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Abstract—This paper analyzes the impact on compensating 
for Type-I errors in video quality assessment. A Type-I error is to 
incorrectly conclude that there is an effect. The risk increases 
with the number of comparisons that are performed in statistical 
tests. Type-I errors are an issue often neglected in Quality of 
Experience and video quality assessment analysis. Examples are 
given for the analysis of subjective experiments and the 
evaluation of objective metrics by correlation. 
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I. INTRODUCTION 

Currently, subjective experiments are the best way to 
investigate the user's Quality of Experience (QoE) for video. 
Typically, in such experiments, panels of observers rate the 
quality of video clips that have been degraded in various ways. 
When analyzing the results, the experimenter often computes 
the mean over the experimental observations, a.k.a. the Mean 
Opinion Scores (MOS) and applies statistical hypothesis tests 
to draw statistical conclusions. A statistical hypothesis test is 
done by forming a null hypothesis (H0) [1] and an alternative 
hypothesis (Hj) that can be tested against each other. For 
example, in video quality assessment, often the hypothesis test 
will have the null hypothesis, H0> that the two underlying MOS 
values are the same and the alternative hypothesis, Hi, that they 
are different. If the result is significant, the experimenter knows 
with high probability (typically 95%) that H! is true and in this 
case, that the MOS values are different. However, there is still 
a small risk (5% in this case) that this observation is only by 
chance. This is a Type-1 error—to incorrectly conclude Hj is 
true when in reality H0 is true. 

When there are more pairs of MOS values to compare, each 
comparison has the above mentioned small risk of error. This 
risk of an error increases with the number of comparisons and 
can be estimated by: 1 - (1 - cr)n, where a is the confidence 
level per comparison and n is the number of comparisons [1], 
For 100 comparisons at a 95% confidence level, this equals 
more than a 99% risk of at least one Type-I error. 

In this paper, we demonstrate the consequences of Type-I 
errors in video quality assessment. The work was motivated by 
a recent study [2], where in spite observing large absolute 
differences between MOS values, no statistical significance 
was observed. There are also important discussions when to 
use parametric or non-parametric statistical methods and if 

normal distribution assumptions are valid or not in video 
quality assessment, but those are outside the scope of this 
paper. Furthermore, there is a difficult trade-off while securing 
against Type-I errors, which increases the risk of committing 
Type-II errors (i.e. not finding an effect while it is there). But 
we focus on the Type-I error here, since we feel that this is 
more often neglected. 

II. METHOD 

There are various statistical methods to compensate for Type-I 
errors. It is important to distinguish between planned 
comparison and post-hoc testing. If a set of comparisons are 
planned before the data is collected, then n effectively drops. 
That is, n is the actual number of comparisons planned ahead 
instead [1]. Otherwise all possible comparisons should be taken 
into account. 

A common way to compare a set of means is to perform an 
Analysis of Variance (ANOVA) followed by a post-hoc test. 
This is a two step approach where first ANOVA indicates 
whether there is an overall effect, then a more refined tests 
(such as Tukey HSD) analyzes whether there are any pairwise 
significant differences. However, it is quite difficult to estimate 
how big of an influence a particular number of comparisons 
has on the efficiency of the statistical test. Fortunately, there is 
also a rather straightforward method, suggested by Bonferroni 
[1], where the considered significance level (a) is divided with 
the number of comparisons («) so that the significance level for 
each comparison will be aln. The advantage here is that it can 
be combined with simple tests like the Student's T-test. The 
disadvantage is that it can be overly conservative. 

In this study, we consider the influence of multiple 
comparisons on the number of test subjects required and on the 
differences between MOS that are statistically significant. We 
also consider the performance evaluation of objective metrics, 
based in ITU-T Rec. P.1401 [3]. To this end, we analyze 
Pearson's correlation for multiple comparisons. 

To analyze an effect, we assume the Student's T-test with equal 
standard deviations and the same number of data points in the 
two mean values, based on independent data samples. This 
gives the simplified formula tobs = ̂ jJ^- Vñ. The degrees of 

freedom are (2«-2). For certain values of the difference 
between the means (pti-/u2), the number of data points («) and 
the standard deviations (a), we can calculate the probability of 
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Fig. 1. Top, middle: Probability of significance for subjective 
experiments. 'Alpha' and 'diff denote the confidence level per 
comparison and MOS difference in order. Bottom: Probability of 
significance for Pearson correlations with a difference of 0.05, where N is 
the number of data points. 

significance, p. We can analyze the requirements for getting 
statistical significance by calculating the p for different input 
values. This simplification is not directly useful for most video 
quality experiments. However, our simplification covers the 
important case where an experiment has been repeated by 
different labs or different panels of observers. For instance, 
when comparing two experiments using the same distorted 
videos, the experimenter might want to test whether the MOS 
difference is 1.0 or more on a 5-level scale (e.g. in one lab a 
video is rated "good", but at another it is just rated "fair"). 

III. RESULTS 

Fig. 1 top graph shows curves for MOS difference of 1.0 and 
0.5. These standard deviation choices are motivated by actual 
experiments: VQEG HDTV test [4], where the average 
standard deviation was 0.7, and Tavakoli et al. [2]. Along the 
x-axis are the numbers of subjects, and along the y-axis are the 
^-values. The vertical line indicates 24 test subjects, which is 
commonly used by VQEG and recommended by ITU-T Rec. 
P.913. The horizontal lines show the p-value indicated by the 
Bonferroni formula when making one comparison (alpha = 

0.05), 100 comparisons (alpha = 0.0005), and 4950 
comparisons (alpha = 0.00001). The difference curve (diff) 
must be below the alpha threshold for the Student's T-tesl to 
detect a difference in MOS at the 95% confidence level. 

It can be observed along the vertical 24-subject line that for one 
comparison, we get significance for both MOS difference of 
0.5 and 1.0 (the intersection of both curves and the green line). 
With 100 comparisons, only a MOS difference of 1.0 is 
significant (intersection of blue curve and purple line). With 
4950 comparisons, 24 test subjects cannot detect a MOS 
difference of 1.0. This is illustrated differently in the middle 
graph, where we have drawn the probability of significance for 
the cases of 20, 30 and 40 test subjects as a function of MOS 
difference. When all pairwise comparisons are considered, as is 
typical, 30 test subjects are needed to for the Student's T-test to 
conclude that 1.0 MOS difference is significant. 

Let us now consider the impact of multiple comparisons when 
evaluating objective metrics with Pearson's correlation [3]. The 
bottom graph shows the probability of significance when the 
difference between the correlation coefficients are 0.05 (e.g. 
difference between correlation of 0.85 and 0.9). The different 
curves represent different number of data points (10, 100 and 
1000). 100 data points is a common number in a single video 
quality experiment. Looking at this curve, we see that the 
significant differences can be expected first when the 
correlation is about 0.92 and then only when we are doing just 
one comparison. When doing multiple comparisons, no 
significance can be detected from 100 data points. 

IV. CONCLUSIONS 

In this paper, we investigated the effect of multiple 
comparisons on the statistical level of significance that can be 
expected in subjective studies and objective metrics 
evaluations. This effect can result in the Type-I error, which is 
often neglected and therefore leads to wrong conclusions. Our 
results show that there could be arguments to increase the 
number of test subjects normally used according to 
standardized recommendations—especially, if the goal is to 
detect a 1.0 MOS difference. Further, for objective metric 
comparisons using correlation coefficients, it is difficult to find 
any significance with few data points and correlations below 
0.9. In this case, multiple comparisons have a large impact on 
the final conclusion that can be drawn.1 
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