
A Modular HTTP Adaptive Streaming QoE Model –
Candidate for ITU-T P.1203 (“P.NATS”)

Werner Robitza∗, Marie-Neige Garcia†, and Alexander Raake‡
∗Telekom Innovation Laboratories, Deutsche Telekom AG, Germany

Email: werner.robitza@telekom.de
†Assessment of IP-based Applications, TU Berlin, Germany

Email: marie-neige.garcia@tu-berlin.de
‡Audiovisual Technology Group, TU Ilmenau, Germany

Email: alexander.raake@tu-ilmenau.de

Abstract—This paper describes a quality model for HTTP
Adaptive Streaming. It integrates existing audio and video quality
scores to a final quality estimation, factoring in quality variations
over time, the recency effect, as well as location and length of
buffering events at the player side. We built the model based
on data gathered from more than 17 subjective quality tests. It
was submitted to the ITU-T P.NATS competition; parts of it have
since been released in the official recommendation ITU-T P.1203.3
as an “audiovisual quality integration module”. In the context
of standardization, the model was validated on 30 subjective
databases, showing high performance. Its modular approach
allows its components to be re-used in other applications and
combined with different temporal pooling techniques.

Keywords—Video quality; Quality of Experience; Quality model;
HTTP Adaptive Streaming, Standardization

I. INTRODUCTION

HTTP adaptive streaming (HAS) has become the predom-
inant method of delivering video to end users via the Web,
often replacing traditionally employed streaming methods
(e.g., requiring the RTP protocol and setting-up of dedicated
networks). HAS dynamically adapts the video to account for
changes of effective throughput and other data delivery prob-
lems. It does so by switching between video representations
(i.e., streams encoded at different bitrates and/or resolutions),
effectively minimizing the required bandwidth while retaining
playback continuity. This reduces the chance of buffer exhaus-
tion, which in turn would lead to annoying stalling artifacts.
However, the switching itself can also affect the user-perceived
audiovisual quality.

At this stage, Quality of Experience (QoE) for HAS has
already been studied for years by the academic and industrial
communities. We know about the factors influencing overall
enjoyment and frustration of streaming users. Quantifying
these impacts however is a challenge in itself: it requires the
creation of large subjective test databases or the monitoring
of streams in real life, both with their advantages and trade-
offs. While (standardized) instrumental video quality models
have existed for years, they mostly predict quality for short
sequences only (e.g., 10 s), not taking into account the quality
variation and stalling effects typical for HAS.

A standardized way to measure HAS QoE is generally
desirable. It allows for better comparison of existing market

deployments and enables a common, quantifiable understand-
ing of QoE. For this reason, the International Telecommuni-
cation Union’s Study Group 12 (SG12), Question 14 (Q14),
pursued the development of an HAS QoE model, in a com-
petition called “P.NATS” (Parametric bitstream-based quality
assessment of progressive download and adaptive audiovisual
streaming services over reliable transport). This paper de-
scribes a model we created as a candidate for P.NATS—more
specifically, a module that integrates existing short-term video
and audio quality scores. Our model consists of independent
components that cover different aspects of subjective quality
perception. It works in a video or audio codec-agnostic fashion
and has been designed for sequences up to five minutes length.
Its performance was officially validated on 30 subjective
databases. In the standardization process, it competed with six
other proposals. Owing to its good performance and modular
approach, parts of it have since been released in the official
standard ITU-T Rec. P.1203.3, but this paper shows the full
model as it was submitted.

In Section II we first give some background information on
the P.NATS competition and related work that we considered
in our research. Section III will focus on the model and its
components; we explain how we trained and evaluated it in
Section IV. Discussion and conclusions follow in Section V
and Section VI, respectively.

II. BACKGROUND AND RELATED WORK

A. ITU Standardization in Audiovisual QoE

ITU-T’s SG12 has a long history in creating instrumental
QoE models. Q14 as a subgroup specifically focuses on
audiovisual streaming applications. In the scope of their work,
several quality models have been developed in forms of com-
petitions, including Recommendations P.1201 and P.1202 [1].
Those models are bitstream-based and allow for the prediction
of streaming quality in the presence of packet loss. With the
advent of HTTP streaming, Q14 had started work on P.NATS
in the year 2014, just after releasing an update of ITU-T Rec.
P.1201 Amd. 2, App. III, which enables the use of the P.120x
models for progressive download applications.

