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Abstract—We present a fully automated technique for com-
positional verification of probabilistic systems. Our approach
builds upon a recently proposed assume-guarantee framework
for probabilistic automata, in which assumptions and guaran-
tees are probabilistic safety properties, represented using finite
automata. A limitation of this work is that the assumptions need
to be created manually. To overcome this, we propose a novel
learning technique based on the L* algorithm, which auto-
matically generates probabilistic assumptions using the results
of queries executed by a probabilistic model checker. Learnt
assumptions either establish satisfaction of the verification
problem or are used to generate a probabilistic counterexample
that refutes it. In the case where an assumption cannot be
generated, lower and upper bounds on the probability of
satisfaction are produced. We illustrate the applicability of the
approach on a range of case studies.

Keywords-Compositional verification; probabilistic model
checking; probabilistic automata; learning.

I. INTRODUCTION

Probabilistic model checking offers a powerful set of
techniques for formally analysing quantitative properties
of systems that exhibit stochastic behaviour. Examples of
systems to which these methods have been applied include
randomised communication protocols, probabilistic security
protocols and randomised distributed algorithms. As with
any formal verification technique, the principal challenge of
probabilistic model checking is scalability. Faithful models
of large-scale complex systems can quickly exceed the
capabilities of today’s techniques and tools.

A promising direction to improve scalability is the use of
compositional techniques, where the verification process is
decomposed into a separate analysis for each component of
the system being verified. A popular approach to this is the
assume-guarantee paradigm. For example, the verification of
a property G on a two-component system M1‖M2 can be
decomposed into two separate problems: (i) checking that,
under the assumption that property A holds, M2 is guar-
anteed to satisfy G, denoted 〈A〉M2 〈G〉; and (ii) checking
that M1 satisfies the assumption A (under any context).

This paper focuses on compositional verification for prob-
abilistic automata, which are a natural and widely used mod-
elling formalism for systems that exhibit both probabilis-
tic and nondeterministic behaviour. Devising compositional
verification techniques for probabilistic systems requires
considerable care. Despite several important developments
regarding the underlying models, formalisms and theory (see

in particular [1], [2], [3], [4]), there has been a lack of
progress in terms of practically implementable techniques.

An exception to this is the recent work of [5] which
proposed an assume-guarantee verification technique for
probabilistic automata and applied it to several large case
studies. This is based on assume-guarantee queries of the
form 〈A〉≥pAM 〈G〉≥pG , where the assumptions 〈A〉≥pA
and guarantees 〈G〉≥pG are probabilistic safety properties.
Informally, this means that “whenever M is part of a system
satisfying property A with probability at least pA, then the
system will guarantee property G with probability at least
pG”. A limitation of this work, however, is that it requires
non-trivial manual effort to create appropriate assumptions.

In this paper, we address this limitation by proposing
a fully automated approach to the generation of such as-
sumptions, based on learning techniques. Learning, and
in particular the well-known L* learning algorithm [6],
have proved to be well suited to generating assumptions
for compositional verification of non-probabilistic systems
[7] and are currently attracting considerable interest in the
verification community.

We propose a novel learning technique, based on L*,
for generating probabilistic assumptions. Given components
M1,M2 and probabilistic safety property 〈G〉≥pG , our
framework attempts to build an assumption 〈A〉≥pA that
can be used to prove that M1‖M2 satisfies 〈G〉≥pG , without
constructing the full model M1‖M2.

Like in [7], this is done by generating a series of possible
assumptions which are analysed by a (probabilistic) model
checker. The results of this analysis, in the form of (prob-
abilistic) counterexamples, are used to guide the learning
process by refining the current assumption. During this
process, we may also discover a counterexample illustrating
that M1‖M2 does not satisfy 〈G〉≥pG .

Because the assume-guarantee framework of [5] is in-
complete, there may be no suitable assumption that can
be learnt. To address this problem, we adopt a quantitative
approach: our learning technique also generates lower and
upper bounds on the (minimum) probability of satisfying G.

We have implemented our technique and successfully ap-
plied it to several large case studies. This includes instances
where the entire process of learning an assumption and then
applying compositional verification is more efficient than
conventional, non-compositional verification.



Related work. As mentioned above, there has been
significant progress in developing modelling formalisms and
proof techniques for compositional verification of proba-
bilistic systems [1], [2], [3], [4], including application of
these to (manual) verification of large, complex randomised
algorithms [8]. These do not, however, focus on practical
implementations. This paper builds on the probabilistic
assume-guarantee framework of [5], which was shown to
be efficiently implementable and capable of outperforming
non-compositional techniques on several large case studies.

Our approach is also inspired by the work of Gian-
nakopoulou, Pasareanu et al. (see e.g. [7]), which learns
assumptions for assume-guarantee verification of non-
probabilistic systems, i.e. labelled transition systems. This
paper is the first to learn probabilistic assumptions for
compositional verification.

Finally, we mention work on the related problem of
synthesis [9], [10], i.e. constructing probabilistic systems ac-
cording to a formal specification. However, such techniques
have not yet been implemented.

Paper structure. In the next section, we provide some
background on probabilistic automata, probabilistic assume-
guarantee reasoning and the L* algorithm. Section III in-
troduces the generation of probabilistic counterexamples in
the context of probabilistic assume-guarantee verification.
Section IV presents our learning framework and Section V
describes experimental results from its implementation on a
range of case studies. Section VI concludes the paper.

II. BACKGROUND

In the following, we use Dist(S) to denote the set of all
discrete probability distributions over a set S.

A. Probabilistic Automata

Probabilistic automata [1], [11] model systems whose
behaviour is both probabilistic and nondeterministic.

Definition 1. A probabilistic automaton (PA) is a tuple M =
(S, s, αM , δM ) where S is a set of states, s ∈ S is an initial
state, αM is an alphabet, and δM ⊆ S × (αM ∪ {τ}) ×
Dist(S) is a probabilistic transition relation.

