HDR IMAGE COMPRESSION: A NEW CHALLENGE FOR OBJECTIVE QUALITY METRICS
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ABSTRACT

High Dynamic Range (HDR) imaging is able to capture a
wide range of luminance values, closer to what the human vi-
sual system can perceive. It is believed by many that HDR is
a technology that will revolutionize TV and cinema industry
similar to how color television did. However, the complexity
of HDR requires reinvention of the whole chain from capture
to display. In this paper, HDR images compressed with the
upcoming JPEG XT HDR image coding standard are used to
investigate the correlation between thirteen well known full-
reference metrics and perceived quality of HDR content. The
metrics are benchmarked using ground truth subjective scores
collected during quality evaluations performed on a Dolby
Pulsar HDR monitor. Results demonstrate that objective qual-
ity assessment of HDR image compression is challenging.
Most of the tested metrics, with exceptions of HDR-VDP-2
and FSIM computed for luma component, poorly predict hu-
man perception of visual quality.

Index Terms— Image quality assessment, objective met-
rics, High Dynamic Range, JPEG XT

1. INTRODUCTION

High Dynamic Range (HDR) imaging systems pursue the ac-
quisition of images where all the brightness information of
the visible range of a scene is represented. Hence, they can
capture the whole dynamic range and color gamut perceived
by the human visual system (HVS). Thus, many applications
can greatly benefit from the adoption of HDR imaging. For
example, HDR imaging can be exploited to improve quality of
experience in multimedia applications [1] and to enhance in-
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telligibility in security applications where lighting conditions
cannot be controlled [2].

There are different methods to obtain HDR images. Com-
puter rendering and merging multiple low dynamic range
(LDR) images taken at different exposure settings are the two
methods initially used to generate HDR images. Nowadays,
HDR images can also be acquired using specific image sen-
sors. There are two forms of visualization in HDR images.
The first and the best solution is to use a specific HDR display
that has the ability of representing a wider luminance range
and color gamut. The second solution is to map the HDR
image to a LDR display luminance range and color gamut,
using a tone mapping operator (TMO).

JPEG XT is an upcoming standard for JPEG backward-
compatible compression of HDR images [3]. Using this com-
pression standard, HDR images are coded in two layers. The
base layer, where a tone mapped version of the HDR image
is encoded in the normal JPEG format, and a residual layer,
where the extra HDR information is encoded. The advantage
of this method is that any conventional JPEG decoder can ex-
tract the tone mapped image, keeping backward compatibil-
ity and allowing for display on a conventional LDR monitor.
Furthermore, a specific JPEG XT decoder can use the residual
layer to reconstruct a lossy version of the HDR image.

In this paper, HDR images encoded with JPEG XT pro-
file A and corresponding ground truth subjective scores are
used. During the subjective quality assessment, HDR images
compressed at four different bit rates were displayed side-by-
side on a Dolby Research HDR RGB backlight dual modula-
tion display (aka Pulsar). The black level was held constant,
so the luminance dynamic range was solely determined by
the maximum luminance. The paired comparison evaluation
methodology was selected for its high accuracy and reliability
in constructing a scale of perceptual preferences. The subjects
participating in the evaluation experiment were naive viewers.

This paper investigates the performance of state-of-the-
art objective metrics in predicting perceived quality of com-
pressed HDR images. A good objective metric should take
the psychophysical process of the human vision and per-
ception system into account. The main characteristics of
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Fig. 1: HDR images used in the experiments.

Table 1: HDR images information.

Tmage Resolution ~ Dynamic range [dB] Encoding parameters (q, Q)
[pixels] (cropped part) q: base layer, Q: residual layer
BloomingGorse2 4288 x 2848 42 (11,12),(20,13), (32, 15), (62, 15)
CanadianFalls 4312 x 2868 41 (16,29), (30, 30), (65, 30), (80, 33)
McKeesPub 4258 x 2829 60 (5,64), (15,91), (48,88), (83,91)
MtRushmore2 4312 x 2868 50 (5,20), (24,82), (67,80), (89, 78)
WillyDesk 4288 x 2848 70 (5,63), (15,79), (57,90), (85,91)

the HVS include contrast and orientation sensitivity, fre-
quency selection, spatial and temporal pattern masking, and
color perception [4]. In total, 36 metrics developed for im-
age quality assessment were benchmarked using subjective
scores as ground truth. Out of all metrics, only HDR-VDP-2
metric was specifically developed for HDR images. Out of
the 36 metrics, thirteen full-reference metrics were selected
for the detailed evaluation and analysis, including Mean
Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR),
Signal-to-Noise Ratio (SNR), Weighted Signal-to-Noise Ra-
tio (WSNR), Structural Similarity index (SSIM), Multiscale
SSIM index (MS-SSIM), Visual Information Fidelity (VIF),
Visual Information Fidelity pixel-based (VIFp), Universal
Quality Index (UQI), Image Fidelity Criterion (IFC), Fea-
ture Similarity Index (FSIM), High Dynamic Range Visible
Difference Predictor (HDR-VDP-2), and CIEDE2000 color
difference. For each metric, their objective scores were fitted
to subjective scores using logistic fitting. Several perfor-
mance indexes, such as Pearson and Spearman correlation
coefficients and root-mean-square-error, were computed to
compare the metrics estimation of subjective scores. Hence,
with this study we expect to produce a valid contribution for
future objective quality studies on HDR imaging.

