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Abstract—The recent advances in light field imaging are
changing the way in which visual content is captured, processed
and consumed. Storage and delivery systems for light field images
rely on efficient compression algorithms. Such algorithms must
additionally take into account the feature-rich rendering for light
field content. Therefore, a proper evaluation of visual quality
is essential to design and improve coding solutions for light
field content. Consequently, the design of subjective tests should
also reflect the light field rendering process. This paper aims
at presenting and comparing two methodologies to assess the
quality of experience in light field imaging. The first methodology
uses an interactive approach, allowing subjects to engage with
the light field content when assessing it. The second, on the
other hand, is completely passive to ensure all the subjects will
have the same experience. Advantages and drawbacks of each
approach are compared by relying on statistical analysis of results
and conclusions are drawn. The obtained results provide useful
insights for future design of evaluation techniques for light field
content.
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coding, image compression.

I. INTRODUCTION

New acquisition technologies to capture, process and visu-
alize Light Field (LF) contents are shaping the future of pho-
tography towards new feature-rich representations. The idea
behind LF imaging is to provide more complete representation
of a scene by recording the direction of light, along with
its intensity. This can be achieved with different acquisition
technologies, such as, among others, multi-camera arrays or
hand-held devices. However, the enhanced features of LF
imaging come with a substantial increase in the volume of
data generated in the acquisition process. More specifically,
the availability of LF cameras in the consumers’ market
presents new challenges in terms of storage, representation and
visualization of the acquired data.

Designing new solutions, to face the challenges LF imaging
poses, cannot forgo the importance of evaluating them in a reli-
able and reproducible way. In particular, subjective assessment
of visual quality is of paramount importance to evaluate the
impact of compression, representation, and rendering models
on user experience. Various examples of subjective quality
evaluation methodologies can be found in literature. Paudyal
et al. analyse the impact of watermarking on visual quality of
LFs using Absolute Category Rating (ACR) [1]. Their effort
focuses on the relationship between watermark strength and
visual quality. In their previous work, the authors evaluate
compression solution through objective and subjective quality
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assessment, in the framework of ICME 2016 Grand Challenge
[2]. The evaluation is performed on several viewpoints ex-
tracted from LF contents and displayed as still images along-
side with their uncompressed references, using a methodology
based on Double Stimulus Continuous Quality Scale (DSCQS).
Darukumalli et al. and Kara et al. investigate the quality of
experience associated with LF displays, and its relationship
with angular resolution and zooming levels [3], [4]. To do so,
they use ACR and Degradation Category Rating (DCR).

Design of subjective quality evaluation is a delicate task
that requires careful considerations, since it has an influ-
ence on the statistical relevance of the results. Moreover, a
well designed quality evaluation experiment should take into
account how the end user engages with the content. This
is especially important when evaluating LF contents. Thus,
rendering techniques for LF contents and subjective evaluation
of quality cannot be considered as independent problems.

LF contents offer a wide range of possibilities for ren-
dering. For example, different viewpoints can be accessed,
digital refocusing can be applied, super-resolution algorithms
can be used to increase the resolution of the image, and
so on. The most natural way for the user to exploit these
possibilities is by interacting with the content. Indeed, being
able to change the appearance of the scene that has been
acquired is a desirable feature, one that is already implemented
in widespread applications such as Instagram or Facebook.
From this perspective, interactive methodologies for subjective
assessment should be actively deployed since they give a more
accurate depiction of how the user consumes and engages
with the content. One example of interactive methodology is
proposed by the authors in [5], where users can access different
viewpoints and change the focal point by interacting with the
content through a GUL. However, one significant shortcoming
of the interactive approach is the lack of control on what users
are visualising and thus what is being rated. Since each subject
decides autonomously which viewpoint to display and for how
long, there is little control over the number of viewpoints
that each subject is examining, nor there is guarantee that the
viewpoints selected by different subjects are the same.