In a state s of a PA M , one or more transitions, denoted
s
a−→ µ, are available, where a ∈ αM∪{τ} is an action label,

µ is a probability distribution over states and (s, a, µ) ∈ δM .
Each step of an execution of the PA first makes a non-
deterministic choice between available transitions from s,
and then a probabilistic choice of successor state according
to the selected distribution µ. A path through M is a
(finite or infinite) sequence s0

a0,µ0−−−→s1 a1,µ1−−−→· · · such that
s0 = s and, for each i ≥ 0, si

ai−→ µi is a transition and
µi(si+1) > 0. We let PathM denote the set of paths in M .

For a path π, its trace tr(π) is the sequence 〈a0, a1, . . . 〉
of its action labels, after removal of any “internal” τ actions.
For a trace t, we denote by t�α the projection of t onto a

subset α of its alphabet. We extend tr and � to sets of paths
and traces in the obvious way.

It is also possible to allow the transitions in a PA to be sub-
distributions (i.e. sum to less than 1), with the interpretation
that a PA can, with some probability, choose to deadlock in
some states [1]. In this paper, we will refer to such models
as sub-stochastic PAs.

To reason about PAs, we use the notion of adversaries
(sometimes called schedulers or strategies), which resolve
the nondeterministic choices in a model, based on its execu-
tion history. Formally, an adversary σ maps any finite path to
a distribution over the available transitions in the last state of
the path. There are several important classes of adversaries.
An adversary is deterministic if it always selects a single
transition (with probability 1); otherwise it is randomised. It
is memoryless if its choice depends only on the current state,
rather than the full execution history; otherwise it is history
dependent. A special class of the latter are finite-memory
adversaries, which store information about the history in a
finite-state automaton (see e.g. [12] for a precise definition).

We denote by PathσM the set of all paths through M
when controlled by adversary σ, and by AdvM the set of all
possible adversaries for M . Under an adversary σ, we define
a probability space PrσM over the set of paths PathσM , which
captures the (purely probabilistic) behaviour of M under σ.

The behaviour of a PA M with states S under a deter-
ministic, memoryless adversary σ can be represented by
another PA with states S in which each s ∈ S contains
only the choice made by σ in s. In similar fashion, if σ is a
deterministic, finite-memory adversary, the behaviour of M
under σ can be represented by a PA with states S×Q where
Q is the set of states of σ’s automaton.

Finally, we mention two other required notions for PAs:
parallel composition [1] and alphabet extension [5]. We use
the standard definition of parallel composition of PAs M1

and M2, denoted M1‖M2, in which M1 and M2 synchronise
over all common actions [1]. For space reasons, we omit
the full definition. The alphabet extension of PA M with
alphabet α, denoted M [α], is obtained from M by adding
an a-labelled self-loop to every state for each a ∈ α\αM .

B. Model Checking Probabilistic Automata

In this paper, we focus on action-based properties of PAs,
defined in terms of their traces. In particular, we focus on
properties described by regular languages over actions.

A regular safety property G represents a set of in-
finite words, denoted L(G), that is characterised by a
regular language of bad prefixes, finite words of which
any (possibly empty) extension is not in L(G). In prac-
tice, we define the set of bad prefixes for G by a
(complete) deterministic finite automaton (DFA) Gerr

over alphabet αG. The language L(G) is defined as
L(G) = {w∈(αG)ω | no prefix of w is in L(Gerr )} where
L(Gerr ) ⊆ (αG)

+ is the regular language for DFA Gerr .

2



detect 0.8
s
1

s
0

s
3

0.2

warn

off

s
2

shutdown

M
1
:

0.9

t
1

t
0

t
2t

3

0.1

off

warn

fail

shutdown

M
2
:

shutdown

q
1

fail

q
0

fail

G
err
:

a0

warn, off

a2

shutdown

a1

A
err:

warn, off,
shutdown

warn, off,
shutdown

Figure 1. Two probabilistic automata M1,M2 and the DFAs for two safety properties G,A (example taken from [5])

Given a PA M and regular safety property G with αG ⊆
αM , an infinite path π of M satisfies G, denoted π |= G,
if tr(π)�αG ∈ L(G). For a finite path π′ of M , we say
that π′ |= G if some infinite path π of which π′ is a prefix
satisfies G. For an adversary σ ∈ AdvM , we define the
probability of M under σ satisfying G as:

PrσM (G)
def
= PrσM{π ∈ PathσM | π |= G}

We then define the minimum probability of satisfying G as:

Prmin
M (G)

def
= infσ∈AdvM PrσM (G)

A probabilistic safety property 〈G〉≥pG comprises a reg-
ular safety property G and a rational probability bound
pG. We say that a PA M satisfies the property, denoted
M |= 〈G〉≥pG , if the probability of satisfying G is at least
pG for any adversary:

M |= 〈G〉≥pG ⇔ ∀σ∈AdvM . PrσM (G) ≥ pG
⇔ Prmin

M (G) ≥ pG .
Practical examples of safety properties for PAs include
“the probability of a failure occurring is at most 0.01”,
“event warning always occurs before event shutdown with
probability at least 0.98”, and “the probability of terminating
within k time-units is at least 0.75”.

Model checking a probabilistic safety property 〈G〉≥pG on
a PA M requires computation of the minimum probability
Prmin

M (G). This reduces, using standard automata-based
techniques for probabilistic model checking, to calculating
the maximum probability of reaching a set of accepting
states in the PA M⊗Gerr formed as the product of PA M
and the DFA Gerr representing G (see [5] for details).

To check probabilistic safety properties on PAs, it suffices
to consider deterministic, finite-memory adversaries, that is
to say there always exists such an adversary σ for which
PrσM (G) = Prmin

M (G).
Note also that, in the special case of qualitative safety

properties, the following holds:

M |= 〈G〉≥1 ⇔ ∀π ∈ PathM . π |= G

which can be checked with a simple graph analysis.