The P.NATS group initially comprised eight proponents
with both academic and industry background. The group
collaboratively designed test plans and performance criteria for



the models that they would later evaluate. The main goals—
as with the previous standards—included proper conduction
of the underlying tests and careful validation of the models’
performance, in order to release a well-tested standard.

B. QoE Models and Subjective Tests

Models for predicting QoE for HAS vary widely in their
designs. Some use analytical methods, that is, closed-form
equations in the shape of Score = f(~x), where ~x is a set of
independent variables. [2], [3] are examples of such models,
in which the sequence or its features (e.g., number of stalling
events) are analyzed as a whole. Other models implement time
series filtering [4] to predict the current quality at any given
time in the sequence. Representations of the user’s state of
mind have also been used [5]. Finally, some models employ
machine learning methods, for example Random Forests, as
shown in [6]. In that work, the model is used to improve the
rate adaptation of an HAS player.

Such QoE models make use of subjective tests, which serve
several purposes: helping identifying the factors influencing
QoE, choosing a modelling technique, training the developed
model, and validating its performance. For example, Seufert et
al. tested different methods of pooling scores over a longer
time period [7]. The authors have later conducted studies on
representation switching behavior and its effect on QoE [8],
noting that more sophisticated pooling methods would have to
take into account the time spent on a certain quality layer [9].
In those studies, however, sequences are typically rather short,
leading to an unusually high amount of quality degradations
for some test conditions. Robitza et al. [10] have addressed
this issue by conducting tests that systematically study quality
switching effects in longer video sequences, without repeating
source contents. All of those tests however may not cover
enough conditions to be able to prove whether (or how much)
a certain factor influences user-perceived QoE. The use of
databases from the P.NATS competition therefore enables us
to more reliably look into the above effects.

III. MODEL DESCRIPTION

For our analytical QoE model we chose a modular ap-
proach with as few interdependencies as possible. This would
allow us to extract certain components and combine them with
other proponents’ models at a later stage. Figure 1 shows
the entire model. It receives lists of video and audio Mean
Opinion Score (MOS) values, as well as an indication of all
stalling/rebuffering events and their length.1

A. Preparation Module

In the Preparation Module we scale the input scores to
a range of [1, 5] (Value scaling) if necessary, and remove/du-
plicate scores such that there is one score per media second
(Temporal scaling). In the following, N is the number of
individual temporally scaled scores, that is, the length of the
sequence in seconds, without buffering events.

1In practice, the MOS values can be calculated using existing models
(ideally, the video module from ITU-T P.1203.1, but any estimation of quality
can be used). Buffer events could be extraced from client-side logs (e.g.,
through player APIs) or estimated from network logs using buffer models.

Preparation Module

Encoding Quality 
Integration Module

Buffering 
Quality 
Module

Degradation 
Integration 

Module

Parameter
Extraction 

Module

Buffering Events

Video and Audio Scores,
Buffering Events, Length

Parameters
Compensated

Audiovisual MOS
(MOSAVSessionRQ)

Total 
Buffering 
Degradation 
(DegBuf)

MOSAVFinal

Audiovisual MOS computation
Temporal scaling (one score per 
second)
Value scaling (values between 1–5)

Quality direction change estimation: 
QDirChangesTot, LongestChangePeriod
Tendency estimation: Tendency

Optional:
Recency effect compensation
Quality oscillation compensation

Impact of initial buffering
Impact of location
Impact of individual buffering length
Impact of overall audiovisual quality

Audiovisual MOS per Second (MOSAV)

Fig. 1. Block diagram of the proposed model. Light boxes indicate steps
inside modules.

1

2

3

4

5

0 100 200 300
time

A
ud

io
vi

su
al

 q
ua

lit
y

smoothing period ± 30 s

Fig. 2. Example of a sequence with “early drop” Tendency.

