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Abstract more recent methods based on the generating function ap-
proach[3,11,17]. The main problem is that multiclass mod-
We propose a new exact solution algorithm for closed els typically involve at least four or five classes, hundeds
multiclass product-form queueing networks that is several thousands of competing requests, and many servers. Yet, es-
orders of magnitude faster and less memory consumingtablished exact solution methods require computational
than established methods for multiclass models, such as theosts which are prohibitive for models of this size, e.g.,
Mean Value Analysig VA ) algorithm. The techniqueisan memory requirements are usually of the order of many ter-
important generalization of the recently proposed Method abytes or more. As a result, multiclass networks cannot be

of Moments MoM) which, differently fromMVA , recur- usually solved with exact techniques and the focus is on ap-
sively computes higher-order moments of queue-lengths inproximation methods [1, 9, 14, 24], which yet cannot return
stead of mean values. probabilistic measures because they ignore the normaliz-

The main contribution of this paper is to prove that the ing constant of the Markov chain underlying the queueing
information used in thévloM recursion can be increased network.
by considering multiple recursive branches that evaluate Recently, we have proposed the Method of Moments
models with different numb_er of queues. _Th|s reformula- (MoM) [7, 8], a new exact technique for multiclass models
tion allows to formulate a simpler matrix difference equa- 4t recursively computes higher-order moments of queue-

tion which leads to large computational savings with re- gngih instead of mean values like the MVA approach. The
spectto the originaM oM recursion. Computationalanaly-  pom approach is based on normalizing constants, thus

sis shows several cases_where the proposed algorithm is bej; can also compute probabilistic measures that cannot be
tweent, 000 and10, 000 times faster and less memory con- eyajyated by the MVA algorithm. More importantly, the
suming than the original oM, thus extending the range of  pjgher-order moments approach is much more scalable that
multiclass models where exact solutions are feasible. the MVA approach, since the computational costs increase
at most log-quadratically with the total population in the
network, whereas they grow exponentially with the num-
; ber of queues or classes in existing methods such as MVA
1. Intr ion >~ ’
oductio RECAL, or LBANC. Although much more efficient than
Product-form queueing networks [2] are popular MVA, the MoM approach becomes infeasible if the number

stochastic models used in capacity planning of com- ofqueue and classes grows simultaneously [7], thus models
puter architectures and networks with the purpose of evalu-With many classes and many queues can be hard to analyze
ating the effect of resource sharing on scalability. In many €Ven with MoM. In order to address this limitation, we pro-
applications, notably modern multi-tier architecturestao ~ POS€ in this paper a generalization of MoM. The proposed
ing web sites and intranet applications, workloads are best2PProach is always more efficient that the original MoM in
described as multiclass, that is, requests are assignéid to d all cases, yetthe largestimprovements are achieved on mod-
ferent categories according to the statistical charasteri ©IS With several queues and many classes which are infeasi-
tics of their demand at the different servers. Yet, mulssla  P!€ in the original MoM.

workloads are extremely challenging to analyze in queue- Our idea consists in integrating the recursive equation
ing networks even using state-of-the-art solution techesq  used in the Convolution Algorithm [6, 22] within the MoM
such as Mean Value Analysis (MVA) [23], the Convo- approach, which jointly considers in a linear matrix differ
lution Algorithm [6, 22], RECAL [13], LBANC [10], or ence equation the exact recursive formulas for normalizing
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constants used in RECAL [13] and LBANC [10], but not given by the following ratios [20]:
those used in Convolution. By integrating a new formula in

the MoM matrix difference equation we obtain a new com- = G(m, N-T1,)
- - - X (N) = ., (1)
putational scheme which evaluates higher-order moments G(m, N)
of queue-lengths on models with different populations and, Y DG4 Te N —T
as a result of the generalization, also on models with differ Qp.r(N) =220 (Z(Jz %;) ) , (2)
m7

ent number of queues. The main advantage of this approach

is that the size of the matrix recurrence equation solved at

each step of the recursion is much smaller that the one used/Nere G (7, N) denotes the normalizing constant of the
in the original MoM approach. This is a fundamental im- equnlbrlum state probabilities of .the. Markov chain under-
provement since linear system solution required to solee th Ying the queueing network [16], indicates a vector com-
matrix recurrence grows quadratically or cubically wite th Posed by all zeros except for a one in thfe position, and
coefficient matrix order. In particular, we show that even us 7 = (71,2, ..., mas) is the multiplicity vector such that
ing a multi-branched recursion on hundreds or thousandg€ multiplicity iy, is the number of queues in the model
of models with different number of queues, the generalized With identical service demandSy.1, D2, . . ., Di,r. AC-
MoM is much more efficient than the original MoM which ~ cording to these definitions, e.gz(m + 15, N — 1,) repre-
does not consider models with different number of queues. Sents the normalizing constant of a model augmented with
The remainder of this paper is organized as follows. Af- @n additional copy of queueand with a job of class re-
ter giving background in Sectidd 2, we use in Secfibn 3 a moved. Because of the presence of _repllcatedMstatlons, the
simple multiclass model to illustrate MoM and the princi- total number of queues in the modelg,., = >, mx,
ples of the generalization proposed in this paper. The anal-2mong which onlyl/ have distinct demands.
ysis of the effects of the multi-branched recursion on mod- ~ The advantage of working with normalizing constants
els with different number of queues is derived in Sediibn 4, instead of mean values is th@{»i, V) enables the compu-
where we give in Theorefd 1 and Theorem 2 the main theo-tation of probabilistic measures that provide fine-grain in
retical results of this paper. Computational complexity of formation about the equilibrium state of the network. For
the resulting algorithm is analyzed in Sectidn 5. Finally, instance, for the cas& = (1,1,...,1) where all queues
Section[® gives conclusions and outlines possible exten-aré distinct, the equilibrium state probabilities can bmeo