Example 1. Figure 1 shows two PAs M1 and M2 (taken
from [5]). M1 is a controller that issues a shutdown com-
mand to a device, modelled by M2. Prior to this, M1 tries
to send a warn signal. If the attempt is not successful, there
is a chance that M2 will not shut down correctly, resulting

in a failure. Figure 1 also shows the DFA Gerr for a safety
property G: “action fail never occurs”. It can be verified
that M1‖M2 |= 〈G〉≥0.98 (since the maximum probability
of reaching a q1 state in (M1‖M2)⊗Gerr is 0.2·0.1 = 0.02).

C. Probabilistic Assume-Guarantee Reasoning
In this paper, we use the compositional verification frame-
work of [5]. This is based on the assume-guarantee
paradigm, where assumptions and guarantees are probabilis-
tic safety properties. The key idea is the notion of probabilis-
tic assume-guarantee triples of the form 〈A〉≥pAM 〈G〉≥pG ,
in which 〈A〉≥pA and 〈G〉≥pG are probabilistic safety pro-
perties and M is a PA. Informally, the meaning of this
is “whenever M is part of a system satisfying A with
probability at least pA, then the system will satisfy G with
probability at least pG”. Formally:

Definition 2. If 〈A〉≥pA and 〈G〉≥pG are probabilistic safety
properties, M is a PA and αG ⊆ αA ∪ αM , then:

〈A〉≥pAM 〈G〉≥pG
⇔

∀σ∈AdvM [αA].
(

PrσM [αA](A)≥pA ⇒ PrσM [αA](G)≥pG
)

where M [αA] is, as described in Section II-A, M with its
alphabet extended to include αA.

Determining whether an assume-guarantee triple holds
reduces to multi-objective probabilistic model checking [5],
[13], which can be solved efficiently by solving an LP
problem. In the absence of an assumption (denoted by
〈true〉) checking a triple reduces to normal model checking:

〈true〉M 〈G〉≥pG ⇔M |= 〈G〉≥pG
This reduction holds because 〈G〉≥pG is a safety property.
We also note that, for the case of qualitative assumptions
of the form 〈A〉≥1, the LP problem can be bypassed and
checking the triple 〈A〉≥1M 〈G〉≥pG also reduces to normal
(probabilistic) model checking.

Using these definitions, [5] presents several proof rules
for compositional probabilistic verification. In this paper, we
focus on the following asymmetric rule (ASYM). For PAs
M1,M2, probabilistic safety properties 〈A〉≥pA , 〈G〉≥pG
such that αA ⊆ αM1

and αG ⊆ αM2
∪ αA:

〈true〉M1 〈A〉≥pA
〈A〉≥pAM2 〈G〉≥pG
〈true〉M1 ‖M2 〈G〉≥pG

(ASYM)
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Thus, given an appropriate probabilistic assumption 〈A〉≥pA ,
verifying that M1‖M2 |= 〈G〉≥pG can be done composition-
ally by model checking a safety property on M1 (for premise
1) and an assume guarantee triple on M2 (for premise 2).

Example 2. We return to the PAs M1,M2 and safety
property G from Figure 1. As stated in Example 1, we
have that M1‖M2 |= 〈G〉≥0.98. This can also be checked
compositionally, using rule (ASYM) and the probabilistic
safety property 〈A〉≥0.8, for which the DFA Aerr is also
shown in Figure 1. To do so, we check 〈true〉M1 〈A〉≥0.8
and 〈A〉≥0.8M2 〈G〉≥0.98, both of which hold.

We can also check quantitative assume-guarantee triples.
As shown in [5], for a PA M , regular safety properties A,G
and a fixed value of pA, we can compute (again through
multi-objective model checking) the tightest lower-bounded
interval IG ⊆ [0, 1] for which the triple 〈A〉≥pAM 〈G〉IG
holds. Conversely, for a fixed value of pG, we can compute
the widest lower-bounded interval IA ⊆ [0, 1] for which the
triple 〈A〉IAM 〈G〉≥pG holds. We denote these two queries,
respectively, as:

〈A〉≥pAM 〈G〉IG=? and 〈A〉IA=?M 〈G〉≥pG
Intuitively, these allow us to compute the strongest possible
guarantee that can be obtained for some assumption 〈A〉≥pA
and the weakest possible assumption1 that guarantees a
particular 〈G〉≥pG . Note that, for the latter type of query, IA
can in fact be empty. This occurs when there are adversaries
of M that satisfy 〈A〉≥1 but violate 〈G〉≥pG , i.e. even under
the strongest possible assumption 〈A〉≥1 for A, we cannot
guarantee that 〈G〉≥pG holds.

D. The L* Learning Algorithm

The L* algorithm, which was proposed by Angluin [6],
is one of the most influential, cited and extended online
learning algorithms for regular languages. L* learns a min-
imal DFA accepting an unknown regular language L, by
interacting with a teacher. The teacher responds to two kinds
of questions: membership queries (i.e., whether some word
is in the target language) and conjectures (i.e., whether a
hypothesised DFA H accepts the target language). In the
latter case, if the conjecture is not correct, the teacher must
provide a counterexample illustrating this (i.e. a word in the
symmetric difference between L and L(H)). L* is attractive
because it is guaranteed to produce a minimal DFA and it
runs in polynomial time.

Over the past decade, L* has become popular in the
context of verification. In particular, as proposed by Gi-
annakopoulou, Pasareanu et al. (see e.g. [7]), it has been
successfully applied to the automatic generation of assump-
tions for assume-guarantee verification of non-probabilistic
systems. The key innovation was to rephrase the problem

1Not to be confused with the “weakest assumption” defined in [7].

of generating an assumption as the problem of learning a
(prefix-closed) regular language characterising the weakest
assumption about a component that suffices for verification.

In this approach, the questions asked of the teacher
are translated into problems that can be executed by a
model checker. In the case of conjectures, counterexamples
produced during model checking are used to generate the
required counterexamples for L*. Actually, in practice, the
weakest assumption is rarely learnt: the process either finds a
simpler (stronger) assumption that suffices for verification,
or discovers (by analysing the counterexamples produced)
that the property being checked does not in fact hold.