An alternative way to evaluate visual quality of LF contents
would be to use a passive approach, where the subjects are
presented with a pre-recorded animation displaying different
viewpoints. Such an approach guarantees that each subject
sees the identical set of viewpoints under the same conditions.
However, to yield reliable results, a number of parameters
should be carefully selected, such as the optimal framerate
and the number of viewpoints to be presented to the subject.
Moreover, a passive approach disregards the interactive nature



(a) Bikes (b) Stone_Pillars_Outside

(c) Fountain_&_Vincent_2 (d) Friends_1

Fig. 1: Central viewpoint image from each content used in our experiment.

TABLE I: Values of refocusing slopes for each content.

Slopes
Content 1 2 3 4 5 6 7 8 9 10 11
Bikes -0 -8 6 4 2 0 2 4 6 8 10
Stone_Pillars_Outside -10 -8 -6 -4 -2 0 2 4 6 8 10
Fountain_&_Vincent 2 -10 8 6 4 2 0 2 4 6 8 10
Friends_1 S5 4 3 2 -1 0 1 2 3 4 5

of LF contents, and thus does not always faithfully represent
the average user experience in consuming the LF content.

In this paper, we compare results of subjective assessments
of visual quality obtained by using two methodologies, one that
enforces interaction with the content, and one that favors an
automated presentation. For the first methodology, a controlled
lab environment was adopted, while for the second methodol-
ogy, due to time and costs constraints, a crowdsourcing tool
was deployed.

The remainder of the paper is organized as follows. Details
on how the experiments were designed and carried out are
presented in section II. Then, statistical metrics and analysis
tools are introduced in section III. Finally, results from the
comparison are discussed in section IV, and conclusions are
drawn in section V.

II. EXPERIMENTAL TEST DESIGN

This section describes how the subjective evaluations were
designed. More specifically, the creation of the stimuli for both
tests is outlined. A description of the interactive subjective
methodology, along with the testing environment, is presented.
Then, the passive subjective methodology is described in
details. A summary of the specifications for the two method-
ologies can be found in Table II.

A. Data preparation

Four LF images, acquired by a Lytro Illum camera, were
selected from a publicly available LF image dataset [6].
In particular, contents Bikes, Stone_Pillars_Outside, Foun-
tain_&_Vincent_2 and Friends_1 were selected for the exper-
iments. Thumbnails for each content are depicted in Figure
1. Following ITU Recommendations [7], the images were
carefully selected in order to provide a wide range of scenarios,
including details that would prove critical for the compression
algorithms.

The lenslet images were processed using the LF MATLAB
toolbox [8], [9] to obtain the collection of viewpoints needed
for the subjective tests. Additionally, eleven refocused images

were created for each content, using a modified version of the
toolbox function LFFiltShiftSum. For our tests, it was decided
to sum images from index 3 to index 13 (11 x 11 images) to
have a larger depth of field than that obtained by shifting and
summing all of the viewpoints. The values of the slopes used
to shift the viewpoints are summarized in Table 1. The slopes
were selected to assure gradual transition between refocusing
on the foreground and on the background with respect to
semantically relevant objects in each content.

The uncompressed reference was obtained by preprocess-
ing the raw sensor data through devignetting, demosaicing,
clipping to 8 bits, transforming to a collection of viewpoints
and applying color and gamma corrections. The reference was
obtained from the lenslet image in RGB 444, without any
chroma subsampling. This reference was selected to have a
proper comparison with acquisition data obtained with minimal
pre-processing. For this reason, chroma subsampling was not
applied on the reference, since it alters the data.

Five compression algorithms were used to create the data
to evaluate the two methodologies. Three anchors were created
by the authors using HEVC encoding (x265 implementation),
whereas two others were taken from literature [10], [11]. Each
compression scheme was given a label for easier identification.
A summary of the compression schemes can be found in
Table III. The compression algorithms were evaluated on four
bitrates (corresponding to four compression ratios), namely
R1 = 1bpp (10 : 1), R2 = 0.5 bpp (20 : 1), R3 = 0.25
bpp (40 : 1), R4 = 0.1 bpp (100 : 1). The compression ratios
were computed as ratios between the size of the uncompressed
raw images in 10bit precision and the size of the compressed
bitstreams.