sions of this paper. puted as

b oy I COOTLL DR
2. Background r(in, 2, ... finr) = N G

We consider a closed product-form queueing network whereriy, = (ng 1,12, - ., 7k r), beingn . the number
with M distinct queues andk service classes. Jobs are of classr jobs in queuet in the considered staté€;(7iy) =
routed probabilistically through the queues where they re- ([], ny »!)/ng!, andny = ng1+ng2+. . .+ni z. Note that
ceive service; after completing service, all jobs re-etlter  quantities like[(B) cannot be computed neither by the MVA
network with a delay ofZ, units of time which depends algorithm nor by local iterative approximations[1,9, 14],2
on the request’s service class= 1,..., R. The mean ser-  thus the normalization constant approach consideredsn thi
vice demand, i.e., the mean service time multiplied by the paper is inherently more general that these methods.
mean number of visits [15], of clagsjobs at queué is in-
dicated withDy, .. The number of jobs of classis the in-
tegerN,.; we defineN = (N1, Na, ..., Ng) as the popula-
tion vector of the model an®y = N1 + No + ...+ Ny is

2.1. Computational Solution

the total number of jobs circulating in the network. ' _The an_aIyS|s of queueing networks_ can be performed ef-

. ) . ficiently either by approaches that directly evaluate mean

~We consider the computation of mean performance in- 4,66 lengths and throughputs in a recursive fashion, such
dices such as the mean throughpt(V) and the mean as the Mean Value Analysis (MVA) algorithm [23], or by

response timek,(N) = N,/X.(N) of classr jobs; ad-  computational methods for the normalizing constants in
ditionally, for each queud: and classr, we are inter- () see [5]. The normalizing constant approach is usually
ested in computing the utilizatialiy (V) = Di.» X(N),  slightly more efficient, although it can suffer numerical is

the mean queue-lengt);. (), and the mean residence sues that do not apply to the mean value approach [19].
times Ry (N) = Q..(N)/X,(N). These quantities are  From a probabilistic perspective, the MVA algorithm and
uniquely determined if one knows how to compute ef- some methods for the normalizing constant, such as the
ficiently throughput and mean queue-lengths, which are LBANC algorithm [10], can be interpreted as a recursive



evaluation ofnearqueue—lengtlﬂbover models with differ-  difference equation

ent population sizes. Yet, we have recently noted in [7, 8]

that recursively evaluating a setlufjher-order momentsf ANV (N)=BMNV(N -1 (6)

gueue-lengths can be much more efficient computationally

than computing mean values, while still returning the exact

solution of the model. The Method of Moments (MoM) [7] WhereV( ) is known from the termlnatlon conditions of

is an algorithm that implements this higher-order moment &-(), and the matrices\ (N V) andB(N ) are square of

approach and that we generalize for increased efficiencyidentical size. The matrice (N V) andB(N) are defined

in the next sections; thus we give here a brief overview of by the coefficients of the equatiorls (#)-(5) that relate

the method. Due to limited space and thanks to wide avail-and onlythe normalizing constants iV (') with those in

ability of material on the subject, we point to the literatur V(N — 1r). The basis is:

for MVA [23], LBANC [10], RECAL [13], and Convolu-

tion [6, 22]; comparative analyses can be found in [4,7]. ‘7(]\7) {G( H’,]V),G( A’,N—ﬁ), B -,G(ﬁ/,ﬁ_TR—l)
| —

2.1.1. Method of Moments (MoM) MoM computes the ' =1+ (81,...,00m), R—1< Y0 8, < R},

normalizing constant by simultaneously considering into

a linear system of equations the following exact formu- which is the set of normalizing constants of models where

las for normalizing constants: theonvolution expression e have increased the elements of the vegtoby R or

(CE) [10, 20] R — 1 units in all possible ways and where the models are
R evaluated over the populatloﬂs, N — Ty, .. N — Thro1.

