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Abstract—User surveys for Quality of Experience (QoE) are
a critical source of information. In addition to the common
“star rating” used to estimate Mean Opinion Score (MOS), more
detailed survey questions (problem tokens) about specific areas
provide valuable insight into the factors impacting QoE. This
paper explores two aspects of the problem token questionnaire
design. First, we study the bias introduced by fixed question
order, and second, we study the challenge of selecting a subset
of questions to keep the token set small. Based on 900,000 calls
gathered using a randomized controlled experiment from a live
system, we find that the order bias can be significantly reduced
by randomizing the display order of tokens. The difference in
response rate varies based on token position and display design.
It is worth noting that the users respond to the randomized-order
variant at levels that are comparable to the fixed-order variant.
The effective selection of a subset of token questions is achieved
by extracting tokens that provide the highest information gain
over user ratings. This selection is known to be in the class of
NP-hard problems. We apply a well-known greedy submodular
maximization method on our dataset to capture 94% of the
information using just 30% of the questions.

Index Terms—QoE; Survey design; VoIP; data analysis

I. INTRODUCTION
Several Internet telephony applications employ end-of-call

user surveys to gather data on in-call QoE [1]. In addition
to the five star rating (MOS [2]), the percentage of calls
rated 1 or 2 (poor call rate, or PCR) is often tracked as a
measure of media quality. Previous studies have shown the
value of combining PCR with an additional problem token
questionnaire (PTQ) to gather detailed insights [3]. The UI
design of the PTQ used in this study is provided in [3].

The range of questions used to capture these detailed
problem areas has been studied in depth [4], [5]. However, to
the best of our knowledge, the impact of presentation order on
response rate has not been studied in a live, deployed system.
Our work is motivated by the practical challenges faced
in analyzing questionnaire data. For example, our analysis
showed that the contribution of one-way audio (one side can
hear, but the other side cannot) to PCR dwarfed the other areas
by a factor of two on mobile platforms. Further investigation,
showed that the most important factor for this gap was the
display order of questions. The ‘no sound’ token was placed
at the top, and users were 40% more likely to select this area
purely due to its position in the survey. While one-way audio
remains one of the top problem areas, we found that after
randomization of the order, other impediments such as audio
distortion and poor image quality occurred at comparable
levels.

In mobile environments, the screen size is limited, so if
designers want to avoid using a scrollbar, the number of
questions needs to be kept small. The key question is how
to minimize the number of questions, while maximizing their
power in explaining PCR. Moreover, studies have shown the
benefit of shortening surveys (without losing information)
for improving response rate and improved data quality [6].
Identifying this subset of questions belongs to a class of NP-
hard problems [7]. In order to solve this, we follow the
lead of Krause et al., leveraging the fact that information
gain is a submodular function, and can be optimized using
provable greedy approaches [8], [9]. As shown in Section
IV, this approach maps well to the our problem. The main
contributions of this paper are:
1) Results of a large scale randomized, controlled experiment

in a live VoIP system to show the bias introduced by fixed
order questions.

2) Provide an efficient solution to select a subset of tokens
that maximizes information and minimizes correlation.

II. RELATED WORK

There is a rich area of research and practice in general
survey design, validation and question order [10], [11]. Factor
analysis is commonly employed to analyze surveys with the
number of factors being smaller than the number of questions.
[12]. There are many standards for subjective audio and video
quality surveys, such as the ITU standards [13], [4], [5].
In this paper, our goal is not to replace these surveys, but
instead to improve their utility by providing recommendations
for presentation order, and a methodology to select a subset of
informative questions. The selection of a subset of correlated
random variables for maximizing the information gain has
been studied in detail [8], [9] - this paper focuses on the
application of these methods for QoE problem area surveys.

III. IMPACT OF QUESTION DISPLAY ORDER

We study the impact of question order on our PTQ using a
randomized controlled experiment. The control population was
shown the original questionnaire with fixed token order. For
video calls, the audio tokens were always shown on the left
while the video tokens were always shown on the right. The
treatment population was shown the questions in randomized
order. For video calls in the treatment population, the position
of the audio and video panels (left/right) were selected at
random. The details of the experiment are below:
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TABLE I: The difference in overall response rate in tokens
between control group and treatment group

Population Relative Delta p-value
Audio-only −1.38% 0.072
Video −1.62% 0.001

• One-to-one calls that included both audio-only and video
VoIP calls on desktop platforms.

