
Department of Computer Science

Andrew Miner (PI)
Gianfranco Ciardo (Co-PI)

ACI-1642397 SI2-SSE: A next-generation decision diagram library
https://asminer.github.io/meddly/
MEDDLY, Multi-terminal and Edge-valued Decision Diagram LibrarY, is an open-
source decision diagram library written in C++.

Many computer-based scientific and engineering applications store, analyze, and
manipulate large data. If this data has enough structure, specialized data structures
and algorithms can have dramatically smaller memory and time requirements than
explicit approaches. An important case is hardware and software verification,
where binary decision diagrams (BDDs) have been successfully employed to study
systems with enormous state spaces. Several software libraries have been written to
support BDD creation and manipulation. These libraries have also encouraged
researchers to use BDDs in other areas, e.g., search, planning, optimization, and
satisfiability, in the hope to find and exploit structure often hidden in the data.

However, decision diagram theory has evolved beyond BDDs, with generalizations
such as multi-way decisions (MDDs) and multi-valued or numerical outcomes
encoded using multiple terminals (MTMDDs) or edge values (EVMDDs). New
reduction rules to canonize decision diagrams (often resulting in smaller size) and
algorithmic improvements have also been proposed. Unfortunately, libraries have
not kept up with these advances.

MEDDLY seeks to fill this gap, by integrating and expanding two existing
prototype libraries, a previous version of MEDDLY (designed by PI Miner at Iowa
State University) and TEDDY (designed by Co-PI Ciardo at the University of
California - Riverside), into a powerful, next-generation decision diagram library
that supports a more general theory of decision diagrams.

The new library supports:
• non-binary variables, including finite discrete domains (possibly with unknown

bounds) and even infinite discrete domains (under certain restrictions),
• non-boolean function values, encoding by attaching a value to either the terminal

nodes or the edges of the decision diagram,
• a more general definition of canonicity that allows a wide spectrum of reduction

rules that can be best at exploiting different structures in the data.

Several project activities will reduce the learning curve for users adopting
MEDDLY, including proven methods (e.g., user manuals, tutorials, and examples)
and novel methods such as the development of visualization techniques to help
debugging and understanding decision diagrams, both statically and dynamically.

Modularity is one of MEDDLY’s design goals; its major components interact via
the user interface, designed to support future extensions. Users can define their
own reduction rules, caching schemes, and decision diagram operations without
requiring extensive knowledge of MEDDLY’s internals.

Users of MEDDLY include:
• University of Torino, Italy (GreatSPN, state space generation, model checking)
• Guilin University of Electronic Technology, China (constraint solving)
• Formal methods and tools group, University of Twente, the Netherlands
• University of Bergamo, Italy (CitLAB, combinatorial interaction testing)
• Research Group Foundations of AI, University of Freiburg, Germany (planning)

MEDDLY

Symbolic logic verification
• states: MDDs; transitions: MXDs
• reachability: ∨, relational product
• saturation algorithm
• on-the-fly: user-defined routines

to update transition relation
• CTL operators
• minimal witness generation

Probabilistic verification
• MTMDD, EV+MDD, or

EV*MDD for vectors and
MTMXD or EV*MXD for
matrices.

• vector-matrix multiplication, in
addition to the operators for
symbolic logic verification

Reliability
• user-defined operations to

compute the reliability of a fault-
tolerant system using symbolic
techniques

Dominance testing
• symbolic logic verification

operators, since this reduces to
model checking a CTL formula

Constraint solvers
• MDDs to represent constraints
• primitives for building

constraints
• intersection gives the set of

solutions

Decision diagrams encoding boolean or integer
functions. Shown, left to right:

quasi-reduced and fully-reduced MDD encoding
the same boolean function (i.e., a set)
(x3 = 2, x2 = 0, x1 = 2) => True
(x3 = 2, x2 = 1, x1 = 0) => False (default)

quasi-reduced and fully-reduced MTMDD,
quasi-reduced and fully-reduced EV+MDD,
all encoding the same integer-valued function
(x3 = 2, x2 = 1, x1 = 1) => 3
(x3 = 2, x2 = 2, x1 = 1) => Infinite (default)

Decision diagrams encoding boolean or integer
matrices. Shown, left to right:

quasi-reduced and fully-identity-reduced MXD
encoding the same Boolean matrix (i.e., a relation)
(x2 = 0, x2’ = 2, x1= 0, x1’ = 0) => False (default)
(x2 = 1, x2’ = 1, x1= 1, x1’ = 0) => True

quasi-reduced and fully-identity-reduced MTMXD,
quasi-reduced and fully-identity-reduced EV*MXD,
all encoding the same integer-valued function
(x2 = 0, x2’ = 2, x1 = 1, x1’ = 0) => 0 (default)
(x2 = 1, x2’ = 1, x1 = 1, x1’ = 1) => 6

MEDDLY System Diagram: All major components interact through
the user interface, maintaining modularity and extensibility. Major applications for MEDDLY, and main operations supporting them.

x3

x2

x1

x2

x2’

x1

x1’

Acknowledgements: Junaid Babar and Shruti Biswal