T T PP O The multiplicity increase operation is equivalent to add/ne
G 1g, N) = G(m, N Dy .G 1, N -1, o . ;
(7 + T, N) = G(mi, N) + ) Dy, G+ Ty, ) queues to the model and, probabilistically, this can be in-

= 4) terpreted as computing binomial moments of queue-lengths
forall 1 < k < M, and thepopulation constrain(PC) [7,  in the original queueing network [7, 8, 13]; hence one con-
13] cludes that a recursive computatiorlofV) is also a recur-
sive evaluation of higher-order moments of queue-length.
N,G(m ) Z,.G(m, N-1,) Indeed, the knowledge of (V) is sufficient to compute all
M the normalizing constants usedlif (1), see [7]; thus, comput

+ Z my Dy G(m + Ty, N = 1,.), (5) ing V() is equivalent to solve the model.
k=1 The interest for[(b) is that the matrix recursion is linear

forall 1 < r < R, which are also the fundamental recur- and does not branch exponentially like (#)-(5), since we can
rence relations employed in the LBANC and RECAL algo- Progressively remove the elements ®fwithout increas-
rithms. These recursions are subject to the following termi ing the size of the/’(.) vectors and until the termination
nation conditions: (|)G(m N) = 0 if any entry inN or conditionV(O) is reached. If the linear systelﬁ] (6) is non-
m is negative; (i)G(0,0) = 1, where0 = (0,0,...,0). singular, one can computé(N) = A~1(N)B(N) by an
In classic algorithms( (17, N) is obtained by recurswely exact solution technique, like exact Gaussian elimination
evaluating one betweehl(4) arid (5) until termination con- the Wiedemann algorittfwhich prevent the critical effects
ditions are met. Following this approach, time and space of round-off error accumulation when the recursion is eval-
requirements grow roughly a8(N %) if (4) is used (e.g.,  uated hundreds or thousands of times and also avoid numer-
LBANC) and asO(NM) if (B) is used (e.g., RECAL). In  icalissues arising in normalizing constant computati@hs [
practice, these costs are often prohibitive since in madeli  If the Wiedemann algorithm is used, the computational cost
modern systems it is not difficult to hawé of the order of of linear system solution grows quadratically with the ba-
hundreds or thousands andn{\, R} > 5 — 6 (see [18] sis size and a®(N?log N) with respect to the total popu-
for a recent case study), which make the storage requirelation, which is typically much less than ti@N*) and
ment of hundreds of gigabytes regardless of the recursionO(N*) of classic methods. An example illustrating the
used. MoM algorithm is given below, together with intuition on
MoM avoids this memory inefficiency by observing that, the MoM generalization proposed in this work.
if one considers a certain subset of normalizing constants
V(N), which we callbasis then this basis can be computed

recursively by jointly usingl(4) and(5) to define the matrix 2 See, eg, the  LinBox  open  source library

(http://www.linalg.org) for a free implementation of

the Wiedemann algorithm, exact Gaussian elimination, dheraex-

1 For normalizing constant methods such as LBANC, the coatiout act methods that can be used to solve the MoM matrix differenc
focuses oun-normalizedmean queue-lengths [20]. equation.
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Figure 1. Basis of normalizing constants V(i) for a
model with M = 2 queuesand R = 2 classes. Each circle
represents a group of R normalizing constants of mod-

els with populations N and N —1;. Labels indicate the in-
crease of the multiplicity vector  m relatively to that sub-
set of normalizing constants.

3. Motivating Example

We begin by illustrating the structure dfl(6) on a sim-
ple queueing network withi/ = 2 queuesk = 2 classes,
a populationN = (Ny, Ny), and where?, = (1,1), i.e.,
all queues are distinct. To compact notation, let use denote

1. we first note thatitis possible to add independent equa-
tions to the above linear system by taking in considera-
tion a generalization of the convolution expressidn (4)
explained later in the paper; this generalization pro-
vides independent information and makes the linear
system over-determined.

2. we show that, if the linear system is over-determined,

then the basi¥ (V) can be defined smaller, while still
preserving the capability of MoM of solving exactly
gueueing networks. The basis size reduction leads to
remarkable computational savings compared to the
original MoM approach.

3. however, as we explain in Sectibh 4, for models of

arbitrary size the additional independent information

comes at the price of additional recursions over mod-
els with different number of queues. We investigate in

the rest of the paper if accepting these additional recur-
sions is convenient with respect to the computational
savings implied by the basis size reduction.

+ab _ =7 TN . . . .
des = (mi+2) Dys @ndGey” = G(m+1a+10, N = The previous observations are further illustrated in the ne
1.—14). Then, the linear systerl(6) has the following struc- subsection.

