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Abstract— Most video platforms deliver HD video in high 
bitrate encoding. Modern video-conferencing systems are capable 
of handling HD streams, but using multiparty conferencing, 
average internet connections in the home are on their bandwidth 
limit. For properly managing the encoding bitrate in video-
conferencing, we must know what is the minimum bitrate 
requirement to provide users an acceptable experience, and what 
is the bitrate level after which QoE saturates?. Most available 
subjective studies in this area used rather dated technologies. We 
report on a multiparty study on video quality with HD resolution. 
We tested different encoding bitrates (256kbs, 1024kbs and 
4096kbs) and packet loss rates (0, 0.5%) in groups of 4 participants 
with a scenario based on the ITU building blocks task. We discuss 
the influence of group interaction and individual idiosyncrasies 
based on different mixed models, and look at covariates 
engagement and enjoyment as further explanatory factors.  We 
found that 256kbs is still sufficient to provide a fair overall 
experience, but video quality is noticed to be poor. On the higher 
bitrate end, most people will not perceive the difference between 
1024kbs and 4096kbs, considering in both cases the quality to be 
close to excellent. Independent on bitrate, packet loss has a small 
but significant impact, quantifiable in, on average, less than half a 
point difference on a 5-point ITU scale. 
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I.    INTRODUCTION 
Desktop video-conferencing is one of the fastest growing 

technologies in real-time communication: CISCO reported a 
growth of 30% between 2013 and 20141, and Skype reported a 
10x growth of group video-calling in the last two years2. 
Desktop video-conferencing systems have advanced in the 
recent years with improved imaging technologies (HD is 
available for displays and cameras, codecs have improved) and 
being capable of multiparty sessions. The user choice for one 
system over the other is, for a major part, dictated by the Quality 
of Experience (QoE) these systems can deliver. Hence, it is of 
major importance to understand how system factors and network 
conditions typical of regular households influence user 
satisfaction with multiparty video conferencing systems. 

To fully understand QoE in multiparty video-conferencing, 
it is essential to perform interactive tests, besides passive ones. 
In passive tests, participants assess the quality of video clips [1] 
or recordings from video-conferencing sessions [2][3]. While 

                                                             
1 http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/VNI_Hyperconnectivity_WP.html 
2 http://blogs.skype.com/2016/01/12/ten-years-of-skype-video-yesterday-
today-and-something-new/ 

easy to setup, these tests suffer from limited ecological validity: 
the focus in a video-conferencing session is on effectively 
interacting with the other participants via audiovisual 
communication; the level to which system factors impair this 
ability is not accounted for in passive tests. Interactive tests 
tackle this limitation by involving multiple test participants 
performing a (joint) task over a video-conferencing system.  

Interactive studies, especially for multiparty scenarios, have 
been mostly looking at the effect of delay on QoE [4][5][2], or 
at different stream encodings in combination with different 
dynamic layouts [6]. The impact of encoding and loss rate on 
quality has been studied only in two-party scenarios [7][8][9]. 
The maximum quality studied in these experiments was VGA 
encoded with 2Mbps in H.264, but no significant improvement 
in QoE was recorded for streams encoded at bitrates higher than 
0.77Mbps [8]. This is a relevant result, as it poses an upper 
bound to the bitrate to which streams need to be encoded to 
ensure a satisfactory experience, which does not exceed the 
bandwidth availability of most households. Nevertheless, it is 
unclear whether this bound still holds for higher resolution 
video, such as HD. Popular video delivery services encode their 
720p videos within 2Mbps and 4Mbps3. A multiparty 
conference, with such bitrates, easily maxes out the typical 
broadband connections available at households4. It is therefore 
important to establish (1) what is the minimal encoding quality 
for 720p video to still deliver a satisfactory experience; (2) what 
is the maximum bitrate above which no significant QoE 
improvement can be achieved and (3) the extent to which packet 
loss, typically occurring in situations like a home WLAN, 
impacts on QoE, also depending on the encoding bitrate. 

