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Abstract—Omnidirectional image and video have gained pop-
ularity thanks to availability of capture and display devices for
this type of content. Recent studies have assessed performance
of objective metrics in predicting visual quality of omnidirec-
tional content. These metrics, however, have not been rigorously
validated by comparing their prediction results with ground-
truth subjective scores. In this paper, we present a set of 360-
degree images along with their subjective quality ratings. The
set is composed of four contents represented in two geometric
projections and compressed with three different codecs at four
different bitrates. A range of objective quality metrics for each
stimulus is then computed and compared to subjective scores.
Statistical analysis is performed in order to assess performance
of each objective quality metric in predicting subjective visual
quality as perceived by human observers. Results show the
estimated performance of the state-of-the-art objective metrics
for omnidirectional visual content. Objective metrics specifically
designed for 360-degree content do not outperform conventional
methods designed for 2D images.

Keywords—omnidirectional images and video; subjective quality
evaluation; objective metrics; performance

I. INTRODUCTION

Omnidirectional image and video, also referred to as 360-
degree or cinematic virtual reality (VR) content, represent the
form of immersive visual content providing viewers with an
ability to look in all directions within a scene. The overall
accessible field of view can cover a full sphere, a semi-sphere,
or a spherical segment. Users are able to freely change the
viewing direction by means of a head or device movement; it
is also possible to navigate manually using gestures. Compres-
sion and visual quality assessment of omnidirectional images
and video have recently attracted a lot of interest in scientific
and engineering communities, mainly due to the latest tech-
nology developments simplifying the process of acquisition,
delivery, and visualization of such 360-degree content.

Being intrinsically of a spherical nature, omnidirectional
images and video are often represented in one of the geomet-
rical panoramic projections suitable for their storage and visu-
alization. Nowadays, two projections are widely used for VR
content representation, namely, equirectangular and cubic. The
first, an equirectangular projection, is well known as one of the
geographical mappings [1]. The second, a cubic projection,
originally comes from the field of computer graphics where it
has been known for decades [2]. The latter, however, has many

variations in omnidirectional imaging since cube faces can be
ordered and placed differently in the mapped image frame.

360-degree images and video can be acquired with a single-
sensor omnidirectional camera, a multi-sensor camera, or a
set of cameras mounted on a rig. The latter two acquisition
setups require an additional procedure referred to as a stitching
process, which fuses pictures from different sensors together in
order to form an omnidirectional image. Stitching is typically
performed on-board in multi-sensor cameras and as a post-
processing step in multi-camera systems. Single-sensor cap-
turing devices, such as catadioptric [3], have become obsolete,
whilst multi-camera1 and multi-sensor2 systems are now highly
adopted by consumer electronics industry.

There are several ways to visualize and consume om-
nidirectional image and video content. The most immersive
method requires subjects to wear a head-mounted display
(HMD). A real-time head motion tracking of an HMD al-
lows presentation of a part of the omnidirectional content
(viewport) corresponding to the direction user looks at. A
different way of consuming 360-degree images and video is via
hand-held devices by exploiting their accelerometer features,
which allows presentation of a desired viewport related to
a pan-tilt position. Another less immersive approach is to
visualize omnidirectional content on a regular screen assuming
the navigation through the content manually, e.g. by using
gestures.

Due to full-spherical coverage, omnidirectional visual con-
tent requires significantly higher resolution, when compared
to conventional 2D content, to satisfy consumer expectations.
Such requirements emphasize the importance of an appropriate
compression algorithm to efficiently cope with delivery and
storage of such a content. Evidently, existing image and video
compression algorithms, developed for conventional 2D visual
information, can be adapted to cope with 360-degree content.
Nevertheless, a suitable compression algorithm must take
into account the intrinsic spherical nature of omnidirectional
content. Recent studies on compression attempt to improve
its efficiency by addressing geometrical representations [4][5],
adaptive delivery [6][7], and spherical nature of the visual
content [8][9].