ture:
- ) PR 3.1. Improved Computation of the Basis of Nor-
. " ot malizing Constants
T —Dgy 1 - —1 . G
’ +1,2
— S Sk vr & W AN We begin by observing thdfl(4) can be seen as a special-
di,1,1 do,2,1 N1 —Z1 G
~ - —donn - —dipa - - Ni—=Zi| |GY2? ization of the recursive equation used by the Convolution
o RGO gij Algorithm [6, 22], which we call thejeneralized convolu-
- Np - a2 tion expressiolfGCE)
L - N2 GT2
- - R
— N—— — — — — —
AN) V(N) G, N) = G(ii—Tp, N)+ Y Dy, G, N—1,), (7)
ro+1,1 =
Do . . . A gﬁl r=1
gm i - S S — Grie forall 1 < k < M. Here queues are removed through the
2,2 . . . oo . . o .
. « Das - . Gl*é’z parametern — 1y, instead of being added as i (4). This im-
= : : : o 2{2:2 plies that a recursion involvingl(7) may also evaluate mod-
Tz Tosz - 7z - 63231 els which contain less queues than in the original queue-
diaz - dozz - L Gt ing network, while[(#) operates on networks with multiplic-
do,1,2 di22 - - Zy - ar? . oy o K ..
| o di2.2 . 2] R ity m’ > m only. However, by instantiating’(7) on a model
- _Gj,i—, with multiplicity m + 1, instead ofm, it is found that[(¥)
B(N) V(N -Tn) becomes identical td¥(4), thusl (4) specifies a subsdilof (7).

o Whenever[(7) is instantiated on models with less queues
where- indicates a zero element, and the four blocks of {hap in the original network, the information provided by
the coefficient matrices represent from top: the CE (4) for (@) is independent with respect to the one providedby (4),
k =1, the CE fork = 2, the PC[(}) forr = 1, andthe  pecause the two equations are defined over models with dif-

PC forr = 2. The basis of normalizing constants is de- ferent network structure. For example, equatidn (7) may be
picted in Figuré L. We remark that, for each element in the g4ged to the simple queueing network considered before if
figure, the basis includes both normalizing constants fr th ystantiated as

populationsV and N — 17, hence the total number of ele-
ments iscard(V (N)) = 10.

The fundamental observations presented in this paper to im-
prove MoM and, specifically, to considerably reduce the

cost of computing/ (IV), are as follows:

G +2-11,N)=Gm+2-T, — To, N)
R
+) Dy, G +2- 11, N - 1,).

r=1

(8)



In this case, the normalizing constartm +2- 1, — 1o, 1\7)
lies outside the basig (), thus equatior{8) does not re-
duce to a CE and provides independent information. Note
also thatG(im + 2 - 11 — T, N) is the normalizing constant
of a model where queu has been completely removed
since we have assumed= (1, 1), thus it can be computed
easily with closed-form formulas for the balanced network
case [21] and therefore the addition[df (8) does not increase
the number of unknowns in the linear system.

The main idea investigated in this paper is that this in- 1 queue
dependent information can be exploited effectively to re- (a) Single GCE (b) Multiple GCEs
duce the size of the basi§(V). In fact, consider a new

baSiSVnew(N) Composed by nqrmalizing Constants with Figure 2. Structure of the MoM recursion after addition
R—-2< Zk m < R—1 aqdltlonal_q.ueues |.n§t-ead of of a single or multiple GCEs (7)ldn a model with M =3
thekR —1 < Zk my < R as in the original definition of queues. The label k£ = 1, e.g., indicates a GCE instan-

V(N) Then, using[(¥),[(5), and(8), we can define a lin-  tiated for k¥ = 1 on all models with  added queues in
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ear system with square matrix of coefficients the redefined basis. Labels within a circle indicate the
L b . ot multiplicity vector 7 on which the basis is defined, e.g.,
— T -Dy; —1 - Gt (1,0,1) is the model obtained from the original queue-
1 —Dsy - - - ot ing network by removing queue 2.
- —do1,1 - —do21 N1 =23 GJr2
B B . . No . G
. N2 G1
Ao () ‘7_"(_]\;) that, if multiple equations{7) are used simultaneousig, th
. e ot yields a multi-branched recursive structure for the MoM al-
: e Dos Gf+12 gorithm, where one needs to evaluate recursively also mod-
— [GTTTT2 | TDan - R Gg els with less queues that are not considered in the original
I P —— S ar MoM recursion.
do,1,2 - dop22 - Z2 G1,2
-4 -
=k ) Boow(8) T The Multi-Branched Method of Moments

The integration of the GCEL7) into the MoM linear sys-
tem can be done in different ways depending on the number
of equations[{][7) simultaneously instantiated into the ixatr
difference equation. As observed earlier, integrating &CE
into MoM allows to reduce the basis size; this reduction can
be specified by a decrease in the number of queues added to
the multiplicity vectors in the basis, which is equivalemt t
AN Ve (N) = VB (N)+Brew(N)View (N — 1) considering queue-length moments of smaller order. Specif

(9) ically, if the new basid/,.., (V) includes models with only
with square coefficient matrix, thus £, (N) existsthe [ — 1 andl added queues, one can integrate a single or mul-
solution of the linear systeni](9) provides an alternative tiple GCEsfor each model witti additional queues orfly
way to recursively compute normalizing constants that is A comparison of the recursion trees arising from the two al-
cheaper than the original linear systef (6), sirice (9) halve ternatives (single or multiple GCEs) is given in Figlife 2.
the order of the coefficient matrix with respect fd. (e Using a single GCE implies an addition@l recursions
stress that withouf18) the new system (9) would be under-Wwhich first remove from the model queué, followed by
determined, thus resorting to the GCE equations is critical queuelM — 1, and so forth up to a trivial model with a single
for this new approach. gueue. Instead, using all possible GCEs implies that the ad-