B. Interactive methodology

To perform the interactive visual assessment, a recently in-
troduced methodology for evaluation of plenoptic content was
selected [5]. The methodology is based on Double Stimulus
Impairment Scale (DSIS) [7].

Participants were asked to interact with the LF images
and rate the level of impairments of the test LF image with



TABLE II: Test environments and specifications.

Approach Environment No. subjects  Methodology  No. viewpoints  No. refocused views fps  Median age
Interactive  Controlled lab setting 24 DSIS 169 11 - 25
Passive Semi-controlled crowdsourcing 24 DSIS 97 11 30 22
TABLE III: Summary of compression schemes.

Proponents  Description

Po1 Lenslet image compressed using HEVC intra (software x265).

P02 Lenslet image compressed using HEVC intra with LLE and SS (software HM-14.0) [10].

P03 Lenslet image compressed using intermediate transformation to viewpoints and HEVC (software JEM 2.0) [11].

P04 Chroma subsampling of the lenslet image and compression of viewpoints through pseudo-temporal sequence using HEVC (software x265).

PoOs Compression of viewpoints through pseudo-temporal sequence using HEVC (software x265).

respect to the reference, on a scale from 1 (Very annoying)
to 5 (Imperceptible). Each LF image was presented together
with the uncompressed reference in a side-by-side fashion.
The position of the reference was set to either left or right
for each experiment, and participants were informed about its
location on the screen. For each stimulus, the central viewpoint
image from the LF image was displayed. By clicking inside the
displayed image and dragging the mouse, the other viewpoints
from the LF image were accessed and displayed. Each image
was displayed in its native resolution of 625 x 434 pixels. A
total of 13 x 13 viewpoints were accessible. The refocused
images were accessible through a slider shown at the bottom
of each stimulus.

To avoid the involuntary influence of external factors and
to ensure the reproducibility of results, the laboratory for
subjective video quality assessment was set up according
to ITU-R Recommendation BT.500-13 [7]. Professional Eizo
ColorEdge CG301W 30-inch monitors with native resolution
of 2560 x 1600 pixels were used for the tests. The monitors
were calibrated using an il1Display Pro color calibration device
according to the following profile: SRGB Gamut, D65 white
point, 120 cd/m? brightness, and minimum black level of 0.2
cd/m?. The room was equipped with a controlled lighting
system that consisted of neon lamps with 6500 K color
temperature, while the color of all the background walls and
curtains present in the test area was mid grey. The illumination
level measured on the screens was 15 lux. The distance of
the subjects from the monitor was approximately equal to
7 times the height of the displayed content, conforming to
requirements in ITU-R Recommendation BT.2022 [12].

Before the experiments, a training session was organized to
allow participants to get familiar with artefacts and distorsions
in the test images. Five training samples were manually
selected by expert viewers. The training samples were created
by compressing other content on various bitrates. The content
used for the training was selected from the same LF image
database used for the test images [6]. The training samples
were presented along with the uncompressed reference, exactly
as they were shown in the tests.

The experiment was split into two sessions. In each session,
40 stimuli were shown side by side with the uncompressed
reference, corresponding to approximately 20 minutes per
session. The display order of the stimuli was randomized, and
the same content was never displayed twice in a row. Each
subject took part in all the sessions, thus evaluating the entire
set of stimuli. A break of ten minutes was enforced between the
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Fig. 2: Ordering of the views for animation for passive
methodology.

sessions to avoid fatigue. Before the test, one dummy sample
was inserted to ease the participants into the task. The resulting
scores from dummy stimuli were not included in the results.