We follow the procedure according to ITU-T Rec. P.1201
Amd. 2, App. III to convert the scaled audio and video MOS
scores ai and vi into “R-Scale” values2 for i ∈ [1, . . . , N ]:

qCodAi = RfromMOS(ai)

qCodVi = RfromMOS(vi)
(1)

The audiovisual quality scores are calculated as follows, taking
into account video and audio quality in an additive and
multiplicative fashion (P.1201 Amd. 2, App. III, Section 9.3):

qAVi =100.867− 0.3590 · qCodAi − 0.9210 · qCodVi

+ 0.00135 · qCodAi · qCodVi
(2)

We then calculate the per-second audiovisual MOS values
MOSAVi, which are used as input for our model:

MOSAVi = MOSfromR (qAVi) (3)

B. Parameter Extraction Module

1) Tendency of Scores: One factor that influences the QoE
is the overall Tendency of quality throughout the sequence.
Does it start well but degrade after that? Is it continuously
showing high quality? To gauge this, we developed the follow-
ing algorithm: first, the sequence is temporally split into three
equally sized parts, with 10% overlap (“smoothing period”)

2The RfromMOS and MOSfromR functions are defined in ITU-T
Rec. P.1203.1, Annex E. They transform scores from 1–5 to a range from
0–100 or vice-versa. The functions were originally used for the “E-Model”
(ITU-T Rec. G.107).



1

2

3

4

5

Time

Fi
lte

re
d 

au
di

ov
is

ua
l q

ua
lit

y -1

-1

-1

-1

+1

+1

+1

+1

0

0

0

0

Fig. 3. Example of quality change determination. Thresholds are not to scale.

between the regions (see Figure 2). Then, the average of
MOSAV in each of those three parts is calculated and
rounded to the nearest 0.5. We set the Tendency to flatHigh
if all these means are ≥ 4.0, to flatLow if all are ≤ 2.5, and
earlyDrop if the beginning is higher than the middle and the
middle score equals to the end. Figure 2 shows a sequence with
an “early drop”. Note that other combinations of score averages
are possible, leading to different tendency estimations. They
were not used in this model, but may be further investigated
and part of future model extensions.

2) Quality Direction Changes: In order to address qual-
ity variations over time as another significant impact factor,
we count the number of quality direction changes (QDir-
ChangesTot) in the entire sequence. To do this, we first
calculate a moving average of order 5 on the MOSAVi scores.
Note that in order to get a valid filter output for the start
of the sequence, the first score in MOSAV is copied four
times and prepended to MOSAV . We then initialize an empty
list QDirChanges and compare each score MOSAVi with
MOSAVi+3, incrementing i by 3 until we reach the end of
the sequence. In other words, we only look at every third
score and check the difference between it and the succeeding
(third) score (i.e., look at the scores in 3-second-steps). If that
difference is > 0.2, we record a 1 in QDirChanges. If the
difference is < −0.2, we record a −1. If there is no difference
(within the threshold), we record a 0. The step size of 3 was
chosen to prevent minor quality variations from having a too
strong impact. Note that we optimized the parameters chosen
here based on a manual count of quality changes in the training
sequences as we subjectively interpreted them.

The above process is shown in Figure 3, albeit with
different thresholds for easier visualization. In this case, we
would have recorded [−1, 0,−1,+1,−1, . . .] in QDirChanges.
We can use these entries to count the number of quality
direction changes: it is the sum of all consecutive 1s and −1s
in that list. In the above case, the number of changes is equal to
6. The rationale for this number is—as we will see later—the
more quality changes, the lower the QoE.

3) Longest Changing Period: Using the esimation of qual-
ity changes from the previous section (i.e., QDirChanges,
the list of 1s, 0s, and −1s), we also want to find the
longest period in which the quality is increasing or decreasing
only. This is achieved with the following algorithm: iterat-
ing through QDirChanges, we count the number of steps
as long as the quality is monotonically increasing or de-
creasing (i.e., going in one direction only), or staying the

same. When the quality direction changes, the counting re-
sets and starts from 0. The LongestChangingPeriod is then
the overall maximum of those counted steps, multiplied by
the step size. It is measured in seconds. If that period has
a large value (e.g., around 60), it means that there were
no quality oscillations in large portions of the sequence.
l = Vector
for index, direction in QDirChanges:

if direction != 0:
if (l is empty) or
(direction of last element of l != direction):

append [index, direction] to l
if l is not empty:

prepend [0, 0] to l
append [length of QDirChanges, 0] to l
distances = Vector
for each current and next element of l

distance = next - current
append distance to distances

LongestChangingPeriod = (maximum of distances) * 3
else:

LongestChangingPeriod = (length of QDirChanges) * 3

C. Encoding Quality Integration

In this module, the audiovisual scores MOSAVi are
pooled into a final, single audiovisual quality score
(MOSAV Session) that represents the QoE without taking
into account rebuffering. First, we apply a simple averaging
over the scores, meaning that:

MOSAV Session =

∑N
i MOSAVi

N
(4)

While training our model, we found that other advanced meth-
ods like increased weighing of lower scores or a Minkowski
summation [7] did not (significantly) improve the prediction
accuracy.

