branched case
B = M . This is quite counter-intuitive, since one would at
first expect that the wide recursion tree in Figure 2(b) is
a major source of computational cost compared to the lin-
ear recursive structure in Figure 2(a). Yet, Figure 3 indicates
that, for multiclass models that can be solved in acceptable
times with commonly-available hardware, the cost of the
combinatorial branching in Figure 2(b) is not yet a perfor-
mance bottleneck and it is justified by the massive compu-
tational saving of the basis size reduction.

Space Requirements. The space requirement of the case
B = 1 is upper bounded by the cost of storing the linear
system (11) in memory when it is largest, i.e., for the origi-

2 4 6 8 10

2
4

6
8

10
0

10

20

M

MOM+GCE − B=1

RS
pa

ce
 R

eq
ui

re
m

en
ts

 (
lo

g 10
(c

el
ls

))

2 4 6 8 10

2
4

6
8

10
0

10

20

M

MOM+GCE − B=M

RS
pa

ce
 R

eq
ui

re
m

en
ts

 (
lo

g 10
(c

el
ls

))

2 4 6 8 10

2
4

6
8

10
0

10

20

M

Original MOM

RS
pa

ce
 R

eq
ui

re
m

en
ts

 (
lo

g 10
(c

el
ls

))

Figure 4. Space requirements of MoM and the divide-and-conquer MoM for different number of queues M and number of

service classes R. The interpretation of the results is qualitatively similar to the one for the time requirements in Figure 3,

with the best branching level being B = M unless the number of queues M is small. The total population in the network is

set to N = 100.

nal model withM queues. This is approximately given by

2

((

M +R− 2

R − 1

)

R

)2

+ 3

((

M +R− 2

R− 1

)

R

)

SR−1
nc .

(14)
The evaluation of memory requirements in the caseB =

M is similar, but requires to take into account the width of
the multi-branched recursion tree, since all basis vectorsfor
models withk − 1 queues should be available before the
evaluation of models withk queues. Thus, the memory oc-
cupation is

max
d=1,...,M

(

M

M − d

)

(

2

((

M − d+ R− 2

R− 1

)

R

)2

+ 2

((

M − d+R− 2

R− 1

)

R

)

Snc

)

, (15)

where the first term is the cost of storingA(~N) andB(~N)
for the currently evaluated linear system, while the second
term accounts for the basis for populations~N and ~N − ~1R
of all models at distanced from the root of the recursion.

Finally, the computational costs of the original MoM are
given by [7]

2

((

M +R− 1

R

)

R

)2

+ 3

((

M +R− 2

R− 1

)

R

)

SR
nc,

(16)
which is quite similar to the cost of the caseB = 1.

The comparison of the space requirements of the three
different methods is shown in Figure 4 for different val-
ues of M and R; we set again the total population to
N = 100. Results are qualitatively similar to the time re-
quirement case: the GCE equations provide the largest sav-
ings in space requirements compared to the original MoM

only if B = M . The caseB = 1 is 1 − 2 orders of mag-
nitude faster then the original MoM for models with few
queues (M ≤ 4), while asM increases the algorithm with
B = M scales much better. In particular, for the most chal-
lenging model withM = 11 andR = 11, the computa-
tional saving of the modified algorithm withB = M is
about four orders of magnitude over the original MoM, thus
making the case that the inclusion of the GCE equations is
highly-valuable also for the space requirements.

Intermediate cases1 < B < M . Following the result in
Corollary 1 it is immediately found that the size of the basis
for intermediate choices of the branching levelB is always
bounded by the choicesB = 1 andB = M and computa-
tional requirements are typically within those of these limit
cases. For example, assume thatB queues are chosen for re-
moval and the multi-branched recursion is operated only on
these queues such that the recursion is terminated by solv-
ing with the original MoM models withM − B queues. In
this case, we have found that the computational costs of the
choicesB = 1 andB = M are always better than these in-
termediate cases, unlessM − B = 1. Yet, in this more fa-
vorable cases, the costs of the intermediate choice ofB have
the same order of magnitude of the best betweenB = 1
andB = M , therefore the savings of these intermediate
cases seem marginal and do not motivate a specialized im-
plementation of the algorithm. As a result, we believe that
the multi-branched recursion approach is best implemented
with a choiceB = M which provides the biggest savings
with respect to the original MoM on the largest number of
choices ofM andR.

Comparison with MVA Algorithm. As a final remark, re-
gardless of the branching levelB used, the computation of
~V (~N) from ~V (~0) has anO(N2 logN) time complexity and
anO(N logN) space complexity as the total populationN

grows. Since MVA isO(NR) in time and space complex-
ities, it is immediately clear that for sufficiently large pop-
ulations MoM is always faster and less memory consum-
ing than MVA. Savings are obtained by MoM already for
populations composed by few tens of jobs [7]. Therefore,
since the original MoM is already much more scalable than
MVA, it is an immediate consequence that the generalized
MoM with GCEs, which always performs better than MoM,
will be always several orders of magnitude more efficient
than MVA or other methods such as RECAL or LBANC.
We point to [7] for a comparison of the original MoM with
these methods supporting the statements in this subsection.