A total of 24 subjects (19 males and 5 females)
participated in the experiment, for a total of 24 scores per
stimulus. Subjects were between 18 and 35 years old, with
an average of 24.79 and a median of 25 years of age. All
subjects were screened for correct visual acuity with Snellen
charts, and color vision using Ishihara charts.

C. Passive methodology

The passive visual assessment of quality was carried on
using a methodology based on DSIS [7]. To perform the tests,
the QualityCrowd 2 framework [13] was used. However, it
should be noted that all the participants performed the tests
in the same environment at the same time, with equal lighting
conditions, using the same display model and the same screen
resolution. The participants were shown the LF content as
a video sequence navigating between the viewpoints and the
refocused images. Each stimulus was displayed alongside with
the uncompressed reference, in a side by side fashion. The
subjects knew in advance on which side of the screen the
reference was displayed.

Due to distortions caused by the lenslet structure, several
viewpoints presented artefacts independent from the coding
procedure, and thus had to be discarded. Only a subset of 97
out of 225 viewpoints was chosen to be displayed, in order not



TABLE IV: Selected settings for AVC coder for passive methodology.

-r 30 -s <size> -f rawvideo -pix_fmt yuv420p -i <input> -c:v libx264 -profile:v high -x264o0pts no-scenecut:no-deblock:pass=1 -b:v 8M tmp.mp4
-1 30 -s <size> -f rawvideo -pix_fmt yuv420p -i <input> -c:v libx264 -profile:v high -x264opts no-scenecut:no-deblock:pass=2 -b:v 8M <output>

to affect the rating. Ten viewpoints per second were displayed,
to ensure a smooth transition of the different viewpoints. The
viewpoints were accessed from top to bottom and from left
to right and right to left in alternate order (see Figure 2).
At the end of the viewpoint animation, the eleven refocused
images were displayed with a framerate of four refocused
images per second, going from foreground to background and
from background to foreground. The animation setup was
chosen and validated by expert viewers in order to mimic
the parallax effect, as well as to mimic the refocusing effect
that occurs when trying to change the focal point. The total
length of the animation for each stimulus was 14 seconds.
Since there is no browser video plugin capable of reliable real-
time decoding and displaying for HEVC, the animations were
encoded with AVC. A two-pass encoding was used and the
deblocking filter was disabled to ensure transparency and to
preserve the original blockiness artefacts when encoded at low
bit rates. Expert viewing session conducted prior to the main
subjective assessment concluded that the AVC video encoding
was visually lossless, and thus would not influence in any
way the final scoring. Selected settings for AVC coder are
summarised in Table IV.

Test subjects were asked to rate the level of impairment
of the test stimuli when compared to the uncompressed
references. The rating was performed on a scale from 1
(Very annoying) to 5 (Imperceptible). Before the experiment,
a training session was organized to allow participants to get
familiar with artefacts and distorsions in the test images. Five
training samples were manually selected by expert viewers.
To help subjects localize and identify compression artefacts in
the fast-paced video, the same content used in the test was
selected for the training. The training samples were presented
along with the uncompressed reference, exactly as they were
shown in the test.

The experiment was split into two sessions. In each session,
40 stimuli were shown side by side with the uncompressed
reference, corresponding to approximately 20 minutes per
session. The display order of the stimuli was randomized, and
the same content was never displayed twice in a row. Each
subject took part in all the sessions, thus evaluating the entire
set of stimuli. A break of ten minutes was enforced between
the sessions to avoid fatigue.

A total of 24 subjects (22 males and 2 females) participated
in the experiment, for a total of 24 scores per stimulus. Subjects
were between 18 and 35 years old, with an average of 22.79
and a median of 22 years of age.

III. STATISTICAL ANALYSIS

Outlier detection and removal was performed on the results,
independently for each methodology, according to the ITU
Recommendations [7]. One outlier was detected in results
obtained using the interactive methodology, whereas no outlier
was found in the results from the passive methodology. This
led to 23 scores per stimulus for the first method, and 24
scores per stimulus for the second. After outlier removal, the

mean opinion score (MOS) was computed for each stimulus,
independently for each methodology. The corresponding 95%
confidence intervals (CIs) were computed assuming a Student’s
t-distribution.