The remainder of the paper is organized as follows. The
dataset and corresponding subjective scores used as ground
truth are described in Section 2. The different metrics bench-
marked in this study are defined in Section 3. In Section 4, the
methodology used to evaluate the performance of the metrics
is described. Section 5 provides a detailed analysis of the ob-
jective results and discusses the reliability of objective met-
rics. Finally, Section 6 concludes the paper.

2. DATASET AND SUBJECTIVE EVALUATIONS

2.1. Dataset

Five HDR images' of different dynamic ranges (computed
using Banterle’s HDR toolbox for MATLAB?), representing
different typical scenes, were used in the experiments (see
Figure 1 and Table 1 for details). Originally, these images
were selected by JPEG for the verification tests of JPEG XT
standard. JPEG also provided LDR versions of these im-
ages that were manually tone-mapped using Adobe Photo-
shop from the original HDR.

Inttp://www.cis.rit.edu/fairchild/HDR.html
2http://www.github.com/banterle/HDR_Toolbox



To prepare images for subjective experiments, both HDR
and LDR versions were first downscaled by a factor of two
with bicubic interpolation. The resulted images were first
compressed using JPEG XT Profile A to four different bit
rate values, ranging from a minimum of 0.3 bpp to a maxi-
mum of 2.2 bpp for different images. The bit rate values were
selected for each content separately (see Table 1) in such a
way that there is a noticeable visual difference between im-
ages with different bit rates when they are displayed on the
HDR monitor.

Compressed images were then cropped to 950 x 1080 pix-
els regions for side by side subjective experiments (see Sec-
tion 2.2 for details). The regions to crop were selected by
expert viewers in such a way that cropped versions are repre-
sentative of the quality and the dynamic range of the original
images. Red rectangles in Figure 1 show the corresponding
cropped regions. Downscaling together with cropping ap-
proach was selected as a compromise, so that a meaningful
part of an image can be shown on the HDR monitor. Objec-
tive quality metrics were computed on the cropped versions
of the images.

2.2. Subjective evaluations

The experiments were conducted at the MMSPG test labora-
tory, which fulfills the recommendations for subjective evalu-
ation of visual data issued by ITU-R [5]. The test room is
equipped with a controlled lighting system with a 6500 K
color temperature, whereas the color of all the background
walls and curtains present in the test area were mid grey. The
laboratory setup is intended to ensure the reproducibility of
the subjective tests results by avoiding unintended influence
of external factors.

To display the test stimuli, a full HD (1920 x 1080p) 42”
Dolby Research HDR RGB backlight dual modulation dis-
play (aka Pulsar) was used. The monitor has the following
specifications: full Rec. 709 color gamut, 4000 cd/m? peak
luminance, low black level (0.005 cd/ m?), 12 bits/color in-
put with accurate and reliable reproduction of color and lumi-
nance. In the experiments, the luminance of the background
behind the monitor was about 20 cd/m?. The ambient illumi-
nation did not directly reflect off of the display.

In every session, three subjects were assessing the dis-
played images simultaneously. They were seated in one row,
aligned with the center of the monitor, at a distance of 3.2
times the picture height, as suggested in [6].

The paired comparison evaluation methodology was se-
lected for its high accuracy and reliability in constructing a
scale of perceptual preferences. The image pairs were pre-
sented in side-by-side fashion to minimize visual working
memory limitations. Since only one full HD 1920 x 1080
HDR monitor was available, each image was cropped to 950 x
1080 pixels (for details see Section 2.1) with 20 pixels of
black border separating the two images. Subjects were asked

to judge which image in a pair (‘left’ or ‘right’) has the best
overall quality. The option ‘same’ was also included to avoid
random preference selections. For each of the 5 contents, all
the possible combinations of the 4 bit rates were considered,
i.e., 6 pairs for each content, leading to a total of 5 x 6 = 30
paired comparisons for all contents.

Before the experiment, a consent form was handed to sub-
jects for signature and oral instructions were provided to ex-
plain their tasks. All subjects were screened for correct visual
acuity and color vision using Snellen and Ishihara charts, re-
spectively. A training session was organized using additional
contents to allow subjects to familiarize with the assessment
procedure.