An important part of the development of future 360-degree
image and video compression algorithms is related to the selec-
tion of objective metrics used to automate the process of visual

1http://vr.gopro.com
2http://theta360.com, http://ozo.nokia.comQoMEX2017 – Erfurt, Germany; 978-1-5386-4024-1/17/$31.00 c©2017 IEEE
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Fig. 1: Test image contents used in the experiments.

quality assessment. So far, however, there is no agreement on
which metrics should be used to predict perceived quality of
omnidirectional content as there is not enough evidence about
their performance. Recently, new objective metrics for omnidi-
rectional content have been introduced [10][11]. Nonetheless,
to the best of our knowledge, no attempt to benchmark their
performance has been performed. To benchmark the available
objective metrics, a ground-truth data is necessary. The most
reliable way to obtain such ground-truth data is by means
of subjective quality evaluation. Little to nothing has been
done towards subjective evaluation of omnidirectional content.
In [12], authors present new strategies for assessing the quality
of composite video streams focusing on videoconferencing
applications only. A testbed for subjective assessment of
omnidirectional content using HMD is presented in [13] next
to the results of a pilot subjective experiment.

The aim of this paper is to assess the performance of avail-
able objective metrics designed specifically for omnidirectional
visual content against ground-truth subjective mean opinion
scores (MOS). Additionally, a comparison to the performance
of conventional 2D objective metrics has been carried out. The
objective metrics are evaluated, in terms of commonly used
performance indexes, i.e. linearity, monotonicity, accuracy,
and consistency, based on their correlation with the perceived
visual quality. It is shown that VIFP objective metric provide
the best performance indexes. However, overall results indicate
the need for new algorithms, which better predict perceived
quality of omnidirectional content.

The remainder of this paper is structured in the following
way. Section II describes a subjective evaluation experiment,
including dataset, methodology, test environment, statistical
analysis, and results. Section III presents a set of objective
metrics used for benchmarking, their descriptions, performance
evaluation, and discussion of results. Section IV concludes the
paper.

Fig. 2: Cubic mapping with rotated faces packed as 3x2.

TABLE I: Spatial index (SI) and colorfulness (CF) computed
for the test contents used in the experiment.

Harbor KiteFlite PoleVault SkateboardTrick

SI 7.96 10.45 10.33 6.31

CF 15.64 14.88 42.81 25.62

II. SUBJECTIVE EVALUATION

This section provides a detailed account of the experiment
on subjective visual quality evaluation of omnidirectional
content conducted by the authors. First, the dataset used for
assessment is described and presented. Then the methodology
and experimental environment are described. Finally, the anal-
ysis of results is presented followed by a discussion.

A. Dataset

Four high fidelity uncompressed omnidirectional images
represented in equirectangular projection were used to produce
an evaluation test-set; an additional image different from



TABLE II: Selected parameters and settings for all codecs exploited in the subjective experiments.

Codec Software Command line

JPEG libjpeg jpeg -q quality referencefile.png compressedfile.jpg

JPEG 2000 OpenJPEG opj_compress -q quality -i referencefile.ppm -o compressedfile.j2k

HEVC FFmpeg (x265) ffmpeg -f rawvideo -r 1 -s size -pix_fmt yuv420p -i infile.yuv -c:v hevc -crf qlt outfile.hevc

those four was selected for training. The dataset is based
on omnidirectional video test-set proposed by Joint Video
Exploration Team (JVET) of ITU-T VCEG and ISO/IEC
MPEG. Omnidirectional video sequences were examined, and
a still frame from each of the selected four sequences was taken
to compose the dataset. Figure 1 depicts the selected contents
in equirectangular projection. In order to keep the balance
in spatial complexity and colors, spatial index (SI) [14] and
colorfulness (CF) [15] were taken into account when selecting
the images. Table I shows SI and CF for the contents used in
the experiment.

Original images are represented in YUV color-space for-
mat with 4:2:0 chroma sub-sampling. Initial high resolution
images were down-sampled using bi-cubic interpolation to a
3000× 1500 pixels in order to correspond with the resolution
of the HMD screen used in the experiments. Reference original
images were then remapped to a cubic projection with rotated
faces. This projection is a variation of a cubic mapping
introducing the least amount of additional non-continuities
(face edges) to the picture. Figure 2 shows an example of
image represented in the cubic projection with rotated faces.

Both equirectangular and cubic images were compressed
with three different codecs, namely JPEG, JPEG 2000, and
HEVC intra. Afterwards, an expert screening was conducted
to select bitrates representing the full scale of visual quality. As
a result, four target bitrates, namely 0.25, 0.50, 0.75, and 1.00
bits per pixel, were selected. To compress original images with
JPEG, JPEG 2000, and HEVC, the libjpeg3, OpenJPEG4, and
FFmpeg with x2655 software packages were used, respectively.
The selected parameters and settings for all the codecs ex-
ploited in the subjective experiments are presented in Table II.
In order to perform subjective assessments, all the encoded
images were decompressed using the same respective software
packages to produce reconstructed impaired stimuli.