Following the ITU Recommendations [14], several fittings
were applied to the MOS values from the two different
methodologies. In particular, first order and third order fittings
were used to compare the MOS values. Absolute prediction
error (RMSE), Pearson Correlation Coefficient (PCC), Spear-
man’s Rank Correlation Coefficient (SRCC) and Outlier Ratio
(OR) were computed for accuracy, linearity, monotonicity and
consistency, respectively.

A multiple comparison test was performed at a 5% sig-
nificance level on the raw scores, to determine, for each
stimulus, whether the MOS values obtained with the two
methodologies were significantly different, and the percentage
of correct estimation, underestimation and overestimation were
computed. Additionally, the classification errors were com-
puted using the same multiple comparison test to see if the
results obtained with the two methodologies lead, for each
pair of stimuli, to the same conclusions [15]. In this case,
three types of error can be distinguished: false ranking, false
differentiation and false tie. False ranking is the most offensive
error, and occurs when the first methodology says that situation
¢ is better than situation j, whereas the second methodology
says the opposite. False differentiation occurs when the first
methodology says that situation ¢ and j are different, whereas
the second methodology says they are the same. False tie
occurs when the first methodology says two situations are the
same, whereas the second methodology says they are different.

Finally, one-way and multi-way ANOVA tests were per-
formed to assess the influence of the methodology on the
results, and in particular whether the two methodologies lead
to significantly different results.

IV. RESULTS AND DISCUSSION

Figure 3 shows the scatter plots comparing the MOS values
obtained with the two tested methodologies. On the right, the
horizontal and vertical bars represent the Cls corresponding
to results obtained with interactive and passive methodolo-
gies, here denominated / and P, respectively. To improve
visualization, the points are colored based on compression
ratio or content. Linear and cubic regressions are shown for
both comparisons. Table V shows the performance indexes
computed on the data. The indexes are computed on the data
pairs [MOS4, MOSg] where A,B = I,P. MOS4 are the
MOS scores obtained with methodology A with no fitting,
linear fitting and cubic fitting, and M OSp are the MOS scores
obtained with methodology B.

Ideally, a 45° line would indicate that the two method-
ologies give the same MOS values for the same condition.
However, as it is visible in Figure 3, the points are not
aligned along the y = x line. In particular, linear regression
performed on M OSp has a slope of 0.716 and an intercept
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Fig. 3: Comparison of MOS values obtained with the different methodologies, along with linear and cubic fittings. Points are

differentiated by compression ratio (a) and by content (b).

TABLE V: Performance indexes.

[MOSp, MOS)]

PCC SRCC RMSE OR Correct Estimation  Correct Decision  False Ranking  False Differentiation  False Tie
No fitting 0.8878  0.8876  0.3791 3.75% 100% 84.56% 0.00% 13.04% 2.41%
Linear fitting ~ 0.8878  0.8876  0.2797  0.00% 100% 89.37% 0.00% 3.26% 7.37%
Cubic fitting 0.8957  0.8876  0.2708  0.00% 100% 88.80% 0.00% 0.82% 10.38%

[MOS;, MOSp]

PCC SRCC RMSE OR Correct Estimation  Correct Decision  False Ranking  False Differentiation  False Tie
No fitting 0.8878  0.8876  0.3791 3.75% 100% 84.56% 0.00% 2.41% 13.04%
Linear fitting  0.8878  0.8876  0.3468  0.00% 100% 86.84% 0.00% 3.26% 9.91%
Cubic fitting 0.8895  0.8876  0.3444  0.00% 100% 89.97% 0.00% 6.42% 3.61%

of 0.832, which indicates that, on average, for the same
stimulus subjects gave a higher rating when presented with
passive methodology as opposed to interactive methodology.
This is confirmed by the results of boxplot analysis on the two
methodologies, which shows that, on average, results obtained
with the passive methodologies tend to have higher ratings.
This tendency can be explained considering that viewers are
presented with a carefully selected subset of viewpoints in
the passive experiments, which are less prone to lenslet-
based artefacts, as opposed to the wider number of viewpoints
viewers can access in the interactive experiments.