Itis also important to remark that, for queueing networks ditional recursions first considafi p055|ble(M ,) models
larger than the one considered in this experiment, the nor-with M/ — 1 queues, followed byl possible(,;” ) models
malizing constants iV,.* (N) may not be available from
closed-form expressions. In this case, the computation 0of3  The GCE is not needed for models with 1 additional queues, since
V—k(N (N ) requires additional recursions over models with their normalizing constants are all immediately computedifthe ba-

new

different number of queues; we show in the next section  SisforV(N —1g) using the PC of clasg.

v~k (N) includes the normalizing
constanGT11-2 = G + 2 - T; — 15, N) used in[(B),
and the blocks of the coefficient matrix are from the top: the
CE fork = 1, the CE fork = 2, the GCEI(8), the PC for

r = 1, and the PC for = 2. The new linear system may be
written compactly as

where the new vectoV,




with M — 2 queues, and so on up to models with a single Proof. A basis of level [ has (Mﬁlfl)R normaliz-

gueue. The latter approach appears to be the most expering constants, while the total number of CEs and PCs
sive, at least if one ignores the basis size reduction, Isecau is (Ml+ll_2) (M + R — 1) since there exisf/ CEs and

it has a number of new recursions that grows combinatori- R — { pCs for each of th Ml+ll 2) normalizing con-

ally instead of linearly. Yet, while limiting to a single GCE  stant withi — 1 additional queues and all other possi-
seems a natural choice to control the number of new recur-ple CEs and PCs require constants outside the basis. Thus
Sions, we have noted that in practice the additional inferma we have that’ in absence of GCES, there are more equa-
tion of the multiple GCEs implies a much larger reduction tjons than unknowns in the matrix difference equation if
of the basis than in the case of a single GCE. This in turn (M+l 2) (M+R—-1) > (M+ll I)R which is true for
provides computational savings often greater than the-addi )| ; > "R. In particular,l = R gives the minimum car-
tional overheads imposed by the extra recursions. Thus, inginality of the basis and for this reason it is the choice
this section we investigate the trade-off imposed by differ gone by MoM for its basis/(N) = Vz(N) which ig-

ent types of integrations of GCEs and consider the generahores the GCEs. We now add to the previous condi-
case of simultaneously considering upo1 < B < M,  tjon the number of additional GCEs which do not specialize

GCEs in the linear system. We also provide a complexity into CEs and that we can formulate for models witiddi-
analysis to evaluate the best choice of thianching fac-  tjonal queues, which ,Emm{Ml} (M) (I=1) (M — h). This

tor B as a function of the other model parameters. can be explained as follows. Consider a model with normal-
izing constant ir¥/; (V) and where we have addédueues.
4.1. BasisReduction Denote byh the number of distinct queues among the

gueues we have added. It is possible to see that removing

We now investigate the reduction of the basis cardinal- any of thesé: queues using a GCE involves only normaliz-
ity as a function of the number of GCE equations added toing constants witlh— 1 added queues that are already in the
the MoM matrix difference equation. Indeed, the most in- based/;(IV) andV;(N —1g), thus these specific GCE equa-
teresting cases are 1) whén (7) is added for a single value ofions are identical to the CEs and do not provide indepen-
k or 2) when all possible equations [d (7) are added; in fact, dent information. Therefore, for a model withdistinct ad-
intermediate cases imply a combinatorial branching of the ditional queues, onlyM — h GCEs are different from
recursion and thus grow in computational complexity sim- the existing CEs. Note that there a(rg) ways of choos-

ilarly to the second case. Let us defindasis of level, ing the i distinct queues anﬂ“(sz)*l) — (f:i) ways
[ > 1, asthe set of addingl queues to the model chosen among theslés-
Y NLT o tinct ones under the constraint that each of Ahgueues is

VZ( ={G(m’ ) G(m',N=11),...,G(M', N=1r-1) chosen at least once. Combining these expressions gives

| :m+(61,...,5M) 1-1< Zk 10k <1}, (10) the number of GCEs that are not CEs, which simpli-
fies oy M (A (121 (- n)

= (M) (M +R-1) = (MT17?) M, where the first pas-
sage follows by Vandermonde convolution [12].

which is the set of normalizing constants with 1 or [ ad-
ditional replicated queues. According to this definitiom, i
MoM it is alwaysV (N) = Vz(N), while the basis in the
example of the last section after the addition of the GCE
is Voew (V) = Vi_1(N). A basis of levell has cardinal-
ity card(Vi(N)) = (™77 R, thusa decrease, thanks to
the GCEs, of even by a few units implies a quick combina- MH 1
torial reduction of the number of elements in the baslse = ( )R. Suppose firs® > M + 1 and thusl =
next theorems are the fundamental result of this paper and™@*{1, R~ M} = R - M then we consider the con-