In this study, we tackle these questions by reporting about an 
interactive subjective test on visual quality in a HD multiparty 
video conferencing system. The study is designed around a task 
which requires audiovisual interaction, i.e., the ITU 
recommended building blocks task [10], extended for multiparty 
interaction and HD video. We use a desktop-based 4-way video-
conferencing scenario with WQHD screens and 720p video-
streams encoded in H.264. We test the effect of encoding the 

3 http://www.lighterra.com/papers/videoencodingh264/ 
4 https://www.stateoftheinternet.com/resources-connectivity-2015-q3-state-
of-the-internet-report.html 
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video streams to bitrate levels fitting the bandwidth delivered by 
different internet access technologies typical for domestic 
households: broadband, DSL and mobile. We inject packet-loss 
in the videostreams, simulating typical slightly impaired 
wireless networks. We then investigate the impact of bitrate and 
packet-loss on overall, audio and video quality as perceived by 
participants. 

As QoE is not only a result of system factors [11], but largely 
depends on user and context factors [12], we also look at 
individual and group idiosyncrasies. Ratings from users reflect 
their personal preferences, expectations and previous 
experiences. In interactive scenarios, every test run has its 
unique conversation dynamic, adding further divergence in the 
experience. Group dynamics and group cohesion cast further 
confounding factors in assessing the impact of the system factors 
on QoE [13]. Thus, in our analysis, we also investigate which 
role group interaction and individual preferences play in the 
appreciation of QoE, by means of variance analysis of different 
mixed linear effect models [14] [15]. 

Our results are clear: 256Kbps encoding still gives 
participants a fair experience, even though they find the video 
quality poor. On the other hand, 1Mbps seems to be enough to 
convey high QoE. Distortions due to packet loss are noticed, but 
no dramatic decrease in quality is to be expected. The group 
interaction plays in most cases a smaller role than individual 
idiosyncrasies, which instead explain a large extent of the 
variance in the collected QoE ratings. 

II.   STUDY DESIGN 
The goal of this study was to measure the QoE of current state-
of-the-art desktop video-conferencing systems in typical home 
situations. Of special interest are for us the factors which can 
vary dynamically: the network conditions. We thus designed the 
study to investigate the effect on QoE of two independent 
variables, bitrate and packet loss rate, set at levels typical of 
domestic environments.  

With respect to bitrate, we envisioned three conditions. The “low 
encoding” one (256kbs up and 768kbs down), reflected mobile 
broadband or slow xDSL connections; the “medium encoding” 
condition mimicked a typical xDSL connections (1Mbps up / 
3Mbps down) and the “high encoding” one (4Mbps up and 
12Mbps down) reflected broadband like TV cable connections. 
Each bitrate level was further combined with either of two levels 

of packet loss, i.e. (1) no packet loss, as would occur on a wired 
connection and (2) 0.5% packet loss, likely over an impaired 
wireless network [3]. This resulted in a full factorial design with 
6 conditions.  

As six conditions would be too many to be assessed by each 
participant (risking fatigue), we opted for a mixed blocked 
design. 28 participants (18 female, average age: 31.9, sd: 10), 
performed the experimental task in groups of 4, to mimic real 
multiparty video-conferencing activities. Each group was 
exposed to 4 of the 6 conditions, counterbalanced in order. 
Eventually, each condition was assessed by at least four groups, 
i.e. 16 participants. The QoE assessment was performed, after 
exposure to each condition, via three ITU questions with 5-point 
ACR scales, targeting overall, audio and video quality [10]. The 
questionnaire contained further 12 items regarding experience, 
engagement and conversation dynamics. At the end of the whole 
experimental session participants also filled in a 9-item 
questionnaire regarding demographical information and 
enjoyment of the task. 

Apparatus. Four rooms (one per participant in the conversation) 
with similar lighting and background conditions were equipped 
with identical desktop computers, displays, webcams and 
headsets (see Table 1 for detail). The video-conferencing 
software used was QoE-TB [12], which was specifically 
designed for conducting QoE experiments. The software uses 
GStreamer for media processing and UDP as the transport 
protocol. The packet loss was introduced by dropping RTP 
packets on the senders buffer, so every participant would see the 
same distortions. The experiment conductor monitored the 
session, but was only visible and audible for the introduction. 
The screenshot in Figure 1 shows the timecode embedded in the 
video which was cropped in the video of participants (8px). 

Experimental task and protocol. To elicit a conversation that 
would stress the use of video, we employed the building blocks 
task from ITU-T P.920 [10][4][5], and we adapted it for a 
multiparty scenario. Each participant in each group had the same 
unassembled Lego® model but only part of the instructions. The 
task of the group was to communicate the respective instructions 
over the system to complete the model construction. To stress 
the HD setting, we chose a model with fine pieces (smallest 
0.5x0.5 cm). 