• The control and treatment group each contained 450,000
calls spanning over 100,000 unique users.

The experiment aimed to answer the following questions:
1) Is there a change in the percentage of questionnaire re-

sponses?
2) What is the change in response rate of the individual audio

and video tokens?

We present all results using relative measures due to com-
mercial confidentiality.

A. Overall Questionnaire Response Rate
We wanted to understand if randomizing the questions

impacts the overall response rate of the PTQ. A user is said
to respond to a PTQ if any token selection is made. We
considered audio-only and video population. The differences
in overall token response rate between the control group and
the treatment group for these segments is shown in Table
I. From a statistical perspective, there is no change in the
percentage of responders in the audio population, but there is
a change in the video population at the 99% significance level
(i.e. p − value < 0.01). However, we find that the relative
difference of 1.6% for video surveys is small enough that
the benefits (Section III-B) of the randomized questionnaire
outweigh the minor reduction in response rate.

B. Response Rate of Individual Questions
The difference in response rates of individual tokens be-

tween the fixed order and randomized order for video, desktop
tokens is shown in Table II. Negative sign (red) indicates that
the response rate went down whereas a positive sign (green)
indicates the response rate went up. Although a change in the
response rate was expected, there are some significant insights
from these results:

1) The response rate of the top token is dramatically impacted
for audio and video tokens. The decrease in response rate
between the two variants is greater than 20%. This shows
the propensity for selecting the top token.

2) For audio, the response rates of the top four tokens de-
creased dramatically, However, for video the response rates
of the bottom four tokens increased. This shows that panel
position (left, right) impacts response rate.

The impact of panel position is even more pronounced
in mobile environments. In mobile, we found the average
response rate for tokens that require users to scroll was 49%
lower. These results motivate the need for showing a small set
of informative tokens to ensure that we do not lose the users
attention while responding to the questionnaire.

TABLE II: The difference in response rate of individual tokens
for fixed vs. randomized display order in video desktop calls.

Audio problem Token Relative delta p-value
I could not hear any sound −26.7% ≤ 2e−29

The other side could not hear any sound −12.5% 2e−23

I heard echo in the call −12.7% 6e−24

I heard noise in the call −9.5% 3e−18

Volume was low −3.8% 0.01
The call ended unexpectedly −2.4% 0.10
Speech was not natural or sounded distorted +3.6% 0.00
We kept interrupting each other −1.7% 0.22
Video problem Token Relative delta p-value
I could not see any video −20.4% ≤ 2e−29

The other side could not see my video −1.9% 0.39
Image quality was poor −2.2% 0.06
Video kept freezing +10.1% 3e−16

Video stopped unexpectedly +28.0% 4e−45

The other side was too dark +25.2% 8e−21

Video was ahead or behind audio +25.2% 5e−39

IV. TOKEN SUBSET SELECTION
The question we are trying to address is the following:

Given a limited budget of questions, k, is there a systematic
process of selecting the questions to maximize information?
In this paper, we propose the selection of tokens by applying
the algorithm described by Nushi et al. [9]. An overview of
this approach is provided next.

A. Information Gain and Submodular Function Optimization
Information gain (IG) captures the amount of information

shared between two random variables. Mathematically, IG
between variables PC and T , is defined as IG[PC;T ] =
H[PC] − H[PC | T ] ; where H represents the entropy
(uncertainty) of a random variable. It should be clear that
IG has the property of monotonicity [14]. We can easily
see that for any two sets of random variables, T1, T2 : T1 ⊂
T2, IG[PC;T1] ≥ IG[PC;T2]. Building on the monotonicity
property and borrowing notation from [4], IG also has a
diminishing returns property. The incremental information
gain obtained by adding a new element to a subset is higher
than the incremental information gain obtained by adding a
new element to its superset. Mathematically, if we consider
two set of token variables T1, T2 from the universe of problem
tokens, T , such that T1 ⊂ T2 ⊂ T , and we consider a token
e : e /∈ T1 and e /∈ T2 then the principle of diminishing returns
property is shown in the equation below:

IG[PC; {T1 ∪ {e}}]− IG[PC;T1] ≥
IG[PC; {T2 ∪ {e}}]− IG[PC;T2]

(1)

In other words, the marginal benefit of reducing the uncer-
tainty in PCR by adding a new token to a smaller set is higher
than any superset. This property is known as submodularity.
[8] Krause et al. show that interaction effects (e.g., mutual
exclusion) between variables can result in IG to not be
strictly submodular. However, we do not see such interaction
effects for our token dataset, and therefore no violation of
submodularity of information gain.