1) Recency Effect Compensation: The recency effect ex-
plains the fact that the last portion of a sequence has
the strongest impact on the overall subjects’ quality judge-
ment [11]. It should be noted that in our considerations for
modeling, this effect is assumed to be orthogonal to any other
temporal effects, that is, the impact of quality variations over
time, or the possibility of users “forgetting” what happened
at the beginning of the sequence. However, in practice, there
may be interaction effects.

To account for the recency effect, we included a component
that weighs the last MOSAV scores more than the rest.
“Last” is defined as the so-called recency period. Its length
Lr depends on the sequence length N , as we identified in the
subjective test results:

Lr =

⌈
13 + 17/

(
1 + exp

(
2 ·
(
5− N

60

)))⌉
(5)

We now calculate the average MOSAV score within that
period:

MOSAV Recency =

∑N
i=N−Lr

MOSAVi

N − Lr
(6)

Note that N − Lr marks the start index of the region after
which we expect recency effects.

The recency compensation is not activated if (1)
MOSAV Recency ≥ 3.1513 or (2) if the Tendency is flatLow



or earlyDrop, because subjects would already give a bad score
to such sequences and we wanted to prevent overcompensation.
In this case, MOSAV SessionR = MOSAV Session.

Should the compensation be applied, we set a weight to
every score within that recency period and calculate a weighted
average of MOSAV to produce a recency-compensated
MOSAV SessionR, according to the following algorithm:
MOSAV_w = MOSAV
w = Vector of 0 with length N
oversum = 0
for index, score in MOSAV:

if index >= N - L_r:
k = i - (N - L_r)
w[index] = exp(0.1016 * k)
oversum = oversum + w[i]

for index, score in MOSAV:
if index < N - L_r:

w[index] = 1 - (oversum - L_r)/(N - L_r)
MOSAV_w[index] = score * w[index] * 1/N

MOSAVSession_R = sum(MOSAV_w)

Here, the weight of every individual score exponentially in-
creases as we reach the end of the sequence.

2) Quality Oscillation Compensation: In order to account
for a large number of quality oscillations (i.e., frequent
direction changes observed within QDirChanges), another
component is introduced after the optional recency effect
compensation.

If the longest changing period takes up a too large por-
tion of the sequence (LongestChangingPeriod

N ≥ 0.25) or if
that period is longer than 30 seconds, no oscillation com-
pensation is applied, meaning that MOSAV SessionRQ =
MOSAV SessionR. With this check, we exclude long,
monotonous changes that would otherwise be falsely identified
as oscillations. Otherwise:

MOSAV SessionRQ = MOSAV SessionR−
min
(
exp (0.3601 ·QDirChangesTot− 4.409) , 1.5

) (7)

D. Buffering Quality Estimation

This module calculates the overall impact of degradation
(DegBuf ) due to initial loading (DegInit) and all stalling
events (DegStallTot) within the sequence:

DegBuf = max
(
min (DegInit+DegStallTot, 4) , 0

)
(8)

1) Initial Buffering: For DegInit we chose to re-use the
equation from ITU-T P.1201 Amd. 2, App. III in our model:

DegInit ={
max (min (0.29 · log (T0 − 3.29) , 4) , 0) , T0 > 4.29

0, otherwise
(9)

2) Stalling Degradations: DegStallTot is a sum of the
degradation of each stalling event DegStalln, with n ∈
[1, . . . , Nstall] for all stalling events:

DegStallTot = max
(

min
(Nstall∑

n=1

DegStalln, 4
)
, 0
)

(10)

An individual stalling event’s degradation is calculated as the
following:

DegStalln = wlocn · wq · degn (11)

0

1

2

3

4

0 5 10 15 20 25

Length of stalling event

Im
pa

ct

Fig. 4. Degradation impact of a single buffering event’s length based on
Equation 14.