Before the actual experiment began, participants were 
briefed about the research scope, gave written consent and were 

 
Figure 1 Screenshot from Experiment 

Table 1 System Setup 

Hardware 
Model Nuc 5i5ryh: Core i5u, 8GB Ram, SSD 
Displays Dell 27” 2560 x 1440 (WQHD) 
Headsets Creative Soundblaster Xtreme 
Webcams Logitech C920 

Fixed System 
Parameters 

Resolution 1280x720  – per participant 
Framerate 24 fps 

Encoding 
H264 (x264) with Tune zero-latency, 
ultrafast speed-preset, GOP size 24, no 
b-frames, sliced threads encoding 

Audio AMR encoded 
Delay One-way ca. 120 ms 

Conditions 

Encoding Bitrate 
LowEnc: 
256kbps 

MediumEnc: 
1024kbps 

HighEnc: 
4096kbps 

Loss 
None (0%) Random (0.5%) 

 



explained the procedure of the study. They were then escorted 
each to a different experimental room and seated 68cm from the 
monitor, as recommended by ITU-T P.913 [16]. The video-
conferencing software was then started, and the experimenter 
joined the conferencing in the beginning to make sure 
everything was working properly (e.g. sound volume 
adjustments). Participants were then asked to begin the 
experimental task, and they were exposed to the first of four 
experimental conditions. Each condition lasted for 7 minutes, 
after which the system would automatically display the ACR 
scales for QoE rating. Before each new condition, the 
experimenter shortly spoke over the video-conferencing, asking 
participants whether they needed a pause. After all rounds, the 
final questionnaire was administered and participants debriefed. 

III.  ANALYSIS 
Our basic assumptions were that a higher bitrate leads to 

higher or equal quality ratings and higher packet loss to a lower 
or equal rating. Figure 2 shows average scores with 95% 
confidence intervals for the three dependent variables (overall, 
audio and video quality) in the six experimental conditions, 
ordered according to the expected perceived quality.  

Methodology. To fully understand the impact that bitrate and 
loss have on QoE ratings,we need to untangle it from that of 
individual idiosyncrasies of participants and group dynamics of 
a specific sessions. To this purpose, we resort to linear mixed 
effect models, which extend linear models (such as ANOVAs) 
by introducing the concept of random factors. Linear models 
assume that dependent variables (in our case the QoE scores) 
can be modeled by a linear combination of the levels of the 
indpendent variables of interest, the so-called fixed effects 
(here: bitrate and loss).  
In a linear mixed model, the concept of ‘random effect’ is 
introduced to explain the systematic impact that unobserved 
variables, uncorrelated with the fixed effects, may have on the 
dependent variable. This is especially useful to model data 
obtained from within-subjects designs (such as ours), where 
observations (ratings) cannot be considered to be indipendent 
(as they would be in linear models), since they are expressed by 
the same user or within the same session. For example, ratings 
from the same user may be correlated due to unobserved factors 
(e.g. mood, prior experience). This correlation can be modeled 
as a random effect, and in mixed models it is taken into account 
by estimating an individual intercept and slope for the fixed 
effect(s), depending on the level of the random effect. A 

visualization of this is proposed in Figure 3, where we model 
group as random factor per bitrate. In analyzing our data, we 
consider the influene of two random factors: 
-­   User: Having repeated measures from (a random sample 

of) participants, we may expect them to use the rating 
scale in different ways, or to have different quality 
preferences (or idiosyncrasies). 

-­   Group: The specific group interaction and conversation 
(again randomly sampled from all possible interactions 
and conversations) may influence the experience of all 
members of this group, and thereby their ratings.  