B. Methodology

The experiment was conducted in the Multimedia Signal
Processing Group (MMSPG) laboratory in EPFL where naı̈ve
subjects were invited to participate. It was performed according
to Absolute Category Rating with Hidden Reference (ACR-
HR) method described in [14]. ACR-HR is a single stimulus
evaluation where the reference stimuli are randomly shown to
observers among the impaired images. Stimuli are presented
subsequently to subjects, and voting is performed after each
viewing. Images are assessed using five-grade quality scale
with the following levels: ”5 - Excellent”, ”4 - Good”, ”3 -
Fair”, ”2 - Poor”, and ”1 - Bad”.

3https://github.com/thorfdbg/libjpeg. Commit: 0x0009dcc
4https://github.com/uclouvain/openjpeg. Ver.: 2.1.2, commit: 0x1f1e968
5https://ffmpeg.org/ Ver.: 3.2.2, http://x265.org/ Ver.: 1.9

The observers were placed in an immersive environment
where omnidirectional images were presented to them by
means of an HMD. Immersive textual instructions were pro-
vided inside the VR along with a verbal guidance by the
experimenter. Every test session started with an immersive
training, consisted of three consequently shown images of a
content not used in the evaluations. Subjects observed the
examples of ”Excellent”, ”Bad”, and ”Fair” quality levels
shown in this particular order and were provided with the
explanations and illustrations of impairment artifacts which
can be found in the images. During the evaluation, subjects
assessed the stimuli shown to them consequently without any
time restrictions. When ready to rate an image subjects had to
activate a 3D immersive voting menu by pressing a button and
select the grade proceeding immediately to the next image. All
stimuli were automatically randomized in each session.

All the steps described above in the current subsection
including immersive training and evaluation were conducted
using a testbed for subjective evaluation of omnidirectional
visual content proposed in [13]. This software was developed
for iOS and is publicly available for download6. It renders om-
nidirectional images with OpenGL using perspective projection
and bi-cubic interpolation. The testbed allows uploading test
stimuli to a device and changing immersive textual instruc-
tions. Voting data is acquired by the software and stored on the
device. It can be further transmitted to a server for processing.

The following hardware equipment was used to perform
immersive subjective quality evaluation of omnidirectional
images along with the software testbed. During the experiment
subjects were wearing an HMD composed of a VR head-
mount with buttons7 and a mobile device installed inside as a
screen. iPhone 6 was used to display the images. The overall
resolution of the phone’s screen is 1334 × 750 pixels, which
gives 667 × 750 pixels per eye. The vertical field of view
provided by the hardware-software solution is 90 degrees and
corresponds to 8.33 pixels per degree. All the subjects were
sitting on a rotatable chair during the assessment.

Prior to the experiment a non-immersive training was
provided to the subjects. The experimenter explained the
purpose of the evaluation, showed examples of compression
artifacts, and pointed to differences between coding and stitch-
ing artifacts. Subjects were instructed not to assess stitching
artifacts. The test material, consisting of 104 test stimuli, was
randomly distributed between two sessions. Each participant
took part only in one session in order to shorten the time
when the subject is exposed to VR immersive environment
to a maximum of 25 minutes. Overall, 41 naı̈ve subjects
participated in the experiment. One subject was not able to
complete the evaluations due to motion sickness. Subjects, 25

6https://github.com/mmspg/testbed360
7https://mergevr.com
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Fig. 3: MOSs with CIs obtained using ACR-HR method for compressed omnidirectional images. Red (solid) line represents HEVC
encoded content, blue (long-dashed) - JPEG 2000, and green (short-dashed) - JPEG. Equirectangular projection is depicted with
circles and cubic mapping - with triangles. Filled area between two horizontal lines corresponds to the 95% confidence interval
of the hidden reference for each projection (red for equirectangular, cyan for cubic).

males and 15 females, were between 18 and 32 years old
with an average and median of 24.9 and 24.8, respectively.
All the participants were tested for correct color vision and
visual acuity using Ishihara and Snellen charts respectively.
An additional evaluation session was independently conducted
with 5 expert viewers at 74th JPEG meeting in Geneva.

C. Data Analysis

Outliers detection was performed separately on the raw
experimental data from each of two test sessions, since an
individual subject had only assessed stimuli from one subset.
Boxplot based method was used to remove outliers in the same
way as in [16]. One subject was detected as an outlier in the
first session. Therefore, to preserve the symmetry of the data,
one randomly selected subject was removed from the second
session. MOS values were computed for each stimulus in the
entire dataset as mean values for the set of scores provided
by different subjects. To estimate statistical significance, 95%
confidence intervals (CI), assuming a Students t-distribution of
the scores, were computed alongside with MOS values.