R—1
exactly quantify the amount of this reduction. dition (5 7)M + (32 (M + R - 1) > (57)R

_ o o which using the property of binomial coefficient§) =
Theorem 1. The inclusion in the MoM matrix difference (n71) i (n71) on the right hand side give( R*Q)M +

equation[(6) of the GCEEI(7) fdr = 1,..., M on all mod- k k-1 R
els having additional queues in the basi$(N) allows to (I3 (M+R=1) > (472 R+ (572 ,) R that sim-

define a linear system of the type plifies to (™2 V(M — 1) > (5=7) (R — M) which is
. . actually an equality because, after expanding the binomial

A (N)V,/(N) = ﬁ*k(ﬁ) +By(N)V,(N —1g), (11) coefficients, both sides are found identical. Hence, since
I = R — M always returns an equality between number of
which  has more equations than unknowns if equations and number of unknowns, it is easy to verify that
I > max{l,R — M}. Therefore, the basis has mini- ; « r — M would always give an under-determined sys-
mum cardinality for = max{1, R — M}. tem and thus = R — M gives the minimum allowable ba-

Adding the number of GCEs that are not CEs, we evalu-
ate the following condition fo {11) to have more equations
than unknowng™ /=) A1 + (M2 (M + R - 1)



sis size forthe cas® > M + 1. Corollary 1. If BGCEs,1 < B < M, are added to the ma-
Consider now the other cage< M +1 wherel takesthe  trix difference equation, then the basis can be decreased by

minimum possible value= max{1, R— M} = 1,we have  up to B levels and the minimal basis size is obtained with

then(}) (M —1)+ (M; ) (M +R—1) > (})Rwhichis  the basis level = min{1, R — B}.

equivalenttaM (M —1)+ (M +R—1) > MR and assum- . i _ o

ing the worst cas® = M + 1 we getM (M — 1) + 2M > The next section investigates the computational implica-

M (M + 1) which is always true because the two sides sim- 10nS Of the last result.

plify to the same identical value. This means that the lin-

ear system is always square if we use the minimum valueg, Computational Complexity
l=1whenR < M + 1.

We can summarize the above findings saying that Corollary[d enables the evaluation of the optimal choice
max{1, R — M} always implies aA;(N) matrix that s of the branching factorB as a function of the model size.
square or over-determined and that smaller valuesiiof In practice, we are interested to understand when the addi-
stead result in under-determined systems for certain salue i3] recursions implied by a branching factBrgive an
of M andR. This concludes the proof of the theoremlJ overhead that is less that the savings implied by the reduc-

Theorem 2. The inclusion of a single GCEI(7) for givén tion of the basis level fromh = R of the original MoM to
in the MoM matrix difference equatiofll(6) allows to define ! = min{l, B — B} of MoM with GCEs. _
a linear system similar td{11), but which has more equa-  We first observe that iB GCEs are used in the MoM lin-

tions than variables it > max{1, R — 1}. In particular, ~ ©€ar system, then the bagis " (V) in (1) is computed re-
the basis has minimum cardinality foe= max{1, R — 1}. cursively fromB bases of models with a queue less. These

models havé/ — 1 queues, thus the branching factor in this
Proof. The proof differs from that of Theorefd 1 for the case is upper bounded By < M — 1. That is, the maxi-
number of GCE equations that are not CEs. Suppose thatnum number of GCEs added to the linear system changes
GCEs for giverk are used, and assume without loss of gen- according to the distanag d = 0,...,M — 1, in the re-
erality that the GCE of statioh = M is the one included  cursion tree from the root (i.e., the original model). For
in the matrix difference equation. Then the number of GCEs ¢ — ,..., B — 1, only up tod GCEs can be added to the

that are not CEs is linear system, while for distancds= B, ..., M we can al-

min{ M,1} min{M—1,1—1} ways addB GCEs. This can be seen immediately from Fig-
Z <M> <l - 1> _ Z <M) <l - 1) ure[2, where the number of GCE equations instantiated for
= h)J\l—h = h)\l—h)’ a model with three queues are thrée-£ 1, k = 2, and

k = 3), two for a model with two queues, and they decrease
where the left term follows similarly to the number of GCEs progressively during the recursion.

in Theorentl, but for the case where one GCE is added,  garting from the previous consideration, we analyze be-

instead of M, to the models inV;(IV) with [ additional |6y the computational complexity of MoM with GCEs for
queues. The right term counts instead the number of timeshe two limit cases3 = 1 andB = M, and provide discus-
this GCE is identical to an existing CE. The above ex- gion about the intermediate cases B < M at the end of

pression becomes simpler thanks to Vandermonde convothis subsection.