III. PROBABILISTIC COUNTEREXAMPLES FOR
COMPOSITIONAL VERIFICATION

Counterexamples are an essential ingredient of (non-
probabilistic) model checking. They provide valuable feed-
back to the user of a model checker about the reason why a
property is violated. They are also crucial to the success
of verification techniques such as counterexample-guided
abstraction refinement and learning-based assume-guarantee
model checking. In the context of probabilistic verification,
generation of counterexamples is more complex and is
currently an active area of research. The basic difficulty is
that, whereas a non-probabilistic property such as “an error
never occurs” can be refuted with a single finite path to an
error state, a probabilistic property such as “an error state
is reached with probability at most p” is refuted by a set of
such paths whose total probability exceeds p.

The fundamental techniques in this area were proposed
in [14], which considers generation of counterexamples
for probabilistic reachability properties (expressed with the
logic PCTL) of discrete-time Markov chains (DTMCs).
They show, for example, that counterexamples for PCTL
properties of the form P≤p[♦a], i.e. with non-strict, upper
probability bounds, can be constructed as a finite set of
finite paths that reach a. Furthermore, they characterise
the notion of smallest counterexample which illustrates the
violation with as few paths as possible. They also show
how to handle properties with lower probability bounds
(by identifying strongly connected components) and strict
probability bounds (by using regular expressions).

Counterexamples for more complex models and properties
can often be reduced to this basic case. For example, model
checking of more expressive logics such as LTL on DTMCs
reduces to computing reachability probabilities on a larger,
product DTMC. Extending to probabilistic automata is also
relatively straightforward (see e.g. [15]) since the first step
is to find an adversary causing a violation; the problem then
reduces to generating a counterexample for a DTMC.

Since probabilistic counterexamples are crucial to this
work, and our needs are rather specific, we describe in the
remainder of this section how these basic techniques can be
adapted and extended to our setting.
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A. Counterexamples for Safety Properties

We focus first on the case of counterexamples for safety
properties of PAs. Recall that, for PA M to satisfy 〈G〉≥pG ,
we require that PrσM (G)≥pG for all adversaries σ. So, to
refute this, we require an adversary for which this does not
hold and a set of paths, under this adversary, that illustrates
this. As mentioned in Section II-B, deterministic finite-
memory adversaries suffice to verify (or refute) safety pro-
perties. Furthermore, we can represent the set of paths of M
under such an adversary σ by a larger PA, which we denote
Mσ . For every path π in Mσ , we have π�M ∈ PathσM ,
where π�M denotes the projection of π onto M .

Definition 3. For a PA M and a probabilistic safety property
〈G〉≥pG with M 6|= 〈G〉≥pG , a counterexample for 〈G〉≥pG
is a pair (σ, c) of a (deterministic, finite-memory) adversary
σ for M with PrσM (G) < pG and a set c of finite paths in
Mσ such that Pr(c) > 1−pG and π�M 6|= G for all π ∈ c.

The process of obtaining a counterexample (σ, c) for
M 6|= 〈G〉≥pG is as follows. As described in Section II-B,
model checking 〈G〉≥pG on M requires computation of
Prmin

M (G), which reduces to the problem of computing
the maximum probability of reaching an accepting state
in the product PA M⊗Gerr . The (deterministic, finite-
memory) adversary σ for M is obtained directly from the
(deterministic, memoryless) adversary of M⊗Gerr under
which this reachability probability is above 1−pG. The set
of paths c is taken from Mσ which, since σ is deterministic,
is a DTMC. Since c equates to a counterexample for a non-
strict, upper-bounded reachability property, as [14] shows, a
finite set of finite paths suffices.

In fact, our learning techniques require not just a set of
violating paths c, but also the fragment of the PA M which
contains these paths. This fragment, which we denote Mσ,c,
is a (sub-stochastic) PA obtained from Mσ by removing all
transitions that do not appear in any path of c.

Definition 4. Let M be a PA, σ a deterministic, finite-
memory adversary and Mσ=(S, s, αM , δ) be the PA Mσ . If
c is a set of (finite or infinite) paths of Mσ , the correspond-
ing PA fragment, denoted by Mσ,c, is the sub-stochastic PA
(S, s, αM , δ

′) where δ′ is defined as follows. For distribution
µ ∈ Dist(S), we define the sub-distribution µc over S as
µc(s′) = µ(s′) if the state s′ appears in some path in c, and
µc(s′) = 0 otherwise. For each s a−→ µ in δ, then δ′ contains
s
a−→ µc if and only if µc is non-empty.
Note that, due to the possibility of loops in Mσ , a

fragment Mσ,c may contain paths that are not in c. However,
PA fragments have the following useful properties.

Proposition 1. For PAs M and M ′, PA fragment M frag of
M and probabilistic safety property 〈G〉≥pG , we have:

(a) M |= 〈G〉≥pG ⇒M frag |= 〈G〉≥pG
(b) M‖M ′ |= 〈G〉≥pG ⇒M frag‖M ′ |= 〈G〉≥pG
(c) M frag‖M ′ 6|= 〈G〉≥pG ⇒M‖M ′ 6|= 〈G〉≥pG .

Proof: These properties can easily be shown using the
notion of strong probabilistic simulation [11]. It is straight-
forward to show that M strongly simulates M frag , denoted
M frag-M . Correctness of part (a) is shown by the fact
that - preserves safety properties [11]. Strong probabilistic
simulation is also compositional [11] (meaning that M frag -
M ⇒ M frag‖M ′ - M‖M ′), from which part (b) follows.
Lastly, part (c) is a direct consequence of part (b). ut

B. Counterexamples for Assume-Guarantee Triples

We also need to consider counterexamples for proba-
bilistic assume-guarantee triples. Recall (see Definition 2)
that a triple 〈A〉≥pAM 〈G〉≥pG is false if some adversary
of M [αA] satisfies assumption 〈A〉≥pA but violates the
guarantee 〈G〉≥pG . We first need the notion of a witness.