The optimization of submodular functions is a known NP-
hard problem, Nemhauser et al. [3, 4] provide a greedy algo-
rithm to solve this problem that is 63% of the computationally
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Fig. 1: Relative AUC performance of different strategies in se-
lecting tokens is shown on left while Jaccard similarity scores
are shown on right. Note: Scales removed for confidentiality.

expensive and exhaustive solution. The algorithm is iterative
and fairly straightforward: In iteration 0, we start with an
empty set, T0. At every iteration i, we add the token, t, that
maximizes the discrete derivative of information gain and set
Ti is constructed using the equation:

Ti = Ti−1 ∪ argmax
t

IG[PC; (Ti−1 ∪ t)] (2)

where t ∈ T \ Ti−1 and IG[PC; (Ti−1 ∪ t)] represents
the information gain of PC by jointly considering the tokens
(Ti−1 ∪ t) for all candidate tokens t. Note that iteration 1
picks the token that provides the highest univariate information
gain. In subsequent iterations, this method selects tokens that
provide the information not already captured by the existing
token set. By design, this results in selection of the least
correlated tokens at every iteration. We view this method of
selecting tokens as maximizing the return of information for
tokens shown (hereafter referred to as RITS).

B. Evaluation of RITS
Data gathered from the treatment (randomized PTQ) pop-

ulation of the experiment was used for evaluation. The RITS
method was evaluated using the following quantitative metrics:

1) AUC: Area under an ROC curve; [15]
2) JS: Jaccard Similarity Coefficient [15]

While AUC measures the ability of the token set to discrim-
inate between a good call and a poor call, Jaccard similarity
measures the pair-wise degree of overlap between the tokens.
The ideal token set has an AUC close to 1 and a JS score of
0. Uncorrelatedness (i.e. a low JS score) is important when
breaking down an overall quality metric into distinct factors.
For a given token count, k, we studied and compared the
performance of RITS with the following approaches:
1) Random: Select a random subset of tokens.
2) AUC-Greedy: Select tokens sorted in descending order of

their univariate AUC.
In our evaluation, we used the random forest implementation
from the Python scikit-learn library [16] to obtain the classi-
fication boundary with default settings. The error bars were
obtained using 100 independent runs of train/test splits.

C. Results using RITS
The AUC and JS scores of the different token subset selec-

tion strategies are shown in Figure 1. Note that we represent
the scale in terms of the maximum values obtained for our

dataset, and hide the labels for corporate confidentiality. This
allows for relative comparison between the selection strategies.
The RITS method significantly outperforms AUC-greedy and
random method for all k in-terms of the AUC criterion. The
shape of the RITS curve highlights the ”Diminishing” returns
property. The RITS method also has significantly lower JS
score compared to the AUC greedy method for k > 4. This
is because RITS is designed to find the tokens that provide
information that is not already covered by the existing set of
tokens. Since the AUC-greedy method does not consider cor-
relation, it performs poorly on the Jaccard similarity measure.
Using the RITS method, the first five tokens capture 94% of
the total information content in our dataset.

V. SUMMARY

In this paper, we studied two aspects of the problem token
questionnaire design for VoIP applications - display order and
token subset selection. Based on over 900,000 calls gathered
from a randomized controlled experiment in a live system, we
showed that there is a strong bias in response rate due to the
presentation order of questions. The most dramatic impact is
experienced by the top-most token. In mobile environments,
scrolling can lead to a reduction in response rate by as
much as 49%. Motivated by these observations, we studied
the problem of selecting a subset of tokens that maximize
information while minimizing correlation. We achieved this
by mapping it to the problem of submodularity maximization
studied in the machine learning community. By doing so, we
were able to retain 94% of the information using just 30% of
the questions. Finally, we would like to emphasize that these
methods and results can vastly benefit the media community
as they significantly improve the quality of data gathered from
any QoE survey.
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