D. Results and Discussion

Figure 3 shows MOSs and CIs plotted for different con-
tents. MOSs obtained from naı̈ve subjects were shown to be
highly correlated with expert subjects results. More particu-
larly, standard correlation indexes between naı̈ve and expert
scores are PLCC = 0.95, SROCC = 0.87, RMSE = 0.40.
Certainly, this allows us to consider the subjective evaluation
results being reliable and consistent.

The results of the subjective evaluation experiment and
the data analysis show, as expected, higher performance of
HEVC and JPEG 2000 when compared to JPEG at lower
bitrates. Some of the contents, however, namely ”Pole Vault”
and ”Skateboard Trick”, are systematically underrated, which
can be possibly explained by the lower perceptual quality of
the original pictures. Other explanations for the former can
be the following. There are many human faces in the ”Pole
Vault” content, and thus, due to a relatively low resolution of
the HMD screen, observers’ expectations to distinguish facial

features were not met. In the ”Skateboard Trick” content,
there is an artificially blurred circle below the camera used
to camouflage a tripod, which could influence the decision of
naı̈ve subjects.This hypothesis is supported by the fact that
in the expert subjective results ”Skateboard Trick” reference
stimuli was not underrated, whilst ”Pole Vault” was.

When compressing images represented in a cubic projec-
tion, edges of continuous parts of the frame are distorted non-
uniformly with different intensity. This makes cube-face bor-
ders distinguishable for some stimuli in the rendered viewport
when observed using an HMD. Experimental results, indeed,
show lower scores for cubic mapping at medium bitrates and
the same scores as for equirectangular mapping at high and
low bitrates. This may occur for the reason that at high bitrates
there are no impairments, and at low bitrates the entire image
is distorted, thus only at medium bitrates the cube-face borders
are distinguishable due to compression artifacts.

III. OBJECTIVE EVALUATION

This section presents objective evaluation data for omni-
directional visual content obtained by calculating particular
metrics. Performance of these metrics is then evaluated by
comparison to the ground-truth subjective scores. Finally, the
results are presented alongside with a discussion.

Omnidirectional visual content can be assessed with con-
ventional 2D objective metrics as well as with metrics designed
specifically for 360-degree images. Here we provide a list of
objective evaluation methods used in this study. The following
objective metrics were computed:

• Conventional 2D metrics

1) Peak signal-to-noise ratio (PSNR)
2) Structural Similarity (SSIM)
3) Multi-Scale Structural Similarity (MSSSIM)
4) Visual Information Fidelity in pixel domain (VIFp)

• Metrics designed for omnidirectional visual content

1) Spherical PSNR (S-PSNR) computes PSNR for the set of
points uniformly distributed on a spherical surface, where
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Fig. 4: Mapping of objective scores to subjective ratings. Triangles represent cubic projection, circles represent equirectangular
projection. Different contents are marked with colors: ”Harbor” - red, ”Kite Flite” - green, ”Pole Vault” - cyan, ”Skateboard
Trick” - magenta. Solid black line depicts a logistic fitting.

corresponding pixels from a reference and an assessed
image are reprojected to this set [10].

2) Weighted Spherical PSNR (WS-PSNR) computes PSNR
in such a way that intermediate values for pixels in
equirectangular image of height h are weighted with
a coefficient wi,j = cos((i − h/2)π/h) [17]. This
weighting reduces the impact of the pixels with higher
latitudes. It should be noted that WS-PSNR is only
applicable for images in equirectangular projection.

3) Craster Parabolic Projection PSNR (CPP-PSNR). Both
an assessed image and a reference are re-mapped to a
Craster parabolic projection, then PSNR is computed in
that domain [11].

To compute conventional objective metrics, namely PSNR,
SSIM, MSSSIM, and VIFP, a publicly available software
package VQMT8 was used. For metrics designed specifically
for omnidirectional content, S-PSNR, WS-PSNR, and CPP-
PSNR, publicly available Samsung 360 Tools9 were used.

A. Performance Evaluation

Standard performance indexes, namely, the Pearson lin-
ear correlation coefficient (PLCC), the Spearman rank order
correlation coefficient (SROCC), the Root mean square error
(RMSE), and the Outlier ratio (OR), were computed to com-
pare objective results with the ground-truth subjective ratings.
To calculate the above listed performance coefficients, the
raw objective evaluation data was fitted to the MOS values.