Definition 5. For a PA M and probabilistic safety property
〈A〉≥pA for which M |= 〈A〉≥pA , a witness is a pair (σ,w)
comprising a (deterministic, finite-memory) adversary σ for
M with PrσM (A) ≥ pA and a set w of infinite paths in Mσ

such that Pr(w) ≥ pA and π�M |= A for all π ∈ w.

To compute a witness (σ,w), adversary σ is obtained
exactly as for generating a counterexample (σ, c): through
probabilistic reachability on the product PA M⊗Aerr .
Finding paths w in Mσ that show PrσM (A)≥pA is then
equivalent to building a counterexample in a DTMC for
a strict, lower-bounded reachability property. This can be
done using the techniques of [14] (analysis of strongly
connected components, followed by construction of a regular
expression).

Definition 6. For a PA M and probabilistic safety properties
〈A〉≥pA and 〈G〉≥pG such that 〈A〉≥pAM 〈G〉≥pG is false,
a counterexample for 〈A〉≥pAM 〈G〉≥pG is a tuple (σ,w, c)
such that (σ,w) is a witness for 〈A〉≥pA in M [αA] and (σ, c)
is a counterexample for 〈G〉≥pG in M [αA].

Construction of a counterexample (σ,w, c) for a triple
〈A〉≥pAM 〈G〉≥pG proceeds as follows. The process of
checking whether the query is true (done using multi-
objective model checking [5], [13] on the product of M [αA]
with Aerr and Gerr ) also yields the adversary σ when the
query is false. The counterexample c and witness w can
be obtained from the product in similar fashion to the cases
described above. Note that, in the case where the assumption
is qualitative (i.e. pA=1), the witness w comprises all paths
of Mσ and so its explicit construction can be avoided.

IV. THE LEARNING FRAMEWORK

In this section, we present a framework that learns as-
sumptions for two-component probabilistic systems based on
the asymmetric probabilistic assume-guarantee rule (ASYM)
of [5]. The inputs are component models M1,M2, a proba-
bilistic safety property 〈G〉≥pG and an alphabet αA. The aim
is to verify (or refute) M1‖M2 |= 〈G〉≥pG by generating a
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Output:

〈true〉M1 ‖M2〈G〉≥pG is false.

(cex (σ′, c′))

false and
cex (σ′, c′)

true

Inputs: M1,M2, 〈G〉≥pG, αA
Teacher

Counterexample
Analysis

Output:

IA = ∅ and
cex (σ,w, c)

tr(c)�αA

IA 6= ∅

find l = maxi(lb(Ai, G))if Ai+1 = Ai

Prmin
M1‖M2

(G) ∈ [l, u]

true

false and

and u = mini(ub(Ai, G))

return

tr(c)�αA

return

membership

Figure 2. L*-based learning framework for the rule (ASYM)

probabilistic assumption 〈A〉≥pA over αA. Our approach is
quantitative, in that it also yields lower and upper bounds
on the minimum probability of satisfying G.

A. Overview

A summary of the framework is shown in Figure 2. It is
built on top of the L* algorithm, and inspired by techniques
that apply this to assume-guarantee verification of labelled
transition systems [7]. The introduction of probabilities
brings several complications. Perhaps the most important is
the issue of completeness. The approach of [7] is complete,
meaning that if the property being verified of the system
is satisfied, then there always exists an assumption that
can be used to verify the property compositionally. This
so-called weakest assumption can be formally defined, as
a regular language, and used as the target language for
L*. The probabilistic assume-guarantee framework of [5]
is incomplete: even if the property is satisfied, there may be
no assumption that permits a compositional verification.

Crucially, though, L*-based implementations of assume-
guarantee verification do not, in practice, actually construct
the weakest assumption. Instead, the aim is to, in the process
of learning it, either find a simpler, stronger assumption that
is sufficient to verify the property being checked or generate
a counterexample that refutes it. We adopt a similar approach

here: we use L* to generate a succession of conjectured
assumptions and, for each one, execute probabilistic model
checking queries that may either verify or refute the property
〈G〉≥pG on M1‖M2. If neither is possible, information from
model checking, in the form of counterexamples, guides the
learning process towards a new, refined assumption.

In our context, we need to learn a probabilistic assump-
tion, i.e. a probabilistic safety property 〈A〉≥pA . However,
as we will show, we can reduce this task to the problem of
learning a non-probabilistic assumption, i.e. a regular safety
property A. This is because, for a fixed A, it is possible
to determine whether there is any probability threshold pA
for which 〈A〉≥pA suffices as a probabilistic assumption. To
avoid confusion, in the remainder of this section, we refer
to A and 〈A〉≥pA as the “assumption” and “probabilistic
assumption”, respectively.

This means that our framework can be built around the
standard L* algorithm, which generates a (regular language)
assumption A, guided by a teacher. The task of determining
whether a corresponding probabilistic assumption 〈A〉≥pA
can be created is performed by the teacher.

The overall structure of the interaction between L* and
the teacher is similar to the non-probabilistic case [7]. The
teacher first responds to several membership queries. Then,
L* provides a conjecture for A to the teacher. The teacher
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Figure 3. DFA Aerr
1 for a learnt assumption A1, PA Mσ

1 and PA fragment Mσ,c
1 (see Examples 3 and 4)

uses two oracles (executed by a probabilistic model checker)
to analyse the conjecture and determine whether it can verify
or refute M1‖M2 |= 〈G〉≥pG . These correspond to the top
two outputs on the right hand side of Figure 2. If neither is
possible, the teacher generates and returns traces to L* based
on counterexamples generated during model checking.