6. Conclusions

In this paper, we have presented a generalization of the
Method of Moments (MoM), a recently proposed algorithm
for the exact analysis of multiclass queueing network mod-
els which are widely used in capacity planning of computer
systems and networks [7,8]. We have integrated in the MoM
equations also the recursive formula used in the Convolu-
tion Algorithm [6,22], here called the generalized convolu-
tion equation (GCE). We have shown that using the GCE
in MoM significantly changes the structure of its recursion
leading to the evaluation of models with different number of
queues and which can be solved much more efficiently than
the larger models considered by MoM. As a result, the com-
putational costs in time and space of the generalized algo-
rithm are several orders of magnitude smaller than the orig-
inal MoM recursion.

As a possible extension of this work, we believe that the
Convolution Algorithm equation considered in this paper
could benefit also the Class-Oriented Method of Moments
(CoMoM) algorithm presented in [8]. This algorithm can
be seen as the dual of the MoM algorithm, where the basis
of normalizing constants considered in the recursion is de-
fined in such a way that a different tradeoff between number
of queues and classes is considered and this favors the solu-
tion of models with many classes compared to the original
MoM. The generalization of CoMoM with GCEs could pos-
sibly further enhance its scalability on models with many
classes.

References

[1] Y. Bard. Some extensions to multiclass queueing network
analysis. In M. Arato, A. Butrimenko, and E. Gelenbe, edi-
tors,Proc. of the 3rd Int’l Symp. on Model. and Performance
Evaluation of Comp. Syst., pages 51–62, 1979.

[2] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios.
Open, closed, and mixed networks of queues with different
classes of customers.JACM, 22(2):248–260, 1975.

[3] A. Bertozzi and J. McKenna. Multidimensional residues,
generating functions, and their application to queueing net-
works. SIAM Review, 35(2):239–268, 1993.

[4] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi.Queue-
ing Networks and Markov Chains. Wiley and Sons, 1998.

[5] S. C. Bruell and G. Balbo.Computational Algorithms for
Closed Queueing Networks. North-Holland, 1980.

[6] J. P. Buzen. Computational algorithms for closed queue-
ing networks with exponential servers.Comm. of the ACM,
16(9):527–531, 1973.

[7] G. Casale. An efficient algorithm for the exact analysis of
multiclass queueing networks with large population sizes.In
Proc. of joint ACM SIGMETRICS/IFIP Performance, pages
169–180. ACM Press, 2006.

[8] G. Casale. CoMoM: Efficient class-oriented evaluation of
multiclass performance models.IEEE Trans. on Software
Engineering, to appear in 2009.

[9] K. M. Chandy and D. Neuse. Linearizer: A heuristic al-
gorithm for queuing network models of computing systems.
Comm. of the ACM, 25(2):126–134, 1982.

[10] K. M. Chandy and C. H. Sauer. Computational algorithms
for product-form queueing networks models of computing
systems.Comm. of the ACM, 23(10):573–583, 1980.

[11] G. L. Choudhury, K. K. Leung, and W. Whitt. Calculat-
ing normalization constants of closed queuing networks by
numerically inverting their generating functions.JACM,
42(5):935–970, 1995.

[12] D. J. A. Cohen.Basic Techniques of Combinatorial Theory.
John Wiley and Sons, 1978.

[13] A. E. Conway and N. D. Georganas. RECAL - A new
efficient algorithm for the exact analysis of multiple-chain
closed queueing networks.JACM, 33(4):768–791, 1986.

[14] P. Cremonesi, P. J. Schweitzer, and G. Serazzi. A unifying
framework for the approximate solution of closed multiclass
queuing networks. IEEE Trans. on Computers, 51:1423–
1434, 2002.

[15] P. J. Denning and J. P. Buzen. The operational analysis
of queueing network models.ACM Computing Surveys,
10(3):225–261, 1978.

[16] W. J. Gordon and G. F. Newell. Closed queueing systems
with exponential servers.Oper. Res., 15(2):254–265, 1967.

[17] P. G. Harrison and S. Coury. On the asymptotic behaviourof
closed multiclass queueing networks.Performance Evalua-
tion, 47(2):131–138, 2002.

[18] S. Kounev and A. Buchmann. Performance modeling and
evaluation of large-scale j2ee applications. InProc. of CMG
Conference, pages 273–283, 2003.

[19] S. Lam. Dynamic scaling and growth behavior of queue-
ing network normalization constants.JACM, 29(2):492–513,
1982.

[20] S. Lam. A simple derivation of theMVA and LBANC algo-
rithms from the convolution algorithm.IEEE Trans. on Com-
puters, 32:1062–1064, 1983.

[21] D. Mitra and J. McKenna. Asymptotic expansions for
closed markovian networks with state-dependent service
rates.JACM, 33(3):568–592, July 1985.

[22] M. Reiser and H. Kobayashi. Queueing networks with mul-
tiple closed chains: Theory and computational algorithms.
IBM J. Res. Dev., 19(3):283–294, 1975.

[23] M. Reiser and S. S. Lavenberg. Mean-value analysis of
closed multichain queueing networks.JACM, 27(2):312–
322, 1980.

[24] P. J. Schweitzer. Approximate analysis of multiclass closed
networks of queues. InProc. of the Int’l Conf. on Stoch. Con-
trol and Optim., pages 25–29, Amsterdam, 1979.

	Introduction
	Background
	Computational Solution
	Method of Moments (MoM)

	Motivating Example
	Improved Computation of the Basis of Normalizing Constants

	The Multi-Branched Method of Moments
	Basis Reduction

	Computational Complexity
	Conclusions