lution [12] and gives that we have more equations than un- e Requirementsf B = 1, thenV,~* N is com-
knownsif (Y */7%) + (VI (M + R—1) > (YT R. puted byM recursions. During theth relcurgiw)e step =
Now using(}) = (";') + (}=;) ontherighthand sidewe ... M — 1,the model had/ — d queues; the basis is al-
get (M) + (MY (M +R-1) > (MR + ways of levell = R — 1 for all steps. Assuming quadratic
(Mltll_g)R’ which is equivalent tO(A'IltlfQ)(M —1) > costs in the solution of the linear system, e.g., using a
method like the Wiedemann algorithm, we have that the

(M*'7?)(R~1). and expanding the binomial coefficients it fime for computing () from V(1 — 1) grows as

is found that the two sides are identical £ max{1, R—1}
which completes the proof. O

= ((M=—d+R-2\_\° ..
The results in Theorefd 1 and TheorEm 2 show that: (1) > (( R_1 )R) Seact> (12)
if all GCEs are added to the MoM matrix difference equa- =0
tion, then the basis level can be decreased by ug tanits;  \yhere the term between parenthesis is the coefficient matrix
(2) if a single GCE is used, the basis level can instead beg derin [11) and
decreased by a single unit. Following the same line of the
proofs of Theorerfilll and Theordm 2 it is then straightfor-

ward to show the following corollary.

M—-d+R-2
ngactm(Nlog(M—d+N))< Rfl )R



MOM+GCE - B=1 MOM+GCE - B=M Original MOM

Time Requirements (Ioglo(flops))
Time Requirements (Ioglo(flops))
Time Requirements (Ioglo(flops))

Figure 3. Time requirements of MoM and the divide-and-conquer MoM for different number of queues M and number of ser-
vice classes R. All queues are assumed distinct. The results indicate that assuming a branching level B = M is far supe-
riorto B = 1, unless a small number of queues is considered in the model (M < 4). The total population in the network is set
to N = 100.

is the overhead of exact algebra for a model with— d Similarly to the caséB = 1, the time requirements ex-
gueues and assuming that the linear system solver uses mupression is a cost per solver iteration and the term raised to
tiprecision arithmetic [7]. In the expressidn [12) we have square is the linear system order. Compared to the above ex-
ignored the exact number of iterations of the solution algo- pressions, the original MoM algorithm has a time require-
rithm and thus the expression may be regarded as a cost penent per iteration of

iteration of the linear system solver.

In the case where we use all possible GCEs, R is M M+R-1 2

at the first recursive step, the®d = M — 1 at the sec- (< >R> S (13)

ond step, andB = M — d at thedth recursive steﬁ) In R

addition, the level used at th&h step of the recursion is

I =1(d) = max{1, R — M + d}, which is thus a function Figure[3 quantifies the savings per solver iteration of the

of the distance from the root of the recursion tree. Follow- new algorithm forB = 1 and B = M compared to the

ing these observations, the time requirements grow as costs of the original MoM. Since the costs are dependent on
M1 ) M, R, and the population siz&, we simplify the evalua-
T < M ) (<M —d+1(d) - 1) R> gd tion and consider the variation éff and R under a quite

M—d I(d) cxact large N = 100. The cost surfaces indicate that the algo-

d= . . . . ..
0 rithm with B = M is typically the most efficient except for

wherel(d) = max{1, R— M + d} and the tern(MAfd) ac- very low values of\f where it is much more expensive than
counts for the combinatorial branching of the recursion and B = 1 and the original MoM, although the cost per iteration
is the number of all possible queueing network models with remains quite small. Overall, the savings of Be= 1 case

M — d distinct queues chosen among the inifiél For ex- are quite limited compared to the original MoM, while mas-

ample, whenV/ < R sive cost reduction is achieved with the multi-brancheé cas
M1 5 B = M. This is quite counter-intuitive, since one would at
Z ( M ) (( R-1 >R> sd first expect that the wide recursion tree in Figlite 2(b) is
= \M—d R—M+d crac a major source of computational cost compared to the lin-

ear recursive structure in Figure 2(a). Yet, Fiddre 3 intdisa
that, for multiclass models that can be solved in acceptable
times with commonly-available hardware, the cost of the
_ , , _ combinatorial branching in Figuté 2(b) is not yet a perfor-
4  This observation holds true under the assumption that theefris bottl k and it is iustified by th .
composed initially by queues that have all multiplicity, = 1, i.e., mance bottleneck and It is justified by the massive compu-

which are all distinct. The case of models with replicatedugs has  tational saving of the basis size reduction.

more favorable computational costs if the total number @&ugs (in- S R . fEh . fth
cluding the non-replicated ones) is the same, thus our sisaly a pace Requirementshe space requirement of the case

worst-case scenario whel is interpreted as the total number of B = 1 is upper bounded by the cost of storing the linear
queues instead of the number of distinct ones. system[(Tl) in memory when it is largest, i.e., for the origi-

which is significantly smaller thaf (IL2) since the binomial
coefficient does not longer depend on the sum/oandR.
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Space Requirements (Ioglo(cells))
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Figure 4. Space requirements of MoM and the divide-and-conquer MoM for different number of queues M and number of
service classes R. The interpretation of the results is qualitatively similar to the one for the time requirements in Figure[3]
with the best branching level being B = M unless the number of queues M is small. The total population in the network is
set to NV = 100.