Here, the weight wlocn is set based on the location locn of the
stalling event in the sequence (in seconds). In the subjective
tests we saw that this location could impact their perceived
severeness. The further away from the end of a sequence, the
lower their impact on quality:

wlocn = max
(
−0.2566 · log (N − locn)+0.5316, 0.01

)
(12)

The weight wq is based on the Tendency of the sequence,
as obtained from the Parameter Extraction Module. If the
sequence is of good quality throughout, subjects will rate
stallings more negatively:

wq =

{
1.2073, T endency = flatHigh

1, otherwise
(13)

The actual degradation degn is calculated depending on the
length of the stalling itself, lenn. It follows a combination of
two psychometric functions:

degn = 2.1462·{
1− exp

(
−x5

)
, lenn < 10

min
(
exp (0.45 · lenn − 10) + 1, 4

)
, otherwise

(14)

Figure 4 shows a combined curve plot of the two functions
of Equation 14. We can see how the function calculates a
lower impact of shorter stalling events (i.e., stallings that would
be imperceivable or not annoying enough), but exponentially
increases after a given threshold. We empirically set thresholds
and weights based on our observations.

E. Degradation Integration Module

In the Degradation Integration Module, we simply subtract
the degradation due to initial loading and stalling (DegBuf )
from the audiovisual MOS (MOSAV Session):

MOSAV Final = MOSAV SessionRQ −DegBuf (15)

This is the final MOS, ranging from 1–5, which corresponds
to the user’s QoE after having watched the sequence. Here, we
assume that AV scores and buffering can be treated indepen-
dently of each other, which can be considered a simplification.

IV. TRAINING AND PERFORMANCE

A. Training Data

In the process of standardizing P.1203, the proponents
created a total of 30 databases, split between 17 training



and 13 validation databases, comprising 1064 audiovisual
sequences. The databases simulated typical HAS conditions
with quality variations, initial buffering and rebuffering events,
with sequence lengths between 1 and 5 minutes. 7 of the
databases had the same sequences rated both on PC/TV screens
and mobile screens. For an overview of the databases, see ITU-
T Rec. P.1203, Section 8.

All P.NATS proponents had access to the same training
databases, with which they could develop their model. Our
model, as shown in this paper, was trained on only 9 of
the 17 training databases—those that were shown on PC/TV
screens—with a total of 334 sequences.3 Since the databases
are owned by the respective creators, we cannot show more
details about the used content and conditions in this paper; we
refer to [10] for a similar test design with respect to the rated
conditions, contents, and the test protocol.

To instantiate our model, we needed audio and video qual-
ity scores for the sequences. We used the already standardized
audio quality model from ITU-T Rec. P.1201 and our own
video quality model, which is now standardized in ITU-T Rec.
P.1203.1 Annex D (Mode 3). It operates on the bitstreams
and extracts coding-related information on a per-frame basis;
it then pools those data to output per-second video quality
estimations, taking into account degradations due to lossy
encoding, upscaling, and framerate reduction.

B. Training Procedure

In order to train a model such as the one presented in
this paper, simple techniques like linear regression may not be
applicable or suffice. For closed-form equations (e.g., the initial
loading degradation from Equation 9) one would fit a paramet-
ric curve using data points obtained from subjective tests using
non-linear least-square minimization techniques. However, in
our case the model contains a relatively high number of pa-
rameters and algorithms. Because of this complexity, it is more
likely that the minimization algorithm finds a local minimum
only, yielding unstable parameter combinations. We therefore
leverage the stochastic Differential Evolution algorithm to
find a global optimum to the minimization problem, rather
than using classical algorithms like Levenberg-Marquardt or
Nelder-Mead.4

We developed a dedicated Python program that utilizes
the lmfit package in order to minimize the error between
training set data (i.e., subjective MOS) and the model output:
Root Mean Square Error (RMSE) as specified in ITU-T Rec.
P.1401, Section 7.5.1. It is the same measure that was used
to validate the performance of submitted P.NATS models in
terms of absolute prediction error. Our program was written
in such a way that several model variants could be tested
and evaluated against each other, with optional constraints
defined on the parameter ranges. We empirically set these
ranges before training runs, using observations we made on the
subjective data. For example, we manually created exponential
or logarithmic curves with certain parametrizations according

3Other databases were rated on mobile phones. ITU-T Rec. P.1203.1
specifies how the predicted MOS scores have to be adjusted in the case of
mobile screens, but this adjustment is not part of this model and therefore
beyond the scope of this paper.