 
A linear mixed model follows the general structure:  

 𝑦 = 𝑋𝛽 + 𝑍𝛾 + 𝜖  (1) 

Where 𝑦 is the vector of our responses (different quality 
ratings) of length n = 112 (7 groups, 4 participants per group, 4 
ratings per participant); X is the design matrix for fixed effects, 
so with a maximum size of n x 11 (3 bitrate levels + 2 loss levels 
+ 6 interactions); 𝛽 are the coefficients of the fixed effects; Z is 
the design matrix for the random effects, with a maximum size 
of n x 224 (28 users + interactions of 28 users with 7 groups);	
  𝛾 
are the coefficients of the random effects and 𝜖 is the vector of 

Table 2 P-values from the likelihood ratio test between full model and reduced model (unfiltered dataset/filtered dataset), testing the impact of 
removing a fixed or random effect on goodness of fit. A p-value < 0.05 indicates that the full model is a significant better fit than the reduced 

model, thereby indicating that the influence of tested effect on QoE is significant. We did not find obvious violations of normal distribution and 
homoscedasticity of the residuals of the presented models. 

Effect tested interaction between 
bitrate and loss 

loss bitrate User Session 

Full model 
M1) ~ bitrate + loss + 

loss:bitrate + 
(bitrate|Group/User) 

M2) ~ bitrate + loss 
+ (bitrate 

|Group/User) 

M2) ~ bitrate + loss 
+ (bitrate | 

Group/User) 

M2) ~ bitrate + loss 
+ (bitrate | 

Group/User) 

M2) ~ bitrate + loss 
+ (bitrate | 

Group/User) 

Reduced model 
M2) ~ bitrate + loss + 
(bitrate | Group/User) 

M2B) ~ bitrate + 
(bitrate|Group/User) 

M2L) ~ loss + 
(bitrate|Group/User) 

M3) ~ bitrate + loss + 
(bitrate|Group) 

M4) ~ bitrate + loss + 
(bitrate|User) 

Dep. 
Variable

(y) 

overall_quality 0.689/0.656 0.006/0.009 0/0.001 0.004/0.012 0.038/0.999 
video_quality 0.206/0.274 0.011/0.005 0/0.001 0.148/0.325 0.006/0.301 
audio_quality 0.165/0.091 0.722/0.976 0.03/0.052 0.001/0.005 0.003/1 
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the residuals of length n. It is assumed that the random effects 
are independent and distributed as 𝑁(0, 𝜏/), the errors are 
independent and distributed as 𝑁(0, 𝜎/), and the random effects 
and errors are independent. We specify then the model eq. (1) in 
different ways to test the impact of fixed and random effects on 
QoE. For brevity, we denote the models using the R notation:  

y ~ bitrate + loss + bitrate:loss + ( bitrate | Group/User )  

with the specific notation 
-   bitrate:loss denoting the interaction between bitrate and loss 
-   (bitrate|Group/User) being short for (bitrate|Group) + 

(bitrate|Group:User), where in turn (bitrate|Group) 
denotes a random effect of the group per bitrate and 
(bitrate|Group:User) denotes a random effect of the user 
per group per bitrate 

To evaluate the goodness of the fit of the different models 
and relation between our independent variables, effects of group 
and user, we compute the marginal R2 (variance explained by 
fixed effects, higher is better), conditional R2 (variance 
explained by fixed effects and random effects, higher is better) 
and AIC (measurement of goodness of fit in relation too number 
of parameters used; where smaller is better [17]) in Figure 4. The 
values were obtained as described in [18]. 

Results. As our data set is not big enough to build random slopes 
per both bitrate and loss, we started our analysis by comparing a 
model with random slope per bitrate (M1 in Table 2) with a 
model with random slopes per loss (y ~ bitrate*loss + 
(loss|Group/User) ). The model with random slopes per bitrate 
performed better on all three dependent variables (conditional 
R2 = 0.785/AIC=287, for overall quality in M1, R2 = 
0.591/AIC=309 for the same dependent variable, with the other 
model; similar results were obtained for video and audio 
quality), thus we choose to model the random slopes per bitrate.  

We investigated the impact of the effects (fixed: bitrate and 
loss, random: group and user) on QoE by comparing, via a 
likelihood ratio test (lrt) [14], different versions of the same 
model, herewith called full and reduced models. The reduced 

models include only a subset of the effects considered by the 
full models; if the lrt returns a p-value smaller than 0.05, this 
indicates that the reduced model has a significantly worse 
performance than the full one, and hence the omitted effect has 
a significant influence on the dependent variable. For example, 
to test whether an interaction of bitrate and loss has a significant 
impact on QoE, we perform the lrt between the full model with 
interaction (M1) against the model without interaction (M2 in 
Table 2). The lrt shows that for here is no significant interaction 
between bitrate and loss for all our assessed quality ratings (p 
> 0.05 for overall, video and audio quality). Based on this 
finding, we proceed to test the different effects from M2.  
The p-values resulting from the lrt between M2 and its reduced 
versions investigating the effect of loss, bitrate, user and group 
on QoE are shown in Table 2. Loss is a significant factor for all 
dependent variables except audio quality (see p-values for M2B 
in Table 2). Bitrate, on the other hand, is a main effect for all 
dependent variables (see M2L). The User effect impacts the 
ratings of overall quality and audio quality (M3). Group, on the 
other hand, impacts all dependent variables (M4).  