8http://mmspg.epfl.ch/vqmt
9https://github.com/Samsung/360tools. Commit: 0x54845f0

Logistic fitting was performed considering that the data is in
different scope and in order to compensate possible saturation
of subjective scores. One can see the fitted curves in Figure 4.

Table III presents linearity, monotonicity, accuracy, and
consistency indexes. These indexes were computed assuming
different mapping schemes of test data:

A - for equirectangular projection, on all the contents,
B - for cubic projection, on all the contents,
C - for both projections, on all the contents,
D - for both projections, each content separately.

More specifically, for A and B cases the fitting was performed
only for the data points representing each individual projection,
for C and D cases the fitting was performed on all the contents
to compute the indexes. Moreover, for D case, an average of
resulted indexes for each content was considered.

B. Results and Discussion

Figure 4 shows scatter plots of MOS values against ob-
jective metrics. For the cases A, B, and C, the results of the
objective metrics performance evaluation show only moderate
correlations with the ground-truth subjective scores and do not
significantly change for different projections. As it can be seen
from scatter plots in the Figure 4, points are sparse and not con-
centrated along the fitting curve. Moreover, objective metrics
designed specifically for omnidirectional visual content do not
show better performance when compared to common objective
quality evaluation measures. For the case D, performance per
content is significantly higher compared to cases A, B, and C.



TABLE III: Standard performance indexes. Subcolumns A, B, and C, represent the results for equirectangular, cubic, and both
projections computed over all the contents, respectively. Subcolumn D shows an average of coefficients computed for each
content separately.

PLCC SROCC RMSE OR

Metric A B C D A B C D A B C D A B C D

PSNR 0.8714 0.8437 0.8553 0.9487 0.7176 0.7731 0.7567 0.8909 0.4804 0.5103 0.5008 0.2929 0.4375 0.4375 0.4167 0.2396

SSIM 0.8898 0.8632 0.8740 0.9459 0.7365 0.7927 0.7709 0.8821 0.4464 0.4790 0.4689 0.3050 0.3958 0.4583 0.4167 0.2812

MSSSIM 0.9059 0.8661 0.8860 0.9123 0.7539 0.7796 0.7814 0.8394 0.4143 0.4755 0.4483 0.3887 0.4583 0.4167 0.4271 0.3229

VIFP 0.9116 0.8875 0.8994 0.9319 0.7608 0.8029 0.7953 0.8538 0.4025 0.4374 0.4221 0.3395 0.3958 0.3958 0.4167 0.3125

S-PSNR 0.8766 0.8482 0.8392 0.9168 0.7376 0.7836 0.7307 0.8214 0.4715 0.5035 0.5257 0.3705 0.4583 0.4375 0.4271 0.3021

WS-PSNR 0.8748 - - 0.9583 0.7297 - - 0.8648 0.4746 - - 0.2544 0.4375 - - 0.2500

CPP-PSNR 0.8800 0.8521 0.8658 0.9467 0.7403 0.7745 0.7697 0.8843 0.4654 0.4975 0.4838 0.2966 0.4375 0.4167 0.4062 0.2500

However, conventional metrics still outperform those designed
for 360-degree content.

Since S-PSNR, WS-PSNR, and CPP-PSNR are all based
on PSNR, it is reasonable to compare them mutually. Looking
at the scatter plots in the Figure 4, one can notice that the
distribution patterns of the score points are of high similarity
for all the PSNR based metrics showing strong content depen-
dency.

IV. CONCLUSION

In this paper we have provided the results of a subjective
evaluation experiment on omnidirectional images. A total
number of 45 observers were involved in the study, including
40 naı̈ve and 5 expert participants. Subjective evaluation scores
were obtained for 104 test stimuli. Seven objective metrics,
among which three are specifically designed to assess omni-
directional visual content, were calculated for each stimuli.
Rigorous performance evaluation has been carried out for
objective quality metrics for omnidirectional visual content.

Analysis of the obtained subjective and objective scores
indicates moderate performance of investigated metrics for om-
nidirectional visual content. Being PSNR based, these metrics
do not outperform significantly their ancestor in predicting
visual quality of omnidirectional content. All the evidence
above suggests that the problem of better objective quality
evaluation methods for omnidirectional visual content remains
open. The future work should consider developing a more
suitable objective metric for 360-degree content.
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