nal model withM queues. This is approximately given by  only if B = M. The caseB = 1is 1 — 2 orders of mag-
) nitude faster then the original MoM for models with few
9 <<M +R— 2) R> +3 <<M +R— 2) R> SE-1 queues |/ < 4), while asM increases the algorithm with
R-1 R-1 B = M scales much better. In particular, for the most chal-
(14) lenging model withA/ = 11 andR = 11, the computa-
The evaluation of memory requirements in the cBse tional saving of the modified algorithm witB = M is
M is similar, but requires to take into account the width of zpout four orders of magnitude over the original MoM, thus

the multi-branched recursion tree, since all basis veétors  making the case that the inclusion of the GCE equations is
models withk — 1 queues should be available before the hjghly-valuable also for the space requirements.

evaluation of models wittk queues. Thus, the memory oc-

M Intermediate casek < B < M. Following the result in
cupation is

Corollary1 it is immediately found that the size of the basis
u M—d+R—2 2 for intermediate choices of the branching le¥&is always
max < > <2 << )R) bounded by the choiceB = 1 andB = M and computa-
M R-1 tional requirements are typically within those of theseitim
M—-d+R—2 cases. For example, assume tBajueues are chosen for re-
+2 << R_1 )R> Snc) , (19) moval and the multi-branched recursion is operated only on
these queues such that the recursion is terminated by solv-

where the first term is the cost of storifg V) andB(N) ing with the original MoM models withl/ — 5 queues. In
for the currently evaluated linear system, while the secondiS ¢ase, we have found that the computational costs of the
term accounts for the basis for populatiaisand N — 15 choicesB = 1 andB = M are always better than these in-
of all models at distancé from the root of the recursion.  [ermediate cases, unlesg — 5 = 1. Yet, in this more fa-
Finally, the computational costs of the original MoM are VOrable cases, the costs of the intermediate choicetuive
given by [7] the same order of magnitude qf the best bet\_NBe¢ 1 .
and B = M, therefore the savings of these intermediate
5 ((M + R — 1) R>2 L3 ((M +R— 2) R> gR cases seem marginal anq do not motivate a speci_alized im-
R R_1 nes plementation of the algorithm. As a result, we believe that
(16) the multi-branched recursion approach is best implemented
which is quite similar to the cost of the caBe= 1. with a choiceB = M which provides the biggest savings

The comparison of the space requirements of the threewith respect to the original MoM on the largest number of
different methods is shown in Figuié 4 for different val- choices ofA andR.
ues of M and R; we set again the total population to Comparison with MVA AlgorithmAs a final remark, re-
N = 100. Results are qualitatively similar to the time re- gardless of the branching levBl used, the computation of
guirement case: the GCE equations provide the largest savV(N) from 17(6) has anO(N?log N) time complexity and
ings in space requirements compared to the original MoM anO(N log N) space complexity as the total populatin



grows. Since MVA isO(N %) in time and space complex-
ities, it is immediately clear that for sufficiently largegpo

ulations MoM is always faster and less memory consum-

ing than MVA. Savings are obtained by MoM already for

populations composed by few tens of jobs [7]. Therefore,
since the original MoM is already much more scalable than [5]
MVA, it is an immediate consequence that the generalized

MoM with GCEs, which always performs better than MoM,

will be always several orders of magnitude more efficient

than MVA or other methods such as RECAL or LBANC.
We point to [7] for a comparison of the original MoM with

these methods supporting the statements in this subsection

6. Conclusions

In this paper, we have presented a generalization of the g

Method of Moments (MoM), a recently proposed algorithm

for the exact analysis of multiclass queueing network mod-
els which are widely used in capacity planning of computer [10]
systems and networks [7,8]. We have integrated in the MoM
equations also the recursive formula used in the Convolu-

tion Algorithm [6, 22], here called the generalized convolu

tion equation (GCE). We have shown that using the GCE

in MoM significantly changes the structure of its recursion
leading to the evaluation of models with different number of

gueues and which can be solved much more efficiently than(12]
the larger models considered by MoM. As a result, the com-
putational costs in time and space of the generalized algolls]
rithm are several orders of magnitude smaller than the orig-

inal MoM recursion.

. . . . 1
As a possible extension of this work, we believe that the

Convolution Algorithm equation considered in this paper

could benefit also the Class-Oriented Method of Moments

(CoMoM) algorithm presented in [8]. This algorithm can

be seen as the dual of the MoM algorithm, where the basis

of normalizing constants considered in the recursion is de-
fined in such a way that a different tradeoff between number|[16]
of queues and classes is considered and this favors the solu-
tion of models with many classes compared to the original [17]

MoM. The generalization of CoMoM with GCEs could pos-
sibly further enhance its scalability on models with many
classes.
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