Upon closer inspection of the data, we observed that there 
was one group showing a markedly different behavior. Figure 3 

 
Figure 4 Marginal R2, Conditional R2 and AIC per Model  

 

 
Figure 3 Ratings and fitted Model 2 per Session  



plots the fit of individual groups from M1 (see Table 2) as lines, 
the raw ratings as points (jittered on the x-axis) against the 
different bitrate levels: it is clear that ratings from Group F are 
somewhat anomalous. As we have no indication that these are 
measurement errors, we performed our analysis again, on all 
data except those related to this anomalous group (hereon we 
refer to this set of data as the “filtered” set). The results for the 
effects bitrate, loss and user are unaltered, as shown in Table 2. 
However, leaving out the group factor (M4) does not result 
anymore in significantly worse fit 

In Figure 4, we plotted a bardiagram for each dependent 
variable. Each bar shows the marginal R2 (red) and the 
conditional R2 (blue) of a model, for both unfiltered (darker 
colors) and filtered data (lighter colors). Additionally, we noted 
the AIC of each model above the label. Comparing the filtered 
with the unfiltered dataset, we observe that the proportion of 
variance explained by the fixed factors (red) is generally higher 
in the filtered data. While the total explained variance is higher 
for the unfiltered dataset, the AIC indicates that the models 
perform better on the filtered dataset in comparison to how many 
parameters they need for explaining the variance. The perceived 
audio quality is generally poorly explained by the fixed effects, 
even though the total explained variance is quite high. Further 
the difference in conditional R2 between the model including 
group as a random effect (M3) and the model including user as 
a random effect (M4) is large, showing that the audio quality 
was perceived very different for participants at a base level. This 
is particularly obvious for the filtered dataset in which including 
group as random effect does not lead to any more explained 
variance. Video quality has the largest marginal R2 indicating 
that user and group factors play the smallest role for these 
assessments. For video quality we can see that using user as a 
random effect instead of group leads to little improvement. 

Taking into account also the interaction of group and user (M2) 
gives for video quality to the largest gain in R2, indicating that 
group interaction as well as individual idiosyncrasies play an 
important role. For overall quality, in all models fixed effects 
explain less variance than they do for video quality; 
nevertheless, a similar conditional R2 is achieved.  

To precisely quantify the impact on QoE of the fixed effects, 
we performed a post-hoc analysis of the individual conditions 
using multivariate t-distribution adjustment for multiple 
comparisons. Table 3 shows the p-values of the pairwise 
comparisons of the QoE assessments per each pair of levels of 
each fixed effect. The data shows that for nearly all our variables 
there is a clear difference between the low bitrate condition and 
higher bitrates, but users cannot differentiate between medium 
and high bitrate encoded streams. For audio quality, only the 
difference between low and high quality is significant, and only 
in the filtered dataset. We have plotted the mean values and 95% 
confidence intervals in Figure 5. As we can see a lot of the 
variance in the unfiltered model was due to Group F. 

Finally, we looked into what could explain the different 
results for Group F. We found obvious differences in this group 
ratings in another two covariates: reported level of engagement 
and reported level of enjoyment. In the boxplot in Figure 6 it is 
noticeable that the group was less engaged and enjoyed the 
session less. An ANOVA with the different Groups as fixed 
factor showed that for engagement (which was assessed after 
each round) the ratings from Group F were lower those of the 
other groups (F(6,105)=6.533, p<0.001). For enjoyment 
(assessed at the end of the experiment session) the results are not 
as clear but still show a negative trend (F(6,21)=2.1538, 
p=0.08949, contrast for Group F being different p=0.0135). 