4https://docs.scipy.org/doc/scipy-0.18.1/reference/tutorial/optimize.html

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1

2

3

4

5

1 2 3 4 5

MOSAVMapped

S
ub

je
ct

iv
e 

M
O

S

Fig. 5. Model prediction with linear fit per database against subjective MOS.

to how we imagined the rough shape of the curve, then let
those parameters vary by a predefined amount. This training
was used for the coefficients in Equations 7, 9, and 12–14.

For parts of the model (i.e. the thresholds in Section III-
B/C) an exhaustive (brute force) search for the optimum was
computed. This was done before the actual training of the
rest of the model’s components using manually entered ground
truth data. We obtained that data by counting our estimate of
the quality changes ourselves. With this approach we could
freeze some model parameters before the main training run.

C. Performance

We report the performance of the model that was submitted
to the competition, meaning that its parameters were optimized
on training databases only (i.e., we did not re-train our model
after gaining knowledge of the validation databases). As stated
before, the video and audio quality scores with which our
model was instantiated correspond to ITU-T P.1203.1 (Mode
3) and P.1203.2, respectively.

For performance calculation, we apply the same procedure
as adopted when standardizing P.1203. Similar procedures have
been used in other standards, too, for example ITU-T P.863.
In order to compensate for rating differences between sub-
jective databases, we calculate a first-order linear fit between
MOSAV Final and subjective MOS, per database, yielding:

MOSAVMappedi,k = ai ∗MOSAV Finali,k + bi (16)

where the coefficients ai and bi are calculated for every
database i and every sequence k in that database. RMSE is then
calculated between the fitted model output MOSAVMapped
and MOS. The overall average RMSE is 0.3859, ranging
between 0.2028 and 0.5818 for all databases. The average
RMSE for training and validation databases is 0.3432 and
0.4170, respectively. The overall Pearson correlation with
subjective MOS is r = 0.92.

Figure 5 shows MOSAVMapped and the subjective MOS
values for all PC/TV training and validation databases. We can
observe a good prediction accuracy over the entire MOS range,
with only few PVSes being outliers. Note that agreements
between proponents in P.NATS prevent us from comparing the
performance of our model with other candidates.



V. DISCUSSION

A. Future Directions

Our model uses a simple averaging of the per-second audio-
visual quality scores to determine the final audiovisual quality,
with optional compensation for the recency effect and quality
variations. As suggested in [7], such a pooling method may
suffice, and in our initial tests, none of the methods proposed
there yielded significantly improved performance. Yet, other,
more complex approaches like time series [4] or predicting a
user state [5] could be worth investigating. More generally, the
aim for future models would be not only predicting MOS, but
also possible user reactions such as cancelling playback due
to severe problems. Such reactions however are very context-
dependent and proper test methods have to first be developed
to study them.

B. Ecological Validity

The use of sequences with a length between 1 and 5
minutes constitutes a step in the direction of creating more
ecologically valid tests, and we could observe that “forgetting
effects” come into play 2–3 minutes after having seen a degra-
dation. These effects could also be part of a pooling strategy,
as seen in our buffering quality component. More generally,
these findings prove that tests for HAS with sequence lengths
of less then a minute will not show the full picture of QoE.
It would be necessary to investigate even longer sequences or
video sessions with multiple sequences, which corresponds to
everyday usage of video on demand services. Related to this is
an investigation of the impact of different viewing and usage
contexts (e.g., home vs. mobile use, paid vs. free services)
on the quality perception, which we hypothesize is primarily
visible in the response to initial loading times and playback
interruptions.

C. Sparsity of Test Designs

In the P.NATS process, all proponents created a comparably
large number of databases, which treat different factors that
impact HAS quality. Care was taken to design these databases
systematically, for example by varying the number of quality
switches and their depth, by creating symmetrical degradation
conditions to investigate temporal effects (e.g., a quality drop
at the beginning vs. the end of the sequence), or by applying
the same degradation patterns to sequences of different lengths.
However, even with over 1000 sequences, some MOS ratings
could not be fully explained, meaning that we could not prove
or disprove some theories of human perception, especially
when related to combined effects of stalling and quality
variations. Crowdsourcing studies may help in collecting even
more data points for analysis, in terms of number of conditions
and ratings. However, the design of such studies requires more
careful preparation and screening of results. It remains to be
checked whether the ratings from such tests are valid, and
whether they can be combined with laboratory experiments,
especially in the rigid context of standardization.