Here, there is another important difference with the use
of L* for non-probabilistic assume-guarantee verification. In
[7], the learning is driven by the weakest assumption. When
the teacher finds a conjecture to be unsuitable, it is guaran-
teed to be able to find a trace illustrating an inconsistency
between the current assumption and the weakest assumption.
In our framework, there may not exist such an assumption
so this is not always possible. The feedback provided by the
teacher should be seen as heuristics that guide L* towards
an appropriate assumption.2

To address this limitation, we equip our framework with
the ability to, at any point in its execution, produce a lower
and an upper bound on the minimum probability of G
holding, based on the assumptions generated so far. This
means that, if the algorithm reaches a point where the
teacher is unable to provide feedback for L* to produce
a new assumption, it can still provide valuable quantitative
information to the user (this is indicated by the third possible
output at the bottom of Figure 2). Furthermore, we can
choose to interrupt the learning process at any point and
obtain this information.

In the following sections, we describe each aspect of the
learning algorithm in more detail.

B. Answering Membership Queries

The L* learning procedure is guided by the results of
membership queries as to whether a given finite trace t
should be included in the assumption A being generated.
Since, as highlighted above, an assumption may not exist,
we cannot guarantee definitive answers to these queries. The
criterion we use is to check whether t‖M2 |= 〈G〉≥pG , where
t here denotes a PA representing the trace, i.e a linear, |t|+1
state PA in which each transition has probability 1.

Note that if t does cause a violation, i.e. t‖M2 6|= 〈G〉≥pG ,
then t should certainly not be in A. This is because any
assumption A that contains t will thus not satisfy premise 2
〈A〉≥pAM2 〈G〉≥pG of (ASYM) for any value of pA.

2Since we use L* in a non-standard fashion, we use the original version
of [6], rather than optimisations e.g. due to Rivest & Schapire.

The converse does not hold, i.e. t‖M2 |= 〈G〉≥pG does
not imply that t should be in A. This is because multiple
traces that do not lead to a violation individually may do so
when combined into a single assumption. Unfortunately, we
cannot establish this with an analysis of t in isolation. As we
will show later in the paper, however, the proposed scheme
for answering membership queries works well in practice.

Example 3. We execute the learning algorithm on PAs
M1,M2 and property 〈G〉≥0.98 from Example 1 and with al-
phabet αA={warn, shutdown, off}. To build its first conjec-
ture, L* makes membership queries for the traces: 〈warn〉,
〈off 〉, 〈shutdown〉, 〈shutdown,warn〉, 〈shutdown, off 〉 and
〈shutdown, shutdown〉. Of these, the first two return true
since they do not cause a violation of 〈G〉≥0.98 in M2. All of
the others return false since they result in a violation (occur-
rence of action fail with probability 0.1 > 1−0.98 = 0.02).
The resulting conjecture A1 is illustrated, by its error DFA
Aerr

1 , in Figure 3.

C. Answering Conjectures

The second job of the teacher is to answer conjectures,
i.e. to check whether a generated assumption A can be used
to apply rule (ASYM). For this, A needs to, for some proba-
bility bound pA, satisfy both premise 1, 〈true〉M1 〈A〉≥pA ,
and premise 2, 〈A〉≥pAM2 〈G〉≥pG . As shown in Figure 2,
the teacher checks this using two separate oracles, one for
each premise.

Oracle 1 checks the quantitative assume-guarantee
query 〈A〉IA=?M2 〈G〉≥pG corresponding to premise 2 of
(ASYM), i.e. it determines the widest interval IA ⊆ [0, 1] for
which the premise holds using assumption A. As described
in Section II-C, either IA is a non-empty, closed, lower-
bounded interval, in which case 〈A〉IA is a valid safety
property, or IA=∅. In the former case, we will proceed to
Oracle 2 to check premise 1 with 〈A〉IA .

In the latter case, IA=∅ indicates that, even under the
assumption 〈A〉≥1, M2 would still not satisfy 〈G〉≥pG so
A must be refined, regardless of the validity of premise
1. To refine A we generate a probabilistic counterexample
(σ,w, c) to show that 〈A〉≥1M2 〈G〉≥pG does not hold and
then use this to generate traces for L*. More precisely, we
take the set T = tr(c)�αA of traces for paths in c, restricted
to the alphabet αA. Intuitively, we want to find a trace which
is currently included in A but should in fact be excluded
since it causes a violation of 〈G〉≥pG . By construction, all
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paths in c satisfy A (since A is satisfied with probability 1
under adversary σ).

Consider first the case where T comprises a single trace
t. In this instance, reasoning as for membership queries
above, since t corresponds to a path through M2 that causes
〈G〉≥pG to be false, any assumption A that contains t will not
satisfy premise 2 of (ASYM). Hence, t should not be in the
learnt assumption A. Unfortunately, if T includes multiple
traces, it is unclear whether the same is true. In this case,
we return all traces in T to L*. However, we can increase
the likelihood that c contains a single trace by choosing c
to be the smallest counterexample [14] violating G.

Oracle 2, which is invoked when the interval IA from
Oracle 1 is non-empty, checks premise 1 of (ASYM), i.e. it
verifies whether 〈true〉M1 〈A〉IA is satisfied. If so, then we
have found an assumption 〈A〉IA that satisfies both premises
of (ASYM), thus proving that M1‖M2 satisfies 〈G〉≥pG , and
we can terminate the learning algorithm.

If, on the other hand, premise 1 is not satisfied, then we
construct a counterexample (σ, c) showing M1 6|= 〈A〉IA .
Since, from Oracle 1, we know that M2 is only guaranteed
to satisfy 〈G〉≥pG if 〈A〉IA is true, (σ, c) is potentially a
counterexample for M1‖M2.

Counterexample analysis is then applied to determine
whether (σ, c) is a real counterexample for M1‖M2. To
do so, we construct the PA fragment Mσ,c

1 and check
if Mσ,c

1 ‖M2 |= 〈G〉≥pG holds. If not, we can conclude
that M1‖M2 6|= 〈G〉≥pG (see Proposition 1(c)) and the
algorithm terminates. Furthermore, a counterexample from
the verification of Mσ,c

1 ‖M2 also serves as a counterexample
to illustrate the violation of 〈G〉≥pG by M1‖M2.