IV.  DISCUSSION 
Low quality video, with visible encoding and loss artifacts, was 
rated by users as, mostly, poor quality (mean unfiltered/filtered 
2.33/2.52). For overall quality users tended more towards fair 
(mean unfiltered/filtered 2.65/ 2.97). Both medium and high 
bitrate delivered a good quality of experience with most users 
rating good or excellent (overall quality 3.95/4.29). Except for 
our anomalous group (1.5 – 4.0), the difference between both 
conditions is small (0.33). The video quality is again rated 
slightly lower (3.86 - 4.15). The influence of packet loss, while 
significant, was rather small (average 0.367/ 0.425 difference 
between a loss and no loss condition). Surprising is that there 
was no interaction between packet loss and encoding bitrate. 
The impact of packet loss was also so small, that it did not 
impact the audio quality ratings negatively. 

Our results showed that the perceived audio quality was 
clearly affected due to the impairment of the video quality. This  

Figure 6 Boxplots of covariates per Group 

 

Table 3 P-values by fixed factors (unfiltered dataset/filtered dataset) 

question LowEnc- 
HighEnc 

LowEnc - 
MediumEnc 

MediumEnc 
- HighEnc 

None – 
random0.5% 

overall_quality 0/0 0/0 0.22/0.25 0.01/0 

video_quality 0/0 0.01/0 0.3/0.38 0.02/0.01 

audio_quality 0.07/0.02 0.28/0.07 0.43/0.77 0.75/0.66 

 

 
Figure 5 Fitted Model 2  



confirms studies on cross-modal effects of audio and visual 
quality [19]. 

The initial analysis of our complete dataset showed that 
differences between groups play a big role (compare R2 values 
between models M2 and, M3 and M4 on unfiltered dataset). On 
closer observation this was one group who seemed to have a very 
different experience than the other groups (compare R2 model 
M2 between filtered and unfiltered dataset). Only for video 
quality leaving out the user factor (model M3) did not lead to a 
significant worse fit, suggesting that the impression of the video 
quality, was the most consistent rated within groups from our 
questions. The impact of bitrate and loss was the clearest on 
video quality (highest marginal R2). It is interesting that while 
overall quality was quite consistently rated a bit higher than the 
video quality, the variance here was mostly due to user factors 
and not on a group level. This suggest that the impact of video 
quality on the overall experience is even in visual challenging 
scenarios, a personal preference. 

The building blocks task has been used in previous studies to 
evaluate video quality in video-conferencing [4][9][8]. However 
the setup and assessed conditions are too different for a direct 
comparison 

V.   CONCLUSION 
We investigated different encoding and packet loss settings 

that could be typical situations in the home. Participants that 
have to use the low bitrate encoding (up 256kbs/down 756kbs) 
still have an okay (poor-fair) experience. If the connection has 
also packet loss, similar to an impaired wireless connection, the 
ratings tend more towards poor. We would conclude that 256kbs 
delivers an overall satisfactory experience, but participants will 
not be impressed by the video and often have a poor impression 
of it (research question 1). The difference in quality perception 
between 1024kbs and 4096kbs is rather small (too small to have 
a significant impact in our study) and most people will give it a 
good or even excellent rating. Users on broadband connection 
thus rarely will have a better experience than users with a good 
DSL connection and we can conclude that 1Mbps is enough as 
encode bitrate for HD streams in video-conferencing (research 
question 2). The impact of packet loss was noticeable but rather 
small in our experiment (research question 3). In the high bitrate 
cases, it seems thus clear that it should be recommended to 
assign more bandwidth to forward error correction (FEC) than 
upping the bitrate more. In the low bitrate case both approaches 
seem to be viable. The bandwidth usage of FEC and quality 
improvements between 256kbs and 1024kbs would need to be 
studied in detail to give concrete advise. Packet loss will be 
noticed but is acceptable to most participants, so lossy protocols 
like UDP should still be the favorable choice for video-
conferencing. 

In our analysis we showed that user and group factors both 
are crucial in understanding the obtained participant ratings. In 
general the correlation between ratings of the same individual is 
stronger than the one of ratings within the same group. Groups 
seem to be more consistent when it comes to ratings of the video 
quality than the overall quality. Generally, we can see that our 
models often deliver high overall R2, but a rather small marginal 
R2. This indicates strong influences from either the user or the 
group interaction. In future work we plan to extend our models 

with more covariates from our additional questionnaire ratings 
and analysis of the recorded videos. 
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