To reduce contextual effects, the stimuli orders of display
were randomized applying different permutations for each
group of subjects and special care was taken for the same
content not to be shown consecutively.

A total of 20 naive subjects (13 females and 7 males) took
part in the evaluation. They were between 20 and 34 years
old with an average of 25.3 years of age.

The Thurstone Case V model [7] was used to convert
the ratings from the ternary scale to continuous-scale qual-
ity score values, which are equivalent to mean opinion scores
(MOS), considering ties as being half way between the two
preference options. For each content, the quality score values
were converted to the range [1, 5] by mapping the lowest and
highest quality score values to 1 and 5, respectively, as the
lower and upper bit rates were selected to be representative
of the lowest and best quality (see Section 2.1), respectively.
The intermediate values were scaled proportionally.

3. OBJECTIVE QUALITY METRICS

In this study, the performance of a set of 13 full-reference ob-
jective metrics in predicting HDR image quality was assessed:
MSE: Mean Squared Error,

PSNR: Peak Signal-to-Noise Ratio,

SNR: Signal-to-Noise Ratio,

WSNR: Weighted Signal-to-Noise Ratio [8, 9],

SSIM: Structural Similarity index [10],

MS-SSIM: Multiscale SSIM index [10],

VIF: Visual Information Fidelity [11],

VIFp: Visual Information Fidelity pixel-based [11],
UQI: Universal Quality Index [12],

IFC: Image Fidelity Criterion [13],

. FSIM: Feature Similarity Index [14],

. HDR-VDP-2: High Dynamic Range Visible Difference
Predictor [15],

. CIEDE2000 color difference [16].
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Table 2: Accuracy and monotonicity indexes for the different metrics.

Luma component only

All components

Metric PCC  SROCC RMSE PCC  SROCC RMSE
MSE 0.8794 0.6935 0.7866  0.8778 0.6655  0.7909
PSNR 0.6591 0.5167 1.2369  0.6164 0.5533  1.2950
SNR 0.8794 0.7375 0.7829  0.7355 0.6352  1.1143
WSNR 0.8099 0.7589  0.9647  0.8785 0.7672  0.7858
SSIM 0.7580 0.7375  1.1185 0.8091 0.8352  1.0448
MS-SSIM  0.8651 0.7131  0.8311 0.8157 0.7176  0.9657
VIF 0.6740 0.5588  1.2163  0.4820 0.1346  1.4468
VIFp 0.7533 0.6871  1.0817  0.3504 0.2611  1.5408
UQI 0.8068 0.8077  0.9725 0.7851 0.7864  1.0189
IFC 0.8833 0.8032 0.7709  0.8256 0.8337  0.9281
FSIM 0.9043 0.8245  0.7021 0.7692 0.7818  1.0513
HDR-VDP-2  0.9337 0.8657  0.5912 0.9241 0.7866  0.6284
CIEDE2000 0.5096 0.5191  1.4174

Almost all the objective metric that were analyzed, except for
CIEDE2000, are typically computed on the luma component
only. In this study, all HDR images were converted to the
Y'C,C,. color space [17] and these metrics were applied to
the components Y’, Cy, and C,. separately. In this paper, the
results of the metrics were computed in two different ways:
on the luma component only and on all components, consider-
ing the average value computed on Y”, Cy, and C.. Regarding
the PSNR metric, the maximum value of the image after con-
version to Y’ C,C,. was considered for the peak value. For the
HDR-VDP-2 metric, the parameters were set according to the
setup of the subjective evaluations (see Section 2.2) and only
the quality value was used. To compute the CIEDE2000 color
difference, all HDR images were converted to the CIELAB
color space using Banterle’s HDR toolbox for MATLAB?Z.

4. PERFORMANCE INDEXES

The results of the subjective tests can be used as ground truth
to evaluate how well the objective metrics estimate perceived
quality. The result of execution of a particular objective met-
ric is an image quality rating (IQR), which is expected to be
the estimation of the MOS corresponding to the compressed
HDR image. To be compliant with the standard procedure for
evaluating the performance of objective metrics [18], the fol-
lowing properties of the IQR estimation of MOS should be
considered: accuracy, monotonicity, and consistency. Consis-
tency estimation is based on the confidence intervals, which
are computed assuming a standard distribution of the subjec-
tive scores. In this study, the Thurstone Case V model was
used to convert the paired comparison ratings to equivalent
MOS values (see Section 2.2). Confidence intervals can be
estimated from the paired comparison ratings, but their na-
ture is different from that of confidence intervals computed
directly on a discrete or continuous ratings scale. Therefore,

only accuracy and monotonicity were considered.
First, a regression was fitted to each [IQR, DMOS] data
set using logistic fitting:
b
1+ exp[-c(IQR - d)]

MOS,(IQR) = a +

where a, b, ¢, and d are the parameters of the fitting function.
Then, the Pearson linear correlation coefficient (PCC) and

the root-mean-square error (RMSE) were computed between

MOS,, and MOS to estimate accuracy of the IQR. To esti-

mate monotonicity, the Spearman rank order correlation coef-

ficient (SROCC) was computed between M O.S;, and MOS.
The RMSE is defined as follow:

N
ﬁ > (MOS; — MOS,;)?
=1

RMSE =
where N is the total number of points.