Otherwise, (σ, c) is not a real counterexample and we
again need to refine the assumption A by returning appro-
priate traces to L*. Here, the situation is the opposite to that
of Oracle 1. Intuitively, our aim is to find a trace t that is
not currently in the assumption A but should be. Consider as
above the case where T = tr(c)�αA comprises a single trace
t. Since this trace comes from a counterexample showing
M1 6|= 〈A〉≥IA , we know t is not in A. Furthermore, from
the results of the counterexample analysis, it is likely (but
not guaranteed) that t‖M2 |= 〈G〉≥pG .

Example 4. We resume the execution of the algorithm
described in Example 3. The first conjectured assumption
A1 (shown in Figure 3) is passed to Oracle 1, which
checks a quantitative query 〈A1〉IA=?M2 〈G〉≥0.98 yielding
the result IA = [0.8, 1]. Intuitively, this means that, under
the assumption that a shutdown action never occurs with
probability 0.8 or more, M2 would satisfy the property.

Since IA 6= ∅, the teacher proceeds to Oracle 2, which
checks 〈true〉M1 〈A1〉IA , i.e. it checks whether the mini-
mum probability of M1 satisfying A1 is at least 0.8. The
actual minimum probability is 0 (since action shutdown
eventually occurs with probability 1) so the property is false.

We construct a counterexample (σ, c) comprising adversary
σ and (smallest) set of paths c comprising the single path:
π = (s0, a0)

detect−−−−→(s1, a0)
warn−−−→(s2, a0)

shutdown−−−−−−→(s3, a1)
which has probability 0.8. The PA Mσ

1 and PA fragment
Mσ,c

1 are both shown in Figure 3. Counterexample analysis
shows that Mσ,c

1 ‖M2 does satisfy 〈G〉≥0.98 so we return the
trace π�αA = 〈warn, shutdown〉 to L*.

This results in several more membership queries, after
which a second conjecture A2 is produced. This is identical
to the assumption A from Example 2 (Figure 1). Oracle 1
again gives the result IA = [0.8, 1] but, this time, Oracle
2 confirms that 〈true〉M1 〈A2〉≥0.8. Thus, the framework
terminates concluding that M1‖M2 |= 〈G〉≥0.98.

Example 5. Consider now the execution of the learning
algorithm with the same two components M1,M2 but on
safety property 〈G〉≥0.99. The first conjecture generated by
L* is the same as A1 from the previous example (Figure 3).
However, Oracle 1 returns a different interval: IA = [0.9, 1].
Oracle 2 finds that 〈true〉M1 〈A1〉≥0.9 is false (since, as
before, A1 has minimum probability 0). In the corresponding
counterexample (σ, c2), adversary σ is as for Example 4 and
c2 contains the single path with probability 0.2:
π = (s0, a0)

detect−−−−→(s2, a0)
shutdown−−−−−−→(s3, a1).

Counterexample analysis shows that Mσ,c2
1 ‖M2 does not

satisfy 〈G〉≥0.99 since it contains the path reaching fail with
probability 0.2·0.1=0.02 which exceeds 1 − 0.99 = 0.01.
Thus, (σ, c2) is a real counterexample, and the framework
terminates concluding that M1‖M2 6|= 〈G〉≥0.99.

D. Generation of Lower and Upper Bounds

As discussed previously, there is a third possible output
from our learning algorithm (shown at the bottom of Fig-
ure 2). To refine a conjecture, L* requires that any trace
returned as a counterexample by the teacher has not already
been tested with a membership query. In the probabilistic
setting, this cannot be guaranteed, so if this occurs, we ter-
minate the algorithm without generating further conjectures.

Fortunately, as we will now show, for any conjectured
assumption A, it is possible to produce lower and upper
bounds on the (minimum) probability of satisfying the
safety property G. We denote these lb(A,G) and ub(A,G).
Computation of these bounds proceeds as follows. First we
compute p∗A = Prmin

M1
(A) and, simultaneously, generate an

adversary σ ∈ AdvM1 that achieves this minimum probabil-
ity. Next, we check the quantitative assume-guarantee query
〈A〉≥p∗AM 〈G〉IG=? and, from the resulting interval, take:

lb(A,G) = min(IG)

For the upper bound, we compute:

ub(A,G) = Prmin
Mσ

1 ‖M2
(G)

using the adversary σ from above. Then:

Proposition 2. lb(A,G) ≤ Prmin
M1‖M2

(G) ≤ ub(A,G).
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Case study Component sizes Compositional Non-compositional
[parameters] |M2⊗Gerr | |M1| |A| Time (s) Bounds [l, u] Result

client-server
(1 failure)

[N ]

4 223 25 5 6.9 [0.9, 0.989999] 0.9
6 1,695 49 7 20.5 [0.9, 0.989999] 0.9
8 13,367 81 9 1,366.3 [0.9, 0.989999] 0.9

client-server
(N failures)

[N ]

3 229 16 4 6.6 [0.729, 0.967238] 0.729
4 1,121 25 5 13.1 [0.656099, 0.965528] 0.6561
5 5,397 36 6 87.5 [0.59049, 0.958651] 0.59049

consensus
protocol

[N R K]

2 3 2 391 337 5 17.5 [0.891667, 1] 0.891667
2 3 20 391 3,217 5 24.2 [0.987508, 1] 0.987508
2 4 2 573 113,569 10 108.4 [0.988263, 1] 0.988263
3 3 2 8,843 4,065 14 681.7 [0.770911, 1] 0.770911
3 3 20 8,843 38,193 14 863.8 [0.975040, 1] time-out

sensor
network

[N ]

1 42 72 2 3.5 [0.984000, 0.984000] 0.984000
2 42 1,184 2 3.7 [0.916800, 0.916800] 0.916800
3 42 10,662 2 4.6 [0.903360, 0.903360] 0.903360

Figure 4. Experimental results illustrating performance of the learning algorithm

Proof: For the lower bound, by construction, both M1 |=
〈A〉≥p∗A and 〈A〉≥p∗AM 〈G〉≥lb(A,G) hold. Thus, lb(A,G) ≤
Prmin

M1‖M2
(G) follows from rule (ASYM). For the upper

bound, since Mσ
1 is a fragment of M1, Proposition 1(b)

yields that: Prmin
M1‖M2

(G) ≤ Prmin
Mσ

1 ‖M2
(G) = ub(A,G). ut

This means that, if the algorithm terminates because no
further conjectures are possible, we can provide bounds from
the current A. In fact, an interesting property of L* is that the
series of conjectures produced is not monotonic (in terms of
language inclusion). So, the lower/upper bounds from earlier
assumptions may produce tighter bounds and we actually
return the tightest bounds produced from any assumption.