__Cubic regression has a sigmoid shape in both MOSp and
MOS|, as confirmed by values obtained performing PCC and
SRCC, which indicate a strong but not perfect linear corre-
lation. Low values of RMSE and OR confirm the correlation
between the two methodologies. Furthermore, there is no over-
or under-estimation, as proven by correct estimation being
100%, which indicates that, for the same stimulus, there is no

statistically significant difference between the scores obtained
with one or the other methodology.

One-way ANOVA performed on stimuli grouped only
by methodology shows that results obtained with the two
methodologies, although highly correlated, are statistically
significantly different (p = 0.0005). To further investigate
the influence of the coding parameters on the scores, we
performed multi-way ANOVA on the results, separately for
different compression ratios, contents and codecs, respectively.
Results show that, for compression ratios R2 and R4, the
two methodologies are statistically equivalent at 5% signif-
icance level, whereas for the remaining compression ratios
they are statistically significantly different (p = 0.008 and
p = 0.0046 for R1 and R3, respectively). For content Bikes,
the two methodology are statistically equivalent, whereas for
the remaining contents the two methodologies are statistically
different (p = 0, p = 0.044 and p = 0.0131 for contents
Stone_Pillars_Outside, Fountain_&_Vincent_2 and Friends_1,



respectively). Finally, multi-way ANOVA analysis on different
codecs shows that P5 is the only codec for which the two
methodologies provide statistically different results (p = 0).

The classification errors show that there is no false ranking,
the most offensive error. However, results from false differen-
tiation performed on [MOSp, MOS;] with no fitting show
that, on 13.04% of cases, passive methodology considers two
stimuli as being statistically significantly different, whereas
the interactive methodology does not differentiate them. The
percentage thus shows that the passive methodology has
more discriminating power when compared to the interactive
methodology. This is confirmed by comparing the CIs obtained
with the two methodologies: on average, CIs obtained with
passive methodology are 8.66% smaller. In other words, the
standard error obtained with interactive methodology on 23
subjects would be equivalent to the standard error obtained
with passive methodology on 20.13 subjects. Conversely, when
using the interactive methodology, 27.42 subjects would be
needed to obtain the same standard error provided by the
passive methodology on 24 subjects.

It should be noted that, whereas the interactive evaluation
has been conducted in a lab setting compliant with the guide-
lines set by ITU Recommendations [7], the passive evaluation
has been carried out using crowdsourcing, which is usually
associated with less reliable scores. However, several studies
have proven the efficacy of crowdsourcing-based tests [16],
[17]. Moreover, while crowdsourcing is usually linked to larger
standard errors, due to variability of conditions, the opposite
has been observed in our experiment. It shows that the passive
approach contributed to lower the variance of the scores, in
spite of the impact crowdsourcing might have in increasing
the variance of the results.

V. CONCLUSIONS

In this paper we described the results of comparing two
different approaches for subjective evaluation of visual quality
for light field images. The statistical analysis performed on the
results showed that the two approaches are highly correlated,
although not statistically equivalent, and lead to similar ratings.
However, we found that the interactive approach leads to larger
confidence intervals in the corresponding scores, due to lack of
control over the number of viewpoints that each participant vi-
sualises. Conversely, the passive approach, although conducted
in a less controlled environment, showed a significant reduction
in confidence intervals, and thus an increased discriminative
power.

Interaction is a very desirable feature in light field quality
assessment. Future design of evaluation methodologies for
light field content should consider improving consistency for
interactive testings, for example by merging the two ap-
proaches, or by adding tracking of user interaction to analyse
patterns in user behaviour.
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