VI. CONCLUSION

In this paper we presented a QoE model developed for
HAS, parts of which have become standardized in ITU-T
P.1203.3. It integrates per-second audio and video quality

scores with buffering events as measured at the client side,
and predicts a final QoE value as experienced by the user.
The model’s input scores can be generated by any other
existing quality model. For the prediction, we take into account
temporal factors such as quality variations over time and the
recency effect. We also consider the length and location of
stalling events as well as the overall tendency of the scores. By
using a modular approach, the model’s individual components
can be used in isolation (e.g., to describe certain features or
quality impairments in a sequence) or retrained as parts of
future models.

ITU-T SG12 Q14 is continuing research on quality pre-
diction models for video streaming, together with the Video
Quality Experts Group (VQEG). It also works on standardizing
methods for evaluating the quality of entire video sessions,
which will be the next step in creating reliable and valid QoE
models for online streaming services.

ACKNOWLEDGMENT

This paper is part of a project that has received funding
from the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Skłodowska-Curie grant
agreement No 643072. The authors would like to thank their
colleagues at ITU-T SG12 Q14 for the collaborative effort in
standardizing P.1203.

REFERENCES

[1] A. Raake, J. Gustafsson, S. Argyropoulos, M.-N. Garcia, D. Lindegren,
G. Heikkilä, M. Pettersson, P. List, and B. Feiten, “IP-based mobile and
fixed network audiovisual media services,” Signal Processing Magazine,
IEEE, vol. 28, no. 6, pp. 68–79, 2011.

[2] T. Mäki, M. Varela, and D. Ammar, “A Layered Model for Quality
Estimation of HTTP Video from QoS Measurements,” in Second
Workshop on Quality of Multimedia Services, QUAMUS, 2015.

[3] H. T. T. Tran, T. Vu, N. P. Ngoc, and T. C. Thang, “A novel quality
model for HTTP adaptive streaming,” in 2016 IEEE 6th International
Conference on Communications and Electronics, IEEE ICCE 2016,
2016, pp. 423–428.

[4] Chao Chen, Lark Kwon Choi, G. de Veciana, C. Caramanis, R. W.
Heath, and A. C. Bovik, “Modeling the Time-Varying Subjective Qual-
ity of HTTP Video Streams With Rate Adaptations,” IEEE Transactions
on Image Processing, vol. 23, no. 5, pp. 2206–2221, May 2014.

[5] H. Yeganeh, R. Kordasiewicz, M. Gallant, D. Ghadiyaram, and A. C.
Bovik, “Delivery Quality Score Model for Internet Video,” in ICIP,
2014.

[6] Y. L. Chien, K. C. J. Lin, and M. S. Chen, “Machine learning based rate
adaptation with elastic feature selection for HTTP-based streaming,” in
IEEE International Conference on Multimedia and Expo, 2015.

[7] M. Seufert, M. Slanina, S. Egger, and M. Kottkamp, “’To pool or not to
pool’: A comparison of temporal pooling methods for HTTP adaptive
video streaming,” in QoMEX, 2013, pp. 52–57.

[8] S. Egger, B. Gardlo, M. Seufert, and R. Schatz, “The Impact of Adap-
tation Strategies on Perceived Quality of HTTP Adaptive Streaming,”
in VideoNext ’14, 2014, pp. 31–36.

[9] M. Seufert, T. Hossfeld, and C. Sieber, “Impact of intermediate layer
on quality of experience of HTTP adaptive streaming,” in 2015 11th In-
ternational Conference on Network and Service Management (CNSM),
2015, pp. 256–260.

[10] W. Robitza, M.-N. Garcia, and A. Raake, “At Home in the Lab:
Assessing Audiovisual Quality of HTTP-based Adaptive Streaming with
an Immersive Test Paradigm,” in QoMEX, 2015.

[11] R. Aldridge, J. Davidoff, M. Ghanbari, D. Hands, and D. Pearson, “Re-
cency effect in the subjective assessment of digitally-coded television
pictures,” in Fifth International Conference on Image Processing and
its Applications, 1995, pp. 336–339.