It is worth pointing out that the steps outlined above to
produce the bounds are carried out in many cases anyway.
So, generating this information comes at little extra cost.

E. Correctness and Termination

As we have seen, there are three possible outputs from
the execution of the learning algorithm: (i) verification of
〈G〉≥pG ; (ii) refutation of 〈G〉≥pG ; and (iii) provision of
lower/upper bounds on the minimum probability of satisfy-
ing G. The correctness of these three conclusions has been
explained in the sections above. It is important to emphasise
that this correctness is independent of the choices made by
Oracles 1 and 2 (with regards to the traces that they return
to L*) and of the conjectures generated by L*.

As discussed earlier in this section, due to the incomplete-
ness of the underlying compositional verification framework,
we cannot hope to guarantee that the learning algorithm will
terminate and produce a definitive answer as to whether the
property is satisfied or not. Instead, we provide the option
to obtain lower and upper bounds at any point.

V. EXPERIMENTAL RESULTS

A. Implementation & Case Studies

We have built a prototype tool that implements the learn-
ing framework described in this paper. The inputs to the tool
are a model described in the PRISM modelling language,

a specification of which PRISM modules comprise each
component and a probabilistic safety property. The queries
executed during the learning process are performed by either
PRISM [16] or the extension of PRISM developed for multi-
objective model checking in [5]. For the implementation
of the L* algorithm, we use the libalf [17] learning
library. To generate counterexamples, we build adversaries
using PRISM and then apply the techniques of [14] using
CARMEL which implements Eppstein’s algorithm. Experi-
ments were run on a 1.86GHz PC with 2GB RAM and we
imposed a time-out of 24 hours.

We have applied our techniques to several large case
studies. The first is a variant of the client-server example
from [7], a commonly used benchmark for non-probabilistic
assume-guarantee verification. We inject (probabilistic) fail-
ures into one or more of the N clients, and then analyse the
minimum probability that a mutual exclusion property holds.
Next, we study Aspnes & Herlihy’s randomised consensus
algorithm, analysed in [5], that models N distributed pro-
cesses trying to reach consensus using a shared coin protocol
parameterised by K. We are interested in the minimum
probability of consensus being reached within R rounds.
Lastly, we verify a network of N sensors, which can exhibit
unsafe behaviour due to the occurrence of message failures.
The case studies selected were those that were amenable
to a compositional verification using the rule (ASYM). All
models and properties used are available online.3

B. Results & Discussion
Figure 4 shows experimental results for these case studies.

The “Component sizes” columns give the sizes (number of
states) of the two components, M1 and M2, in each model;
for M2, this also includes the automaton for the safety
property G being checked. In all cases, our implementation
successfully generated an assumption to verify the required
property. The table shows the size, |A|, of this assumption
(for M1) and the total time taken to learn it.

3http://www.prismmodelchecker.org/files/qest10/.
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Even when it successfully verifies a property, the learning
algorithm can still generate lower and upper bounds on
the minimum probability of satisfying G (as described in
Section IV-D). These bounds are also shown in the table.
For comparison, we include (where possible) the exact result
from non-compositional verification using PRISM.

We also mention briefly the assumption alphabet αA
used in these experiments. For the last two case studies,
we fixed αA to be the interface alphabet [7], i.e. αA =
(αM2

∪αG)∩αM1
. This includes all actions of M1 (for which

we are learning an assumption) that can either synchronise
with M2 or may be required to satisfy G. For the client-
server example, we used a reduced alphabet, as proposed in
[7], that improves efficiency.

The results in Figure 4 are very encouraging. We first
observe that, for all case studies, |A| is significantly smaller
than |M1|, i.e. we successfully learn an assumption that is
sufficient for verification and still much more compact than
the component that it represents. We also see that the lower
probability bounds produced by our compositional technique
coincide with the exact values in all cases. The upper bounds
provide useful information in several cases; in fact, for the
sensor network example, the lower and upper bounds match,
yielding an exact answer.

At present, our primary focus is on the feasibility of
generating assumptions and on the quality of these assump-
tions (e.g. their size and the accuracy of the results they
provide). Hence, we do not consider a comparison of exe-
cution times between our (prototypical) tool and the (highly-
optimised) PRISM. Despite this, it is worth mentioning that,
in two cases, the process of compositional verification using
learning is faster than non-compositional verification: for
consensus (2,3,20), PRISM takes 104 seconds (more than
4 times as long) and, for consensus (3,3,20), PRISM did
not finish within 24 hours.

VI. CONCLUSIONS

We have presented a fully automated assume-guarantee
framework for verification of probabilistic automata. As-
sumptions, which are represented as probabilistic safety
properties in the style of [5], are constructed automatically
using an L*-based learning algorithm. The results produced
are quantitative: in the case where an assumption cannot
be produced that verifies or refutes the property being
verified, lower and upper bounds on the probability of
satisfying the property are produced. We have demonstrated
the effectiveness of our approach by using it to generate
assumptions for a range of case studies.

In the future, we plan to extend the learning framework
to support more assume-guarantee rules, e.g. the circular
rule and the N-component rule of [5]. We also intend to
optimise the efficiency of the techniques, e.g. using alphabet
refinement [7] and symbolic (BDD-based) implementations
of L*. Finally we plan to explore additional case studies.
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