To determine whether the difference between two perfor-
mance index values corresponding to two different metrics
is statistically significant, a statistical test was performed ac-
cording to [19].

5. RESULTS

Table 2 reports the accuracy and monotonicity indexes, as
defined in Section 4, for the different metrics computed on
the luma component only and on all components. The fitting
was applied on all contents at once. Results show that HDR-
VDP-2, FSIM (luma only), IFC (luma only), SNR (luma
only), MSE (luma only), and WSNR (all components) are
among the best metrics, with a PCC above 0.87 and a RMSE
below 0.79. On the other hand, results indicate that VIF,
VIFp, and CIEDE2000 computed on all components perform
the worst, with a PCC and SROCC below 0.51 and RMSE
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Fig. 2: Subjective versus objective results.

above 1.4. In many benchmarking performed on LDR con-
tent, VIF(p) is often among the best metrics and shows lower
content dependency when compared to other metrics [19].
However, in this study, VIF(p) showed quite strong content
dependency, which explains the low performance when con-
sidering all contents at once. As it can be observed, PSNR
also shows quite poor performance, with a PCC between 0.6-
0.66 and a MSE around 1.25. The low performance of PSNR
may be due to the maximum possible pixel value, which is not
well defined in the case of HDR content, used for computing
PSNR.

Even though SSIM and MS-SSIM often have a good cor-
relation with perceived quality, they are criticized by many
researchers as it is hard to interpret their output values when
compared to PSNR values. In most cases, the SSIM and
MS-SSIM values only cover a very limited range, typically
[0.8,1], when compared to the theoretical [0,1] range. In
this study, the SSIM and MS-SSIM values are in the range
[0.99997, 1] and [0.999997, 1], respectively. Therefore, the
relative change between the worst and best qualities for SSIM
and MS-SSIM is less than 0.003% and 0.0003%, respectively,
which is almost imperceptible, especially for MS-SSIM.
These findings suggest that SSIM and MS-SSIM should be
adapted to cope with HDR images.

As it can be observed, the performance of VIF and es-
pecially VIFp drop drastically when considering all compo-
nents. To further understand whether there is a statistically
significant difference between the performance of each met-
ric when computed on the luma component only and when

computed on all components, a statistical analysis was per-
formed on the different performance indexes. Results show
that there is no significant different in the performance of the
metric between the two approaches for any of the metrics.
However, because of the relatively low number of conditions
(20 stimuli), general conclusions should not be drawn from
these results. As HDR is often considered in combination
with wide color gamut, it is expected that the fidelity of color
reproduction will play a more important role in the context of
HDR when compared to LDR.

Figure 2 depicts the scatter plots of subjective versus ob-
jective results for some of the metrics considered in this study.
The metrics that perform the best according to the perfor-
mance indexes exhibit a very abrupt transition from low to
high quality. Such binary behavior is not well suited for ob-
jective quality metrics, which are expected to discriminate
between several granularities of distortions. This finding im-
plies that these metrics do not correlate well with human per-
ception of visual quality, as the response of the HVS is ex-
pected to be smoother and not abrupt, and that the perfor-
mance indexes are not sufficient to select a good metric. On
the other hand, IFC computed on all components performs
lower but has a smoother transition between low and high
quality. HDR-VDP-2 is the only metric considered in this
study that was originally designed for HDR content. How-
ever, the performance of this metric is not significantly better
than that of state-of-the-art metrics designed for LDR content.
Overall, results show that there is a great room for improve-
ment to better predict the perceived quality of HDR content.



6. CONCLUSION

In this paper, the correlation between thirteen well known
full-reference metrics and perceived quality of compressed
HDR content was investigated. Five HDR images were com-
pressed with the upcoming JPEG XT HDR image coding
standard to generate different distortion levels. The objec-
tive metrics were benchmarked using ground truth subjective
scores collected during quality evaluations performed on a
Dolby Pulsar HDR monitor. Results show that HDR im-
ages are challenging for objective metrics and that the most
commonly used metrics, e.g., PSNR, SSIM, and MS-SSIM,
predict perceived quality of HDR content unreliably. Only
two metrics, HDR-VDP-2 metric designed for HDR con-
tent and FSIM metric computed on the luma component,
predict human perception of visual quality reasonably well.
However, they are complex and require heavy computational
resources, which limits their use in many applications.
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